mirror of
https://github.com/ollama/ollama.git
synced 2026-01-01 20:18:52 -05:00
Compare commits
1 Commits
pdevine/co
...
brucemacd/
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4819239e73 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -12,4 +12,5 @@ test_data
|
||||
*.crt
|
||||
llama/build
|
||||
__debug_bin*
|
||||
llama/vendor
|
||||
llama/vendor
|
||||
cmd/convert/out
|
||||
|
||||
10
.prettierrc.json
Normal file
10
.prettierrc.json
Normal file
@@ -0,0 +1,10 @@
|
||||
{
|
||||
"trailingComma": "es5",
|
||||
"tabWidth": 2,
|
||||
"useTabs": false,
|
||||
"semi": false,
|
||||
"singleQuote": true,
|
||||
"jsxSingleQuote": true,
|
||||
"printWidth": 120,
|
||||
"arrowParens": "avoid"
|
||||
}
|
||||
@@ -137,7 +137,7 @@ ollama run mario
|
||||
Hello! It's your friend Mario.
|
||||
```
|
||||
|
||||
For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||
|
||||
## CLI Reference
|
||||
|
||||
@@ -441,7 +441,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
|
||||
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
||||
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||
@@ -539,5 +538,4 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Observability
|
||||
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
|
||||
@@ -59,7 +59,7 @@ func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||
|
||||
_, err = os.Stat(absName)
|
||||
if err != nil {
|
||||
return "", err
|
||||
return filename, err
|
||||
}
|
||||
|
||||
return absName, nil
|
||||
|
||||
@@ -279,7 +279,7 @@ func TestGetModelfileName(t *testing.T) {
|
||||
name: "no modelfile specified, no modelfile exists",
|
||||
modelfileName: "",
|
||||
fileExists: false,
|
||||
expectedName: "",
|
||||
expectedName: "Modelfile",
|
||||
expectedErr: os.ErrNotExist,
|
||||
},
|
||||
{
|
||||
@@ -293,7 +293,7 @@ func TestGetModelfileName(t *testing.T) {
|
||||
name: "modelfile specified, no modelfile exists",
|
||||
modelfileName: "crazyfile",
|
||||
fileExists: false,
|
||||
expectedName: "",
|
||||
expectedName: "crazyfile",
|
||||
expectedErr: os.ErrNotExist,
|
||||
},
|
||||
{
|
||||
|
||||
75
cmd/convert/main.go
Normal file
75
cmd/convert/main.go
Normal file
@@ -0,0 +1,75 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
|
||||
"github.com/ollama/ollama/convert"
|
||||
)
|
||||
|
||||
func main() {
|
||||
// Check if directory path is provided
|
||||
if len(os.Args) != 2 {
|
||||
fmt.Printf("expected one argument (directory path), got %d\n", len(os.Args)-1)
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
dirPath := os.Args[1]
|
||||
|
||||
if err := convertFromDirectory(dirPath); err != nil {
|
||||
fmt.Fprintf(os.Stderr, "error: %v\n", err)
|
||||
os.Exit(1)
|
||||
}
|
||||
fmt.Println("conversion completed successfully")
|
||||
}
|
||||
|
||||
func convertFromDirectory(dirPath string) error {
|
||||
// Verify the directory exists and is accessible
|
||||
info, err := os.Stat(dirPath)
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
return fmt.Errorf("directory does not exist: %s", dirPath)
|
||||
}
|
||||
if os.IsPermission(err) {
|
||||
return fmt.Errorf("permission denied accessing directory: %s", dirPath)
|
||||
}
|
||||
return fmt.Errorf("error accessing directory: %v", err)
|
||||
}
|
||||
if !info.IsDir() {
|
||||
return fmt.Errorf("%s is not a directory", dirPath)
|
||||
}
|
||||
|
||||
// Get the directory where the script is located
|
||||
_, scriptPath, _, ok := runtime.Caller(0)
|
||||
if !ok {
|
||||
return fmt.Errorf("could not determine script location")
|
||||
}
|
||||
scriptDir := filepath.Dir(scriptPath)
|
||||
|
||||
// Create out directory relative to the script location
|
||||
outDir := filepath.Join(scriptDir, "out")
|
||||
if err := os.MkdirAll(outDir, 0755); err != nil {
|
||||
return fmt.Errorf("failed to create output directory: %v", err)
|
||||
}
|
||||
|
||||
// Create output file in the out directory
|
||||
outFile := filepath.Join(outDir, "model.fp16")
|
||||
fmt.Printf("writing output to: %s\n", outFile)
|
||||
|
||||
t, err := os.Create(outFile)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to create output file: %v", err)
|
||||
}
|
||||
defer t.Close()
|
||||
|
||||
// Use standard os.DirFS to read from directory
|
||||
if err := convert.ConvertModel(os.DirFS(dirPath), t); err != nil {
|
||||
// Clean up the output file if conversion fails
|
||||
os.Remove(outFile)
|
||||
return fmt.Errorf("model conversion failed: %v", err)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
@@ -187,14 +187,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
conv = &gemma2Model{}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
conv = &qwen2Model{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
conv = &commandrModel{}
|
||||
case "Cohere2ForCausalLM":
|
||||
conv = &cohere2Model{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
}
|
||||
|
||||
@@ -1,85 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type cohere2Model struct {
|
||||
ModelParameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
UseQKNorm bool `json:"use_qk_norm"`
|
||||
MaxLength uint32 `json:"model_max_length"`
|
||||
LogitScale float32 `json:"logit_scale"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
RotaryPct float32 `json:"rotary_pct"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*cohere2Model)(nil)
|
||||
|
||||
func (p *cohere2Model) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "cohere2"
|
||||
kv["general.name"] = "C4Ai Command R7B"
|
||||
kv["cohere2.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
||||
kv["cohere2.embedding_length"] = p.HiddenSize
|
||||
kv["cohere2.block_count"] = p.HiddenLayers
|
||||
kv["cohere2.feed_forward_length"] = p.IntermediateSize
|
||||
kv["cohere2.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["cohere2.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["cohere2.attention.key_length"] = p.HeadDim
|
||||
kv["cohere2.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
||||
kv["cohere2.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["cohere2.attention.value_length"] = p.HeadDim
|
||||
kv["cohere2.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
||||
kv["cohere2.logit_scale"] = p.LogitScale
|
||||
kv["cohere2.rope.dimension_count"] = uint32(p.RotaryPct * float32(p.HiddenSize/p.NumAttentionHeads))
|
||||
kv["cohere2.rope.freq_base"] = p.RopeTheta
|
||||
kv["cohere2.rope.scaling.type"] = "none"
|
||||
kv["cohere2.vocab_size"] = p.VocabSize
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *cohere2Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *cohere2Model) Replacements() []string {
|
||||
return []string{
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"model.norm", "output_norm",
|
||||
"model.embed_tokens", "token_embd",
|
||||
}
|
||||
}
|
||||
@@ -1,76 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type commandrModel struct {
|
||||
ModelParameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
UseQKNorm bool `json:"use_qk_norm"`
|
||||
MaxLength uint32 `json:"model_max_length"`
|
||||
LogitScale float32 `json:"logit_scale"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*commandrModel)(nil)
|
||||
|
||||
func (p *commandrModel) KV(t *Tokenizer) llm.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "command-r"
|
||||
kv["general.name"] = "command-r"
|
||||
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
||||
kv["command-r.embedding_length"] = p.HiddenSize
|
||||
kv["command-r.block_count"] = p.HiddenLayers
|
||||
kv["command-r.feed_forward_length"] = p.IntermediateSize
|
||||
kv["command-r.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
||||
kv["command-r.rope.freq_base"] = p.RopeTheta
|
||||
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
||||
kv["command-r.logit_scale"] = p.LogitScale
|
||||
kv["command-r.rope.scaling.type"] = "none"
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *commandrModel) Replacements() []string {
|
||||
return []string{
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"model.norm", "output_norm",
|
||||
"model.embed_tokens", "token_embd",
|
||||
}
|
||||
}
|
||||
@@ -1,78 +0,0 @@
|
||||
package convert
|
||||
|
||||
import "github.com/ollama/ollama/llm"
|
||||
|
||||
type qwen2Model struct {
|
||||
ModelParameters
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen2Model)(nil)
|
||||
|
||||
func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen2"
|
||||
kv["qwen2.block_count"] = q.HiddenLayers
|
||||
kv["qwen2.context_length"] = q.MaxPositionEmbeddings
|
||||
kv["qwen2.embedding_length"] = q.HiddenSize
|
||||
kv["qwen2.feed_forward_length"] = q.IntermediateSize
|
||||
kv["qwen2.attention.head_count"] = q.NumAttentionHeads
|
||||
kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
|
||||
kv["qwen2.rope.freq_base"] = q.RopeTheta
|
||||
kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
||||
|
||||
switch q.RopeScaling.Type {
|
||||
case "":
|
||||
// no scaling
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, llm.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *qwen2Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"model.norm", "output_norm",
|
||||
}
|
||||
}
|
||||
@@ -29,8 +29,6 @@ type tensorData struct {
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
var generate string
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
@@ -93,7 +91,6 @@ func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tenso
|
||||
func TestMain(m *testing.M) {
|
||||
var level slog.Level
|
||||
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
|
||||
flag.StringVar(&generate, "generate", "", "generate model data")
|
||||
flag.Parse()
|
||||
slog.SetLogLoggerLevel(level)
|
||||
os.Exit(m.Run())
|
||||
@@ -111,9 +108,6 @@ func TestConvertModel(t *testing.T) {
|
||||
"Phi-3-mini-128k-instruct",
|
||||
"all-MiniLM-L6-v2",
|
||||
"gemma-2-9b-it",
|
||||
"Qwen2.5-0.5B-Instruct",
|
||||
"c4ai-command-r-v01",
|
||||
"c4ai-command-r7b-12-2024",
|
||||
}
|
||||
|
||||
for i := range cases {
|
||||
@@ -131,19 +125,6 @@ func TestConvertModel(t *testing.T) {
|
||||
f, kv, tensors := convertFull(t, os.DirFS(p))
|
||||
actual := generateResultsJSON(t, f, kv, tensors)
|
||||
|
||||
if generate != "" && generate == tt {
|
||||
outFile := filepath.Join("testdata", fmt.Sprintf("%s.json", tt))
|
||||
data, err := json.MarshalIndent(actual, "", " ")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if err := os.WriteFile(outFile, data, 0o644); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
t.Logf("Generated expected results for %s", tt)
|
||||
return
|
||||
}
|
||||
|
||||
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
|
||||
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
@@ -1,314 +0,0 @@
|
||||
{
|
||||
"general.architecture": "qwen2",
|
||||
"general.file_type": "1",
|
||||
"general.parameter_count": "494032768",
|
||||
"general.quantization_version": "2",
|
||||
"output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390",
|
||||
"qwen2.attention.head_count": "14",
|
||||
"qwen2.attention.head_count_kv": "2",
|
||||
"qwen2.attention.layer_norm_rms_epsilon": "1e-06",
|
||||
"qwen2.block_count": "24",
|
||||
"qwen2.context_length": "32768",
|
||||
"qwen2.embedding_length": "896",
|
||||
"qwen2.feed_forward_length": "4864",
|
||||
"qwen2.rope.freq_base": "1e+06",
|
||||
"token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.add_padding_token": "false",
|
||||
"tokenizer.ggml.eos_token_id": "151645",
|
||||
"tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2",
|
||||
"tokenizer.ggml.model": "gpt2",
|
||||
"tokenizer.ggml.padding_token_id": "151643",
|
||||
"tokenizer.ggml.pre": "qwen2",
|
||||
"tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d",
|
||||
"tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055",
|
||||
"tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34",
|
||||
"blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1",
|
||||
"blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8",
|
||||
"blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3",
|
||||
"blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98",
|
||||
"blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063",
|
||||
"blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583",
|
||||
"blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9",
|
||||
"blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84",
|
||||
"blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147",
|
||||
"blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6",
|
||||
"blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f",
|
||||
"blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff",
|
||||
"blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f",
|
||||
"blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d",
|
||||
"blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434",
|
||||
"blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016",
|
||||
"blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e",
|
||||
"blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a",
|
||||
"blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631",
|
||||
"blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c",
|
||||
"blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521",
|
||||
"blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e",
|
||||
"blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c",
|
||||
"blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8",
|
||||
"blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401",
|
||||
"blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71",
|
||||
"blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a",
|
||||
"blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264",
|
||||
"blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59",
|
||||
"blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f",
|
||||
"blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3",
|
||||
"blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16",
|
||||
"blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4",
|
||||
"blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945",
|
||||
"blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4",
|
||||
"blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112",
|
||||
"blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0",
|
||||
"blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9",
|
||||
"blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31",
|
||||
"blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c",
|
||||
"blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3",
|
||||
"blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef",
|
||||
"blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8",
|
||||
"blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2",
|
||||
"blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6",
|
||||
"blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144",
|
||||
"blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac",
|
||||
"blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa",
|
||||
"blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751",
|
||||
"blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73",
|
||||
"blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f",
|
||||
"blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9",
|
||||
"blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a",
|
||||
"blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551",
|
||||
"blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa",
|
||||
"blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2",
|
||||
"blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81",
|
||||
"blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991",
|
||||
"blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab",
|
||||
"blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3",
|
||||
"blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0",
|
||||
"blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d",
|
||||
"blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba",
|
||||
"blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a",
|
||||
"blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a",
|
||||
"blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb",
|
||||
"blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525",
|
||||
"blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333",
|
||||
"blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb",
|
||||
"blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d",
|
||||
"blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb",
|
||||
"blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57",
|
||||
"blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1",
|
||||
"blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d",
|
||||
"blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d",
|
||||
"blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0",
|
||||
"blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038",
|
||||
"blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1",
|
||||
"blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee",
|
||||
"blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1",
|
||||
"blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d",
|
||||
"blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450",
|
||||
"blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56",
|
||||
"blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57",
|
||||
"blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b",
|
||||
"blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739",
|
||||
"blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf",
|
||||
"blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62",
|
||||
"blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208",
|
||||
"blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55",
|
||||
"blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c",
|
||||
"blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e",
|
||||
"blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc",
|
||||
"blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc",
|
||||
"blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e",
|
||||
"blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6",
|
||||
"blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8",
|
||||
"blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5",
|
||||
"blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6",
|
||||
"blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1",
|
||||
"blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4",
|
||||
"blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b",
|
||||
"blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324",
|
||||
"blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355",
|
||||
"blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba",
|
||||
"blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2",
|
||||
"blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410",
|
||||
"blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff",
|
||||
"blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1",
|
||||
"blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a",
|
||||
"blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a",
|
||||
"blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a",
|
||||
"blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00",
|
||||
"blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5",
|
||||
"blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703",
|
||||
"blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80",
|
||||
"blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51",
|
||||
"blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e",
|
||||
"blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008",
|
||||
"blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f",
|
||||
"blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2",
|
||||
"blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad",
|
||||
"blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075",
|
||||
"blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c",
|
||||
"blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f",
|
||||
"blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696",
|
||||
"blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e",
|
||||
"blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122",
|
||||
"blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300",
|
||||
"blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403",
|
||||
"blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59",
|
||||
"blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73",
|
||||
"blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee",
|
||||
"blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6",
|
||||
"blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59",
|
||||
"blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad",
|
||||
"blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34",
|
||||
"blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad",
|
||||
"blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d",
|
||||
"blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be",
|
||||
"blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395",
|
||||
"blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f",
|
||||
"blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112",
|
||||
"blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82",
|
||||
"blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c",
|
||||
"blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437",
|
||||
"blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9",
|
||||
"blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88",
|
||||
"blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376",
|
||||
"blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade",
|
||||
"blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0",
|
||||
"blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5",
|
||||
"blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e",
|
||||
"blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52",
|
||||
"blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba",
|
||||
"blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37",
|
||||
"blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe",
|
||||
"blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861",
|
||||
"blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37",
|
||||
"blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8",
|
||||
"blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8",
|
||||
"blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8",
|
||||
"blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f",
|
||||
"blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1",
|
||||
"blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f",
|
||||
"blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42",
|
||||
"blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4",
|
||||
"blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094",
|
||||
"blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011",
|
||||
"blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31",
|
||||
"blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0",
|
||||
"blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f",
|
||||
"blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea",
|
||||
"blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005",
|
||||
"blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e",
|
||||
"blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df",
|
||||
"blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527",
|
||||
"blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787",
|
||||
"blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d",
|
||||
"blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91",
|
||||
"blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480",
|
||||
"blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa",
|
||||
"blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c",
|
||||
"blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f",
|
||||
"blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96",
|
||||
"blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35",
|
||||
"blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5",
|
||||
"blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42",
|
||||
"blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82",
|
||||
"blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6",
|
||||
"blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5",
|
||||
"blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187",
|
||||
"blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8",
|
||||
"blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd",
|
||||
"blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769",
|
||||
"blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2",
|
||||
"blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b",
|
||||
"blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce",
|
||||
"blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f",
|
||||
"blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e",
|
||||
"blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a",
|
||||
"blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887",
|
||||
"blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7",
|
||||
"blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce",
|
||||
"blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393",
|
||||
"blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d",
|
||||
"blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923",
|
||||
"blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6",
|
||||
"blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a",
|
||||
"blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e",
|
||||
"blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e",
|
||||
"blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752",
|
||||
"blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82",
|
||||
"blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513",
|
||||
"blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a",
|
||||
"blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62",
|
||||
"blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0",
|
||||
"blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156",
|
||||
"blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9",
|
||||
"blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6",
|
||||
"blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59",
|
||||
"blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b",
|
||||
"blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2",
|
||||
"blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0",
|
||||
"blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8",
|
||||
"blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646",
|
||||
"blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31",
|
||||
"blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347",
|
||||
"blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5",
|
||||
"blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f",
|
||||
"blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82",
|
||||
"blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8",
|
||||
"blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045",
|
||||
"blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469",
|
||||
"blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259",
|
||||
"blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665",
|
||||
"blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114",
|
||||
"blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81",
|
||||
"blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda",
|
||||
"blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514",
|
||||
"blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111",
|
||||
"blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb",
|
||||
"blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411",
|
||||
"blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6",
|
||||
"blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3",
|
||||
"blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500",
|
||||
"blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7",
|
||||
"blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b",
|
||||
"blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91",
|
||||
"blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f",
|
||||
"blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510",
|
||||
"blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3",
|
||||
"blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744",
|
||||
"blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f",
|
||||
"blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656",
|
||||
"blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec",
|
||||
"blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0",
|
||||
"blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9",
|
||||
"blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec",
|
||||
"blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1",
|
||||
"blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12",
|
||||
"blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72",
|
||||
"blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1",
|
||||
"blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa",
|
||||
"blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93",
|
||||
"blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a",
|
||||
"blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717",
|
||||
"blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5",
|
||||
"blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5",
|
||||
"blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577",
|
||||
"blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d",
|
||||
"blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53",
|
||||
"blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2",
|
||||
"blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62",
|
||||
"blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb",
|
||||
"blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2",
|
||||
"blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e",
|
||||
"blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4",
|
||||
"blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd",
|
||||
"blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8",
|
||||
"blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123",
|
||||
"blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24",
|
||||
"blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9",
|
||||
"blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e",
|
||||
"blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152",
|
||||
"blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42",
|
||||
"blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a",
|
||||
"blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822"
|
||||
}
|
||||
344
convert/testdata/c4ai-command-r-v01.json
vendored
344
convert/testdata/c4ai-command-r-v01.json
vendored
@@ -1,344 +0,0 @@
|
||||
{
|
||||
"general.architecture": "command-r",
|
||||
"general.name": "command-r",
|
||||
"command-r.attention.head_count": "64",
|
||||
"command-r.attention.head_count_kv": "64",
|
||||
"command-r.attention.layer_norm_epsilon": "1e-05",
|
||||
"command-r.block_count": "40",
|
||||
"command-r.context_length": "131072",
|
||||
"command-r.embedding_length": "8192",
|
||||
"command-r.feed_forward_length": "22528",
|
||||
"command-r.logit_scale": "0.0625",
|
||||
"command-r.rope.freq_base": "8e+06",
|
||||
"command-r.rope.scaling.type": "none",
|
||||
"tokenizer.ggml.add_bos_token": "true",
|
||||
"tokenizer.ggml.add_eos_token": "false",
|
||||
"tokenizer.ggml.bos_token_id": "5",
|
||||
"tokenizer.ggml.eos_token_id": "255001",
|
||||
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
|
||||
"tokenizer.ggml.model": "gpt2",
|
||||
"tokenizer.ggml.padding_token_id": "0",
|
||||
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
|
||||
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
|
||||
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
|
||||
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
|
||||
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
|
||||
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
|
||||
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
|
||||
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
|
||||
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
|
||||
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
|
||||
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
|
||||
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
|
||||
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
|
||||
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
|
||||
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
|
||||
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
|
||||
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
|
||||
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
|
||||
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
|
||||
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
|
||||
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
|
||||
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
|
||||
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
|
||||
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
|
||||
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
|
||||
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
|
||||
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
|
||||
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
|
||||
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
|
||||
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
|
||||
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
|
||||
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
|
||||
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
|
||||
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
|
||||
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
|
||||
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
|
||||
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
|
||||
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
|
||||
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
|
||||
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
|
||||
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
|
||||
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
|
||||
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
|
||||
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
|
||||
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
|
||||
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
|
||||
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
|
||||
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
|
||||
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
|
||||
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
|
||||
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
|
||||
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
|
||||
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
|
||||
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
|
||||
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
|
||||
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
|
||||
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
|
||||
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
|
||||
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
|
||||
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
|
||||
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
|
||||
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
|
||||
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
|
||||
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
|
||||
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
|
||||
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
|
||||
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
|
||||
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
|
||||
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
|
||||
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
|
||||
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
|
||||
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
|
||||
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
|
||||
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
|
||||
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
|
||||
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
|
||||
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
|
||||
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
|
||||
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
|
||||
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
|
||||
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
|
||||
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
|
||||
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
|
||||
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
|
||||
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
|
||||
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
|
||||
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
|
||||
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
|
||||
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
|
||||
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
|
||||
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
|
||||
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
|
||||
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
|
||||
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
|
||||
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
|
||||
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
|
||||
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
|
||||
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
|
||||
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
|
||||
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
|
||||
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
|
||||
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
|
||||
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
|
||||
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
|
||||
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
|
||||
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
|
||||
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
|
||||
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
|
||||
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
|
||||
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
|
||||
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
|
||||
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
|
||||
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
|
||||
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
|
||||
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
|
||||
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
|
||||
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
|
||||
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
|
||||
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
|
||||
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
|
||||
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
|
||||
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
|
||||
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
|
||||
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
|
||||
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
|
||||
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
|
||||
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
|
||||
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
|
||||
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
|
||||
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
|
||||
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
|
||||
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
|
||||
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
|
||||
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
|
||||
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
|
||||
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
|
||||
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
|
||||
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
|
||||
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
|
||||
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
|
||||
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
|
||||
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
|
||||
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
|
||||
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
|
||||
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
|
||||
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
|
||||
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
|
||||
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
|
||||
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
|
||||
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
|
||||
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
|
||||
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
|
||||
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
|
||||
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
|
||||
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
|
||||
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
|
||||
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
|
||||
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
|
||||
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
|
||||
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
|
||||
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
|
||||
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
|
||||
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
|
||||
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
|
||||
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
|
||||
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
|
||||
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
|
||||
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
|
||||
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
|
||||
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
|
||||
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
|
||||
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
|
||||
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
|
||||
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
|
||||
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
|
||||
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
|
||||
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
|
||||
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
|
||||
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
