Compare commits

..

6 Commits

Author SHA1 Message Date
jmorganca
134cb6720a fix: add -O3 optimization to CGO flags
CGO_CFLAGS and CGO_CXXFLAGS were being set without optimization flags,
which overrides Go's default -O2 and results in unoptimized C++ code.

This caused significant performance degradation in release builds
compared to local `go build` which uses the default optimization.

- build_darwin.sh: add -O3 to CGO_CFLAGS and CGO_CXXFLAGS exports
- Dockerfile: preserve CGO_CFLAGS/CGO_CXXFLAGS from build args instead
  of overwriting them
- app/README.md: update documentation to include -O3
2026-01-24 01:43:11 -08:00
Stillhart
b44f56319f README: Update the "Ollama for ruby" to the most popular and maintained ruby gem. (#13855)
* update README ruby link

the ollama-ai ruby gem is vastly less popular and seems unmaintained
https://rubygems.org/gems/ollama-ai

the defacto standard with the most downloads in the ruby ecosystem is ruby_llm
https://rubygems.org/gems/ruby_llm

I would link to that to avoid complication and guarantee feature compatibility with ollama.

* Update gem link ruby_llm from website to GitHub

ollama links mostly to github, not project websites, hence link to ruby_llm github.
2026-01-24 01:24:52 -05:00
Jeffrey Morgan
0209c268bb llama: fix CUDA MMA errors in release build (#13874) 2026-01-23 20:10:04 -08:00
Jeffrey Morgan
912d984346 llama: fix fattn-tile shared memory overflow on sm_50/52 (#13872)
Use nthreads=128 for ncols=4 configurations in flash attention tile
kernel to reduce shared memory usage below 48KB limit on Maxwell
architectures (sm_50/52).

With nthreads=256 and ncols=4, np=2 which caused shared memory to
exceed 48KB. With nthreads=128 and ncols=4, np=1 keeps shared memory
under the limit.
2026-01-23 19:22:32 -08:00
Parth Sareen
aae6ecbaff cmd: rename ollama config to ollama launch (#13871) 2026-01-23 18:40:40 -08:00
Jeffrey Morgan
64737330a4 Re-apply "model: add MLA absorption for glm4moelite" with fix (#13870)
The nvidia_fp32 config for (576, 512) head sizes had nbatch_fa=32,
which caused zero-sized arrays when computing array dimensions:
  nbatch_fa / (np * warp_size) = 32 / (2 * 32) = 0

This resulted in CUDA compilation failures on CUDA 12 (Windows and
Linux arm64):
- "static assertion failed with nbatch_fa % (np*warp_size) != 0"
- "the size of an array must be greater than zero"

Fix by changing nbatch_fa from 32 to 64 for all (576, 512) configs
in the nvidia_fp32 function, matching the nvidia_fp16 and AMD configs.
2026-01-23 18:40:28 -08:00
58 changed files with 2989 additions and 3482 deletions

View File

@@ -169,8 +169,10 @@ COPY . .
RUN git clone --depth 1 --branch "$(cat MLX_VERSION)" https://github.com/ml-explore/mlx-c.git build/_deps/mlx-c-src
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ENV CGO_CFLAGS="-I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
ENV CGO_CFLAGS="${CGO_CFLAGS} -I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ENV CGO_CXXFLAGS="${CGO_CXXFLAGS}"
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -tags mlx -trimpath -buildmode=pie -o /bin/ollama .

View File

@@ -558,7 +558,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama for Ruby](https://github.com/crmne/ruby_llm)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)

View File

@@ -75,9 +75,9 @@ The `-dev` flag enables:
CI builds with Xcode 14.1 for OS compatibility prior to v13. If you want to manually build v11+ support, you can download the older Xcode [here](https://developer.apple.com/services-account/download?path=/Developer_Tools/Xcode_14.1/Xcode_14.1.xip), extract, then `mv ./Xcode.app /Applications/Xcode_14.1.0.app` then activate with:
```
export CGO_CFLAGS=-mmacosx-version-min=12.0
export CGO_CXXFLAGS=-mmacosx-version-min=12.0
export CGO_LDFLAGS=-mmacosx-version-min=12.0
export CGO_CFLAGS="-O3 -mmacosx-version-min=12.0"
export CGO_CXXFLAGS="-O3 -mmacosx-version-min=12.0"
export CGO_LDFLAGS="-mmacosx-version-min=12.0"
export SDKROOT=/Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
export DEVELOPER_DIR=/Applications/Xcode_14.1.0.app/Contents/Developer
```

View File

@@ -2031,7 +2031,7 @@ func NewCLI() *cobra.Command {
copyCmd,
deleteCmd,
runnerCmd,
config.ConfigCmd(checkServerHeartbeat),
config.LaunchCmd(checkServerHeartbeat),
)
return rootCmd