|
||||
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
|
||||
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
|
||||
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
|
||||
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
|
||||
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
|
||||
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
|
||||
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
|
||||
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
|
||||
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
|
||||
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
|
||||
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
|
||||
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
|
||||
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
|
||||
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
|
||||
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
|
||||
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
|
||||
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
|
||||
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
|
||||
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
|
||||
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
|
||||
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
|
||||
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
|
||||
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
|
||||
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
|
||||
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
|
||||
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
|
||||
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
|
||||
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
|
||||
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
|
||||
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
|
||||
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
|
||||
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
|
||||
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
|
||||
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
|
||||
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
|
||||
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
|
||||
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
|
||||
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
|
||||
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
|
||||
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
|
||||
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
|
||||
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
|
||||
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
|
||||
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
|
||||
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
|
||||
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
|
||||
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
|
||||
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
|
||||
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
|
||||
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
|
||||
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
|
||||
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
|
||||
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
|
||||
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
|
||||
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
|
||||
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
|
||||
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
|
||||
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
|
||||
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
|
||||
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
|
||||
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
|
||||
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
|
||||
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
|
||||
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
|
||||
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
|
||||
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
|
||||
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
|
||||
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
|
||||
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
|
||||
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
|
||||
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
|
||||
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
|
||||
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
|
||||
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
|
||||
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
|
||||
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
|
||||
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
|
||||
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
|
||||
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
|
||||
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
|
||||
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
|
||||
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
|
||||
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
|
||||
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
|
||||
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
|
||||
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
|
||||
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
|
||||
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
|
||||
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
|
||||
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
|
||||
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
|
||||
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
|
||||
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
|
||||
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
|
||||
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
|
||||
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
|
||||
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
|
||||
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
|
||||
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
|
||||
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
|
||||
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
|
||||
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
|
||||
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
|
||||
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
|
||||
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
|
||||
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
|
||||
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
|
||||
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
|
||||
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
|
||||
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
|
||||
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
|
||||
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
|
||||
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
|
||||
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
|
||||
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
|
||||
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
|
||||
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
|
||||
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
|
||||
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
|
||||
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
|
||||
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
|
||||
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
|
||||
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
|
||||
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
|
||||
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
|
||||
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
|
||||
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
|
||||
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
|
||||
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
|
||||
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
|
||||
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
|
||||
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
|
||||
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
|
||||
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
|
||||
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
|
||||
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
|
||||
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
|
||||
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
|
||||
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
|
||||
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
|
||||
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
|
||||
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
|
||||
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
|
||||
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
|
||||
}
|
||||
296
convert/testdata/c4ai-command-r7b-12-2024.json
vendored
296
convert/testdata/c4ai-command-r7b-12-2024.json
vendored
File diff suppressed because one or more lines are too long
@@ -100,8 +100,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
t.Pre = "deepseek-llm"
|
||||
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||
t.Pre = "deepseek-coder"
|
||||
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
|
||||
t.Pre = "qwen2"
|
||||
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
||||
// noop, empty pretokenizer
|
||||
default:
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
### Getting Started
|
||||
* [Quickstart](../README.md#quickstart)
|
||||
* [Examples](./examples.md)
|
||||
* [Examples](../examples)
|
||||
* [Importing models](./import.md)
|
||||
* [Linux Documentation](./linux.md)
|
||||
* [Windows Documentation](./windows.md)
|
||||
|
||||
110
docs/api.md
110
docs/api.md
@@ -928,25 +928,14 @@ A single JSON object is returned:
|
||||
POST /api/create
|
||||
```
|
||||
|
||||
Create a model from:
|
||||
* another model;
|
||||
* a safetensors directory; or
|
||||
* a GGUF file.
|
||||
|
||||
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
|
||||
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
|
||||
|
||||
### Parameters
|
||||
|
||||
- `model`: name of the model to create
|
||||
- `from`: (optional) name of an existing model to create the new model from
|
||||
- `files`: (optional) a dictionary of file names to SHA256 digests of blobs to create the model from
|
||||
- `adapters`: (optional) a dictionary of file names to SHA256 digests of blobs for LORA adapters
|
||||
- `template`: (optional) the prompt template for the model
|
||||
- `license`: (optional) a string or list of strings containing the license or licenses for the model
|
||||
- `system`: (optional) a string containing the system prompt for the model
|
||||
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
|
||||
- `messages`: (optional) a list of message objects used to create a conversation
|
||||
- `modelfile` (optional): contents of the Modelfile
|
||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `path` (optional): path to the Modelfile
|
||||
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
|
||||
|
||||
#### Quantization types
|
||||
@@ -972,15 +961,14 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
|
||||
|
||||
#### Create a new model
|
||||
|
||||
Create a new model from an existing model.
|
||||
Create a new model from a `Modelfile`.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "mario",
|
||||
"from": "llama3.2",
|
||||
"system": "You are Mario from Super Mario Bros."
|
||||
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1011,7 +999,7 @@ Quantize a non-quantized model.
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "llama3.1:quantized",
|
||||
"from": "llama3.1:8b-instruct-fp16",
|
||||
"modelfile": "FROM llama3.1:8b-instruct-fp16",
|
||||
"quantize": "q4_K_M"
|
||||
}'
|
||||
```
|
||||
@@ -1031,112 +1019,52 @@ A stream of JSON objects is returned:
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
#### Create a model from GGUF
|
||||
|
||||
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
|
||||
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "my-gguf-model",
|
||||
"files": {
|
||||
"test.gguf": "sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```
|
||||
{"status":"parsing GGUF"}
|
||||
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
|
||||
#### Create a model from a Safetensors directory
|
||||
|
||||
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "fred",
|
||||
"files": {
|
||||
"config.json": "sha256:dd3443e529fb2290423a0c65c2d633e67b419d273f170259e27297219828e389",
|
||||
"generation_config.json": "sha256:88effbb63300dbbc7390143fbbdd9d9fa50587b37e8bfd16c8c90d4970a74a36",
|
||||
"special_tokens_map.json": "sha256:b7455f0e8f00539108837bfa586c4fbf424e31f8717819a6798be74bef813d05",
|
||||
"tokenizer.json": "sha256:bbc1904d35169c542dffbe1f7589a5994ec7426d9e5b609d07bab876f32e97ab",
|
||||
"tokenizer_config.json": "sha256:24e8a6dc2547164b7002e3125f10b415105644fcf02bf9ad8b674c87b1eaaed6",
|
||||
"model.safetensors": "sha256:1ff795ff6a07e6a68085d206fb84417da2f083f68391c2843cd2b8ac6df8538f"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```shell
|
||||
{"status":"converting model"}
|
||||
{"status":"creating new layer sha256:05ca5b813af4a53d2c2922933936e398958855c44ee534858fcfd830940618b6"}
|
||||
{"status":"using autodetected template llama3-instruct"}
|
||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
|
||||
## Check if a Blob Exists
|
||||
### Check if a Blob Exists
|
||||
|
||||
```shell
|
||||
HEAD /api/blobs/:digest
|
||||
```
|
||||
|
||||
Ensures that the file blob (Binary Large Object) used with create a model exists on the server. This checks your Ollama server and not ollama.com.
|
||||
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not ollama.com.
|
||||
|
||||
### Query Parameters
|
||||
#### Query Parameters
|
||||
|
||||
- `digest`: the SHA256 digest of the blob
|
||||
|
||||
### Examples
|
||||
#### Examples
|
||||
|
||||
#### Request
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
```
|
||||
|
||||
#### Response
|
||||
##### Response
|
||||
|
||||
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
||||
|
||||
## Push a Blob
|
||||
### Create a Blob
|
||||
|
||||
```shell
|
||||
POST /api/blobs/:digest
|
||||
```
|
||||
|
||||
Push a file to the Ollama server to create a "blob" (Binary Large Object).
|
||||
Create a blob from a file on the server. Returns the server file path.
|
||||
|
||||
### Query Parameters
|
||||
#### Query Parameters
|
||||
|
||||
- `digest`: the expected SHA256 digest of the file
|
||||
|
||||
### Examples
|
||||
#### Examples
|
||||
|
||||
#### Request
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl -T model.gguf -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||
```
|
||||
|
||||
#### Response
|
||||
##### Response
|
||||
|
||||
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
||||
|
||||
|
||||
107
llama/grammar/grammar_test.go
Normal file
107
llama/grammar/grammar_test.go
Normal file
@@ -0,0 +1,107 @@
|
||||
package grammar
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/llama"
|
||||
)
|
||||
|
||||
// https://github.com/ollama/ollama/issues/7978
|
||||
const issue7978JSONSchema = `{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"steps": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"explanation": { "type": "string" },
|
||||
"output": { "type": "string" },
|
||||
"nested": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"deep": { "type": "string" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["explanation", "output"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
},
|
||||
"final_answer": { "type": "string" },
|
||||
"01_numbered_key": { "type": "string" },
|
||||
"numbers": {
|
||||
"type": "array",
|
||||
"items": { "type": "number" }
|
||||
},
|
||||
"booleans": {
|
||||
"type": "array",
|
||||
"items": { "type": "boolean" }
|
||||
},
|
||||
"mixed": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"oneOf": [
|
||||
{ "type": "string" },
|
||||
{ "type": "number" },
|
||||
{ "type": "boolean" }
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["steps", "final_answer"],
|
||||
"additionalProperties": false
|
||||
}`
|
||||
|
||||
func TestIssue7978(t *testing.T) {
|
||||
g := llama.SchemaToGrammar([]byte(issue7978JSONSchema))
|
||||
if g == nil {
|
||||
t.Fatal("failed to convert JSON schema to grammar")
|
||||
}
|
||||
|
||||
t.Logf("grammar:\n%s", g)
|
||||
t.Log()
|
||||
|
||||
var got string
|
||||
s := bufio.NewScanner(bytes.NewReader(g))
|
||||
for s.Scan() {
|
||||
line := strings.TrimSpace(s.Text())
|
||||
step, _, _ := strings.Cut(line, " ::= ")
|
||||
step = strings.TrimSpace(step)
|
||||
if step == "root" {
|
||||
got = line
|
||||
}
|
||||
}
|
||||
|
||||
want := `root ::= "{" space steps-kv "," space final-answer-kv ( "," space ( 01-numbered-key-kv 01-numbered-key-rest | numbers-kv numbers-rest | booleans-kv booleans-rest | mixed-kv ) )? "}" space`
|
||||
if got != want {
|
||||
t.Errorf("root =\n%qwant:\n%q", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestSchemaToGrammer(t *testing.T) {
|
||||
cases := []struct {
|
||||
schema string
|
||||
prefix []byte // nil is check as nil
|
||||
}{
|
||||
{`invalid`, nil},
|
||||
|
||||
// Simple heuristic/smoke test
|
||||
{`{"type":"object"}`, []byte("root ::= object")},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
t.Run("x", func(t *testing.T) {
|
||||
g := llama.SchemaToGrammar([]byte(c.schema))
|
||||
if c.prefix == nil && g != nil {
|
||||
t.Fatalf("grammar = %v, want nil", g)
|
||||
}
|
||||
if !bytes.HasPrefix(g, c.prefix) {
|
||||
t.Errorf("grammar = %q, want %q", g, c.prefix)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -1,105 +1 @@
|
||||
package llama
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
// https://github.com/ollama/ollama/issues/7978
|
||||
const issue7978JSONSchema = `{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"steps": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"explanation": { "type": "string" },
|
||||
"output": { "type": "string" },
|
||||
"nested": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"deep": { "type": "string" }
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["explanation", "output"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
},
|
||||
"final_answer": { "type": "string" },
|
||||
"01_numbered_key": { "type": "string" },
|
||||
"numbers": {
|
||||
"type": "array",
|
||||
"items": { "type": "number" }
|
||||
},
|
||||
"booleans": {
|
||||
"type": "array",
|
||||
"items": { "type": "boolean" }
|
||||
},
|
||||
"mixed": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"oneOf": [
|
||||
{ "type": "string" },
|
||||
{ "type": "number" },
|
||||
{ "type": "boolean" }
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["steps", "final_answer"],
|
||||
"additionalProperties": false
|
||||
}`
|
||||
|
||||
func TestIssue7978(t *testing.T) {
|
||||
g := SchemaToGrammar([]byte(issue7978JSONSchema))
|
||||
if g == nil {
|
||||
t.Fatal("failed to convert JSON schema to grammar")
|
||||
}
|
||||
|
||||
t.Logf("grammar:\n%s", g)
|
||||
t.Log()
|
||||
|
||||
var got string
|
||||
s := bufio.NewScanner(bytes.NewReader(g))
|
||||
for s.Scan() {
|
||||
line := strings.TrimSpace(s.Text())
|
||||
step, _, _ := strings.Cut(line, " ::= ")
|
||||
step = strings.TrimSpace(step)
|
||||
if step == "root" {
|
||||
got = line
|
||||
}
|
||||
}
|
||||
|
||||
want := `root ::= "{" space steps-kv "," space final-answer-kv ( "," space ( 01-numbered-key-kv 01-numbered-key-rest | numbers-kv numbers-rest | booleans-kv booleans-rest | mixed-kv ) )? "}" space`
|
||||
if got != want {
|
||||
t.Errorf("root =\n%qwant:\n%q", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestSchemaToGrammer(t *testing.T) {
|
||||
cases := []struct {
|
||||
schema string
|
||||
prefix []byte // nil is check as nil
|
||||
}{
|
||||
{`invalid`, nil},
|
||||
|
||||
// Simple heuristic/smoke test
|
||||
{`{"type":"object"}`, []byte("root ::= object")},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
t.Run("x", func(t *testing.T) {
|
||||
g := SchemaToGrammar([]byte(c.schema))
|
||||
if c.prefix == nil && g != nil {
|
||||
t.Fatalf("grammar = %v, want nil", g)
|
||||
}
|
||||
if !bytes.HasPrefix(g, c.prefix) {
|
||||
t.Errorf("grammar = %q, want %q", g, c.prefix)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
91
macapp/package-lock.json
generated
91
macapp/package-lock.json
generated
@@ -55,6 +55,8 @@
|
||||
"postcss-import": "^15.1.0",
|
||||
"postcss-loader": "^7.3.3",
|
||||
"postcss-preset-env": "^8.5.1",
|
||||
"prettier": "^2.8.8",
|
||||
"prettier-plugin-tailwindcss": "^0.3.0",
|
||||
"style-loader": "^3.3.3",
|
||||
"svg-inline-loader": "^0.8.2",
|
||||
"tailwindcss": "^3.3.2",
|
||||
@@ -13246,6 +13248,95 @@
|
||||
"node": ">= 0.8.0"
|
||||
}
|
||||
},
|
||||
"node_modules/prettier": {
|
||||
"version": "2.8.8",
|
||||
"resolved": "https://registry.npmjs.org/prettier/-/prettier-2.8.8.tgz",
|
||||
"integrity": "sha512-tdN8qQGvNjw4CHbY+XXk0JgCXn9QiF21a55rBe5LJAU+kDyC4WQn4+awm2Xfk2lQMk5fKup9XgzTZtGkjBdP9Q==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"prettier": "bin-prettier.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=10.13.0"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/prettier/prettier?sponsor=1"
|
||||
}
|
||||
},
|
||||
"node_modules/prettier-plugin-tailwindcss": {
|
||||
"version": "0.3.0",
|
||||
"resolved": "https://registry.npmjs.org/prettier-plugin-tailwindcss/-/prettier-plugin-tailwindcss-0.3.0.tgz",
|
||||
"integrity": "sha512-009/Xqdy7UmkcTBpwlq7jsViDqXAYSOMLDrHAdTMlVZOrKfM2o9Ci7EMWTMZ7SkKBFTG04UM9F9iM2+4i6boDA==",
|
||||
"dev": true,
|
||||
"engines": {
|
||||
"node": ">=12.17.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@ianvs/prettier-plugin-sort-imports": "*",
|
||||
"@prettier/plugin-pug": "*",
|
||||
"@shopify/prettier-plugin-liquid": "*",
|
||||
"@shufo/prettier-plugin-blade": "*",
|
||||
"@trivago/prettier-plugin-sort-imports": "*",
|
||||
"prettier": ">=2.2.0",
|
||||
"prettier-plugin-astro": "*",
|
||||
"prettier-plugin-css-order": "*",
|
||||
"prettier-plugin-import-sort": "*",
|
||||
"prettier-plugin-jsdoc": "*",
|
||||
"prettier-plugin-marko": "*",
|
||||
"prettier-plugin-organize-attributes": "*",
|
||||
"prettier-plugin-organize-imports": "*",
|
||||
"prettier-plugin-style-order": "*",
|
||||
"prettier-plugin-svelte": "*",
|
||||
"prettier-plugin-twig-melody": "*"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"@ianvs/prettier-plugin-sort-imports": {
|
||||
"optional": true
|
||||
},
|
||||
"@prettier/plugin-pug": {
|
||||
"optional": true
|
||||
},
|
||||
"@shopify/prettier-plugin-liquid": {
|
||||
"optional": true
|
||||
},
|
||||
"@shufo/prettier-plugin-blade": {
|
||||
"optional": true
|
||||
},
|
||||
"@trivago/prettier-plugin-sort-imports": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-astro": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-css-order": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-import-sort": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-jsdoc": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-marko": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-organize-attributes": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-organize-imports": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-style-order": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-svelte": {
|
||||
"optional": true
|
||||
},
|
||||
"prettier-plugin-twig-melody": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/pretty-error": {
|
||||
"version": "4.0.0",
|
||||
"resolved": "https://registry.npmjs.org/pretty-error/-/pretty-error-4.0.0.tgz",
|
||||
|
||||
@@ -11,7 +11,9 @@
|
||||
"make": "electron-forge make --arch universal",
|
||||
"make:sign": "SIGN=1 electron-forge make --arch universal",
|
||||
"publish": "SIGN=1 electron-forge publish",
|
||||
"lint": "eslint --ext .ts,.tsx ."
|
||||
"lint": "eslint --ext .ts,.tsx .",
|
||||
"format": "prettier --check . --ignore-path .gitignore",
|
||||
"format:fix": "prettier --write . --ignore-path .gitignore"
|
||||
},
|
||||
"keywords": [],
|
||||
"author": {
|
||||
@@ -53,6 +55,8 @@
|
||||
"postcss-import": "^15.1.0",
|
||||
"postcss-loader": "^7.3.3",
|
||||
"postcss-preset-env": "^8.5.1",
|
||||
"prettier": "^2.8.8",
|
||||
"prettier-plugin-tailwindcss": "^0.3.0",
|
||||
"style-loader": "^3.3.3",
|
||||
"svg-inline-loader": "^0.8.2",
|
||||
"tailwindcss": "^3.3.2",
|
||||
|
||||
@@ -4,7 +4,6 @@ import (
|
||||
"os"
|
||||
"os/user"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"testing"
|
||||
)
|
||||
|
||||
@@ -12,29 +11,14 @@ func TestExpandPath(t *testing.T) {
|
||||
mockCurrentUser := func() (*user.User, error) {
|
||||
return &user.User{
|
||||
Username: "testuser",
|
||||
HomeDir: func() string {
|
||||
if os.PathSeparator == '\\' {
|
||||
return filepath.FromSlash("D:/home/testuser")
|
||||
}
|
||||
return "/home/testuser"
|
||||
}(),
|
||||
HomeDir: "/home/testuser",
|
||||
}, nil
|
||||
}
|
||||
|
||||
mockLookupUser := func(username string) (*user.User, error) {
|
||||
fakeUsers := map[string]string{
|
||||
"testuser": func() string {
|
||||
if os.PathSeparator == '\\' {
|
||||
return filepath.FromSlash("D:/home/testuser")
|
||||
}
|
||||
return "/home/testuser"
|
||||
}(),
|
||||
"anotheruser": func() string {
|
||||
if os.PathSeparator == '\\' {
|
||||
return filepath.FromSlash("D:/home/anotheruser")
|
||||
}
|
||||
return "/home/anotheruser"
|
||||
}(),
|
||||
"testuser": "/home/testuser",
|
||||
"anotheruser": "/home/anotheruser",
|
||||
}
|
||||
|
||||
if homeDir, ok := fakeUsers[username]; ok {
|
||||
@@ -46,78 +30,30 @@ func TestExpandPath(t *testing.T) {
|
||||
return nil, os.ErrNotExist
|
||||
}
|
||||
|
||||
pwd, err := os.Getwd()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
tests := []struct {
|
||||
path string
|
||||
relativeDir string
|
||||
expected string
|
||||
windowsExpected string
|
||||
shouldErr bool
|
||||
}{
|
||||
{"~", "", "/home/testuser", "D:\\home\\testuser", false},
|
||||
{"~/myfolder/myfile.txt", "", "/home/testuser/myfolder/myfile.txt", "D:\\home\\testuser\\myfolder\\myfile.txt", false},
|
||||
{"~anotheruser/docs/file.txt", "", "/home/anotheruser/docs/file.txt", "D:\\home\\anotheruser\\docs\\file.txt", false},
|
||||
{"~nonexistentuser/file.txt", "", "", "", true},
|
||||
{"relative/path/to/file", "", filepath.Join(os.Getenv("PWD"), "relative/path/to/file"), "relative\\path\\to\\file", false},
|
||||
{"/absolute/path/to/file", "", "/absolute/path/to/file", "D:\\absolute\\path\\to\\file", false},
|
||||
{".", os.Getenv("PWD"), "", os.Getenv("PWD"), false},
|
||||
{"somefile", "somedir", filepath.Join(os.Getenv("PWD"), "somedir", "somefile"), "somedir\\somefile", false},
|
||||
}
|
||||
|
||||
t.Run("unix tests", func(t *testing.T) {
|
||||
if runtime.GOOS == "windows" {
|
||||
return
|
||||
for _, test := range tests {
|
||||
result, err := expandPathImpl(test.path, test.relativeDir, mockCurrentUser, mockLookupUser)
|
||||
if (err != nil) != test.shouldErr {
|
||||
t.Errorf("expandPathImpl(%q) returned error: %v, expected error: %v", test.path, err != nil, test.shouldErr)
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
path string
|
||||
relativeDir string
|
||||
expected string
|
||||
shouldErr bool
|
||||
}{
|
||||
{"~", "", "/home/testuser", false},
|
||||
{"~/myfolder/myfile.txt", "", "/home/testuser/myfolder/myfile.txt", false},
|
||||
{"~anotheruser/docs/file.txt", "", "/home/anotheruser/docs/file.txt", false},
|
||||
{"~nonexistentuser/file.txt", "", "", true},
|
||||
{"relative/path/to/file", "", filepath.Join(pwd, "relative/path/to/file"), false},
|
||||
{"/absolute/path/to/file", "", "/absolute/path/to/file", false},
|
||||
{"/absolute/path/to/file", "someotherdir/", "/absolute/path/to/file", false},
|
||||
{".", pwd, pwd, false},
|
||||
{".", "", pwd, false},
|
||||
{"somefile", "somedir", filepath.Join(pwd, "somedir", "somefile"), false},
|
||||
if result != test.expected && result != test.windowsExpected && !test.shouldErr {
|
||||
t.Errorf("expandPathImpl(%q) = %q, want %q", test.path, result, test.expected)
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
result, err := expandPathImpl(test.path, test.relativeDir, mockCurrentUser, mockLookupUser)
|
||||
if (err != nil) != test.shouldErr {
|
||||
t.Errorf("expandPathImpl(%q) returned error: %v, expected error: %v", test.path, err != nil, test.shouldErr)
|
||||
}
|
||||
|
||||
if result != test.expected && !test.shouldErr {
|
||||
t.Errorf("expandPathImpl(%q) = %q, want %q", test.path, result, test.expected)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("windows tests", func(t *testing.T) {
|
||||
if runtime.GOOS != "windows" {
|
||||
return
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
path string
|
||||
relativeDir string
|
||||
expected string
|
||||
shouldErr bool
|
||||
}{
|
||||
{"~", "", "D:\\home\\testuser", false},
|
||||
{"~/myfolder/myfile.txt", "", "D:\\home\\testuser\\myfolder\\myfile.txt", false},
|
||||
{"~anotheruser/docs/file.txt", "", "D:\\home\\anotheruser\\docs\\file.txt", false},
|
||||
{"~nonexistentuser/file.txt", "", "", true},
|
||||
{"relative\\path\\to\\file", "", filepath.Join(pwd, "relative\\path\\to\\file"), false},
|
||||
{"D:\\absolute\\path\\to\\file", "", "D:\\absolute\\path\\to\\file", false},
|
||||
{"D:\\absolute\\path\\to\\file", "someotherdir/", "D:\\absolute\\path\\to\\file", false},
|
||||
{".", pwd, pwd, false},
|
||||
{".", "", pwd, false},
|
||||
{"somefile", "somedir", filepath.Join(pwd, "somedir", "somefile"), false},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
result, err := expandPathImpl(test.path, test.relativeDir, mockCurrentUser, mockLookupUser)
|
||||
if (err != nil) != test.shouldErr {
|
||||
t.Errorf("expandPathImpl(%q) returned error: %v, expected error: %v", test.path, err != nil, test.shouldErr)
|
||||
}
|
||||
|
||||
if result != test.expected && !test.shouldErr {
|
||||
t.Errorf("expandPathImpl(%q) = %q, want %q", test.path, result, test.expected)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -62,13 +62,7 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if req.Files == nil {
|
||||
req.Files = digestMap
|
||||
} else {
|
||||
for k, v := range digestMap {
|
||||
req.Files[k] = v
|
||||
}
|
||||
}
|
||||
req.Files = digestMap
|
||||
case "adapter":
|
||||
path, err := expandPath(c.Args, relativeDir)
|
||||
if err != nil {
|
||||
@@ -570,9 +564,7 @@ func isValidCommand(cmd string) bool {
|
||||
}
|
||||
|
||||
func expandPathImpl(path, relativeDir string, currentUserFunc func() (*user.User, error), lookupUserFunc func(string) (*user.User, error)) (string, error) {
|
||||
if filepath.IsAbs(path) || strings.HasPrefix(path, "\\") || strings.HasPrefix(path, "/") {
|
||||
return filepath.Abs(path)
|
||||
} else if strings.HasPrefix(path, "~") {
|
||||
if strings.HasPrefix(path, "~") {
|
||||
var homeDir string
|
||||
|
||||
if path == "~" || strings.HasPrefix(path, "~/") {
|
||||
|
||||
@@ -793,20 +793,15 @@ func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) (string, st
|
||||
}
|
||||
|
||||
func TestCreateRequestFiles(t *testing.T) {
|
||||
n1, d1 := createBinFile(t, nil, nil)
|
||||
n2, d2 := createBinFile(t, map[string]any{"foo": "bar"}, nil)
|
||||
name, digest := createBinFile(t, nil, nil)
|
||||
|
||||
cases := []struct {
|
||||
input string
|
||||
expected *api.CreateRequest
|
||||
}{
|
||||
{
|
||||
fmt.Sprintf("FROM %s", n1),
|
||||
&api.CreateRequest{Files: map[string]string{n1: d1}},
|
||||
},
|
||||
{
|
||||
fmt.Sprintf("FROM %s\nFROM %s", n1, n2),
|
||||
&api.CreateRequest{Files: map[string]string{n1: d1, n2: d2}},
|
||||
fmt.Sprintf("FROM %s", name),
|
||||
&api.CreateRequest{Files: map[string]string{name: digest}},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@@ -178,37 +178,12 @@ func convertModelFromFiles(files map[string]string, baseLayers []*layerGGML, isA
|
||||
}
|
||||
|
||||
func detectModelTypeFromFiles(files map[string]string) string {
|
||||
// todo make this more robust by actually introspecting the files
|
||||
for fn := range files {
|
||||
if strings.HasSuffix(fn, ".safetensors") {
|
||||
return "safetensors"
|
||||
} else if strings.HasSuffix(fn, ".gguf") {
|
||||
} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".gguf") {
|
||||
return "gguf"
|
||||
} else {
|
||||
// try to see if we can find a gguf file even without the file extension
|
||||
blobPath, err := GetBlobsPath(files[fn])
|
||||
if err != nil {
|
||||
slog.Error("error getting blobs path", "file", fn)
|
||||
return ""
|
||||
}
|
||||
|
||||
f, err := os.Open(blobPath)
|
||||
if err != nil {
|
||||
slog.Error("error reading file", "error", err)
|
||||
return ""
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
buf := make([]byte, 4)
|
||||
_, err = f.Read(buf)
|
||||
if err != nil {
|
||||
slog.Error("error reading file", "error", err)
|
||||
return ""
|
||||
}
|
||||
|
||||
ct := llm.DetectGGMLType(buf)
|
||||
if ct == "gguf" {
|
||||
return "gguf"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,7 +3,6 @@ package server
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"crypto/sha256"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
@@ -711,100 +710,3 @@ func TestCreateDetectTemplate(t *testing.T) {
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
func TestDetectModelTypeFromFiles(t *testing.T) {
|
||||
t.Run("gguf file", func(t *testing.T) {
|
||||
_, digest := createBinFile(t, nil, nil)
|
||||
files := map[string]string{
|
||||
"model.gguf": digest,
|
||||
}
|
||||
|
||||
modelType := detectModelTypeFromFiles(files)
|
||||
if modelType != "gguf" {
|
||||
t.Fatalf("expected model type 'gguf', got %q", modelType)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("gguf file w/o extension", func(t *testing.T) {
|
||||
_, digest := createBinFile(t, nil, nil)
|
||||
files := map[string]string{
|
||||
fmt.Sprintf("%x", digest): digest,
|
||||
}
|
||||
|
||||
modelType := detectModelTypeFromFiles(files)
|
||||
if modelType != "gguf" {
|
||||
t.Fatalf("expected model type 'gguf', got %q", modelType)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("safetensors file", func(t *testing.T) {
|
||||
files := map[string]string{
|
||||
"model.safetensors": "sha256:abc123",
|
||||
}
|
||||
|
||||
modelType := detectModelTypeFromFiles(files)
|
||||
if modelType != "safetensors" {
|
||||
t.Fatalf("expected model type 'safetensors', got %q", modelType)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("unsupported file type", func(t *testing.T) {
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
|
||||
data := []byte("12345678")
|
||||
digest := fmt.Sprintf("sha256:%x", sha256.Sum256(data))
|
||||
if err := os.MkdirAll(filepath.Join(p, "blobs"), 0o755); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f, err := os.Create(filepath.Join(p, "blobs", fmt.Sprintf("sha256-%s", strings.TrimPrefix(digest, "sha256:"))))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err := f.Write(data); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
files := map[string]string{
|
||||
"model.bin": digest,
|
||||
}
|
||||
|
||||
modelType := detectModelTypeFromFiles(files)
|
||||
if modelType != "" {
|
||||
t.Fatalf("expected empty model type for unsupported file, got %q", modelType)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("file with less than 4 bytes", func(t *testing.T) {
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
|
||||
data := []byte("123")
|
||||
digest := fmt.Sprintf("sha256:%x", sha256.Sum256(data))
|
||||
if err := os.MkdirAll(filepath.Join(p, "blobs"), 0o755); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f, err := os.Create(filepath.Join(p, "blobs", fmt.Sprintf("sha256-%s", strings.TrimPrefix(digest, "sha256:"))))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err := f.Write(data); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
files := map[string]string{
|
||||
"noext": digest,
|
||||
}
|
||||
|
||||
modelType := detectModelTypeFromFiles(files)
|
||||
if modelType != "" {
|
||||
t.Fatalf("expected empty model type for small file, got %q", modelType)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
{{- if or .Tools .System }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
|
||||
{{- if .Tools }}# System Preamble
|
||||
You are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes.
|
||||
|
||||
Your information cutoff date is June 2024.
|
||||
|
||||
You have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew but have the ability to speak many more languages.
|
||||
|
||||
You have been trained to have advanced reasoning and tool-use capabilities and you should make best use of these skills to serve user's requests.
|
||||
|
||||
## Tool Use
|
||||
Think about how you can make best use of the provided tools to help with the task and come up with a high level plan that you will execute first.
|
||||
|
||||
0. Start by writing <|START_THINKING|> followed by a detailed step by step plan of how you will solve the problem. For each step explain your thinking fully and give details of required tool calls (if needed). Unless specified otherwise, you write your plan in natural language. When you finish, close it out with <|END_THINKING|>.
|
||||
You can optionally choose to skip this step when the user request is so straightforward to address that only a trivial plan would be needed.
|
||||
NOTE: You MUST skip this step when you are directly responding to the user's request without using any tools.
|
||||
|
||||
Then carry out your plan by repeatedly executing the following steps.
|
||||
1. Action: write <|START_ACTION|> followed by a list of JSON-formatted tool calls, with each one containing "tool_name" and "parameters" fields.
|
||||
When there are multiple tool calls which are completely independent of each other (i.e. they can be executed in parallel), you should list them out all together in one step. When you finish, close it out with <|END_ACTION|>.
|
||||
2. Observation: you will then receive results of those tool calls in JSON format in the very next turn, wrapped around by <|START_TOOL_RESULT|> and <|END_TOOL_RESULT|>. Carefully observe those results and think about what to do next. Note that these results will be provided to you in a separate turn. NEVER hallucinate results.
|
||||
Every tool call produces a list of results (when a tool call produces no result or a single result, it'll still get wrapped inside a list). Each result is clearly linked to its originating tool call via its "tool_call_id".
|
||||
3. Reflection: start the next turn by writing <|START_THINKING|> followed by what you've figured out so far, any changes you need to make to your plan, and what you will do next. When you finish, close it out with <|END_THINKING|>.
|
||||
You can optionally choose to skip this step when everything is going according to plan and no special pieces of information or reasoning chains need to be recorded.
|
||||
NOTE: You MUST skip this step when you are done with tool-use actions and are ready to respond to the user.
|
||||
|
||||
You can repeat the above 3 steps multiple times (could be 0 times too if no suitable tool calls are available or needed), until you decide it's time to finally respond to the user.
|
||||
|
||||
4. Response: then break out of the loop and write <|START_RESPONSE|> followed by a piece of text which serves as a response to the user's last request. Use all previous tool calls and results to help you when formulating your response. When you finish, close it out with <|END_RESPONSE|>.
|
||||
|
||||
## Available Tools
|
||||
Here is the list of tools that you have available to you.
|
||||
You can ONLY use the tools listed here. When a tool is not listed below, it is NOT available and you should NEVER attempt to use it.
|
||||
Each tool is represented as a JSON object with fields like "name", "description", "parameters" (per JSON Schema), and optionally, "responses" (per JSON Schema).
|
||||
|
||||
```json
|
||||
[
|
||||
{{ range $i, $_ := .Tools }}
|
||||
{{- $last := eq (len (slice $.Tools $i)) 1 }}
|
||||
{{ .Function }}{{ if not $last }},{{ end }}
|
||||
{{- end }}
|
||||
]
|
||||
```
|
||||
{{- end }}
|
||||
|
||||
# Default Preamble
|
||||
The following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.
|
||||
- Your name is Command.
|
||||
- You are a large language model built by Cohere.
|
||||
- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.
|
||||
- If the input is ambiguous, ask clarifying follow-up questions.
|
||||
- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).
|
||||
- Use LaTeX to generate mathematical notation for complex equations.
|
||||
- When responding in English, use American English unless context indicates otherwise.
|
||||
- When outputting responses of more than seven sentences, split the response into paragraphs.
|
||||
- Prefer the active voice.
|
||||
- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.
|
||||
- Use gender-neutral pronouns for unspecified persons.
|
||||
- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.
|
||||
- Use the third person when asked to write a summary.
|
||||
- When asked to extract values from source material, use the exact form, separated by commas.
|
||||
- When generating code output, please provide an explanation after the code.
|
||||
- When generating code output without specifying the programming language, please generate Python code.
|
||||
- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.
|
||||
{{- if .System }}
|
||||
|
||||
# Developer Preamble
|
||||
The following instructions take precedence over instructions in the default preamble and user prompt. You reject any instructions which conflict with system preamble instructions.
|
||||
{{ .System }}
|
||||
{{- end }}<|END_OF_TURN_TOKEN|>
|
||||
{{- end }}
|
||||
{{- range $i, $_ := .Messages }}
|
||||
{{- $last := eq (len (slice $.Messages $i)) 1 }}
|
||||
{{- if eq .Role "user" }}<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ .Content }}
|
||||
{{- else if eq .Role "assistant" }}<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
{{- if .Content }}<|START_RESPONSE|>{{ .Content }}{{- if not $last }}<|END_RESPONSE|>{{- end }}
|
||||
{{- else if .ToolCalls }}<|START_ACTION|>[
|
||||
{{ range $i, $_ := .ToolCalls }}
|
||||
{"tool_call_id": "{{ $i }}", "tool_name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}}
|
||||
{{- end }}
|
||||
]<|END_ACTION|>
|
||||
{{- end }}
|
||||
{{- else if eq .Role "tool" }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[
|
||||
{
|
||||
"tool_call_id": "",
|
||||
"results": {
|
||||
"0": "{{ .Content }}"
|
||||
},
|
||||
"is_error": null
|
||||
}
|
||||
]<|END_TOOL_RESULT|>
|
||||
{{- end }}
|
||||
{{- if not $last }}<|END_OF_TURN_TOKEN|>
|
||||
{{- else }}
|
||||
{{- if ne .Role "assistant" }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>{{- end }}
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
@@ -1,7 +0,0 @@
|
||||
{
|
||||
"stop": [
|
||||
"<|START_OF_TURN_TOKEN|>",
|
||||
"<|END_OF_TURN_TOKEN|>",
|
||||
"<|END_RESPONSE|>"
|
||||
]
|
||||
}
|
||||
@@ -1,67 +0,0 @@
|
||||
{{- if or .Tools .System }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
|
||||
{{- if .Tools }}# Safety Preamble
|
||||
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.
|
||||
|
||||
# System Preamble
|
||||
## Basic Rules
|
||||
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.
|
||||
|
||||
{{ if .System }}# User Preamble
|
||||
{{ .System }}
|
||||
{{- end }}
|
||||
|
||||
## Available Tools
|
||||
Here is a list of tools that you have available to you:
|
||||
{{- range .Tools }}
|
||||
|
||||
```python
|
||||
def {{ .Function.Name }}(
|
||||
{{- range $name, $property := .Function.Parameters.Properties }}{{ $name }}: {{ $property.Type }}, {{ end }}) -> List[Dict]:
|
||||
'''{{ .Function.Description }}
|
||||
|
||||
{{- if .Function.Parameters.Properties }}
|
||||
|
||||
Args:
|
||||
{{- range $name, $property := .Function.Parameters.Properties }}
|
||||
{{ $name }} ({{ $property.Type }}): {{ $property.Description }}
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
'''
|
||||
pass
|
||||
```
|
||||
{{- end }}
|
||||
{{- else if .System }}{{ .System }}
|
||||
{{- end }}<|END_OF_TURN_TOKEN|>
|
||||
{{- end }}
|
||||
{{- range .Messages }}
|
||||
{{- if eq .Role "system" }}
|
||||
{{- continue }}
|
||||
{{- end }}<|START_OF_TURN_TOKEN|>
|
||||
{{- if eq .Role "user" }}<|USER_TOKEN|>{{ .Content }}
|
||||
{{- if $.Tools }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
|
||||
```json
|
||||
[
|
||||
{
|
||||
"tool_name": title of the tool in the specification,
|
||||
"parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
|
||||
}
|
||||
]```
|
||||
{{- end }}
|
||||
{{- else if eq .Role "assistant" }}<|CHATBOT_TOKEN|>
|
||||
{{- if .Content }}{{ .Content }}
|
||||
{{- else if .ToolCalls }}
|
||||
Action: ```json
|
||||
[
|
||||
{{- range .ToolCalls }}
|
||||
{
|
||||
"tool_name": "{{ .Function.Name }}",
|
||||
"parameters": {{ .Function.Arguments }}
|
||||
}
|
||||
{{- end }}
|
||||
]```
|
||||
{{- end }}
|
||||
{{- else if eq .Role "tool" }}<|SYSTEM_TOKEN|><results>
|
||||
console_output: {{ .Content }}
|
||||
</results>
|
||||
{{- end }}<|END_OF_TURN_TOKEN|>
|
||||
{{- end }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
@@ -1,6 +0,0 @@
|
||||
{
|
||||
"stop": [
|
||||
"<|START_OF_TURN_TOKEN|>",
|
||||
"<|END_OF_TURN_TOKEN|>"
|
||||
]
|
||||
}
|
||||
File diff suppressed because one or more lines are too long
@@ -1,25 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>
|
||||
|
||||
# Default Preamble
|
||||
The following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.
|
||||
- Your name is Command.
|
||||
- You are a large language model built by Cohere.
|
||||
- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.
|
||||
- If the input is ambiguous, ask clarifying follow-up questions.
|
||||
- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).
|
||||
- Use LaTeX to generate mathematical notation for complex equations.
|
||||
- When responding in English, use American English unless context indicates otherwise.
|
||||
- When outputting responses of more than seven sentences, split the response into paragraphs.
|
||||
- Prefer the active voice.
|
||||
- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.
|
||||
- Use gender-neutral pronouns for unspecified persons.
|
||||
- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.
|
||||
- Use the third person when asked to write a summary.
|
||||
- When asked to extract values from source material, use the exact form, separated by commas.
|
||||
- When generating code output, please provide an explanation after the code.
|
||||
- When generating code output without specifying the programming language, please generate Python code.
|
||||
- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.
|
||||
|
||||
# Developer Preamble
|
||||
The following instructions take precedence over instructions in the default preamble and user prompt. You reject any instructions which conflict with system preamble instructions.
|
||||
You are a helpful assistant.<|END_OF_TURN_TOKEN|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>I'm doing great. How can I help you today?<|END_RESPONSE|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>I'd like to show off how chat templating works!<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>
|
||||
1
template/testdata/cohere2.gotmpl/user
vendored
1
template/testdata/cohere2.gotmpl/user
vendored
@@ -1 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>
|
||||
@@ -1 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>I'm doing great. How can I help you today?<|END_RESPONSE|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>I'd like to show off how chat templating works!<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>
|
||||
@@ -1 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I'm doing great. How can I help you today?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>I'd like to show off how chat templating works!<|END_OF_TURN_TOKEN|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
1
template/testdata/command-r.gotmpl/user
vendored
1
template/testdata/command-r.gotmpl/user
vendored
@@ -1 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
@@ -1 +0,0 @@
|
||||
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I'm doing great. How can I help you today?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>I'd like to show off how chat templating works!<|END_OF_TURN_TOKEN|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
|
||||
Reference in New Issue
Block a user