View File

@@ -230,15 +230,15 @@ func runIntegration(name, modelName string) error {
return r.Run(modelName)
}
// ConfigCmd returns the cobra command for configuring integrations.
func ConfigCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
// LaunchCmd returns the cobra command for launching integrations.
func LaunchCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
var launchFlag bool
var configFlag bool
cmd := &cobra.Command{
Use: "config [INTEGRATION]",
Short: "Configure an external integration to use Ollama",
Long: `Configure an external application to use Ollama models.
Use: "launch [INTEGRATION]",
Short: "Launch an integration with Ollama",
Long: `Launch an integration configured with Ollama models.
Supported integrations:
claude Claude Code
@@ -247,9 +247,10 @@ Supported integrations:
opencode OpenCode
Examples:
ollama config
ollama config claude
ollama config droid --launch`,
ollama launch
ollama launch claude
ollama launch claude --model <model>
ollama launch droid --config (does not auto-launch)`,
Args: cobra.MaximumNArgs(1),
PreRunE: checkServerHeartbeat,
RunE: func(cmd *cobra.Command, args []string) error {
@@ -272,8 +273,8 @@ Examples:
return fmt.Errorf("unknown integration: %s", name)
}
// If --launch without --model, use saved config if available
if launchFlag && modelFlag == "" {
// If launching without --model, use saved config if available
if !configFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
return runIntegration(name, config.Models[0])
}
@@ -334,29 +335,19 @@ Examples:
}
}
if slices.ContainsFunc(models, func(m string) bool {
return !strings.HasSuffix(m, "cloud")
}) {
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Coding agents work best with at least 64k context. Either:")
fmt.Fprintln(os.Stderr, " - Set the context slider in Ollama app settings")
fmt.Fprintln(os.Stderr, " - Run: OLLAMA_CONTEXT_LENGTH=64000 ollama serve")
if configFlag {
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
return runIntegration(name, models[0])
}
fmt.Fprintf(os.Stderr, "Run 'ollama launch %s' to start with %s\n", strings.ToLower(name), models[0])
return nil
}
if launchFlag {
return runIntegration(name, models[0])
}
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
return runIntegration(name, models[0])
}
fmt.Fprintf(os.Stderr, "Run 'ollama config %s --launch' to start with %s\n", strings.ToLower(name), models[0])
return nil
return runIntegration(name, models[0])
},
}
cmd.Flags().StringVar(&modelFlag, "model", "", "Model to use")
cmd.Flags().BoolVar(&launchFlag, "launch", false, "Launch the integration after configuring")
cmd.Flags().BoolVar(&configFlag, "config", false, "Configure without launching")
return cmd
}

View File

@@ -81,17 +81,17 @@ func TestHasLocalModel(t *testing.T) {
}
}
func TestConfigCmd(t *testing.T) {
func TestLaunchCmd(t *testing.T) {
// Mock checkServerHeartbeat that always succeeds
mockCheck := func(cmd *cobra.Command, args []string) error {
return nil
}
cmd := ConfigCmd(mockCheck)
cmd := LaunchCmd(mockCheck)
t.Run("command structure", func(t *testing.T) {
if cmd.Use != "config [INTEGRATION]" {
t.Errorf("Use = %q, want %q", cmd.Use, "config [INTEGRATION]")
if cmd.Use != "launch [INTEGRATION]" {
t.Errorf("Use = %q, want %q", cmd.Use, "launch [INTEGRATION]")
}
if cmd.Short == "" {
t.Error("Short description should not be empty")
@@ -107,9 +107,9 @@ func TestConfigCmd(t *testing.T) {
t.Error("--model flag should exist")
}
launchFlag := cmd.Flags().Lookup("launch")
if launchFlag == nil {
t.Error("--launch flag should exist")
configFlag := cmd.Flags().Lookup("config")
if configFlag == nil {
t.Error("--config flag should exist")
}
})
@@ -158,11 +158,11 @@ func TestHasLocalModel_DocumentsHeuristic(t *testing.T) {
}
}
func TestConfigCmd_NilHeartbeat(t *testing.T) {
func TestLaunchCmd_NilHeartbeat(t *testing.T) {
// This should not panic - cmd creation should work even with nil
cmd := ConfigCmd(nil)
cmd := LaunchCmd(nil)
if cmd == nil {
t.Fatal("ConfigCmd returned nil")
t.Fatal("LaunchCmd returned nil")
}
// PreRunE should be nil when passed nil

View File

@@ -465,7 +465,7 @@ func confirmPrompt(prompt string) (bool, error) {
}
defer term.Restore(fd, oldState)
fmt.Fprintf(os.Stderr, "%s [y/n] ", prompt)
fmt.Fprintf(os.Stderr, "%s (\033[1my\033[0m/n) ", prompt)
buf := make([]byte, 1)
for {

View File

@@ -6,6 +6,10 @@ import (
"log/slog"
"regexp"
"strconv"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
@@ -69,6 +73,9 @@ func (p *glm4MoeLiteModel) KV(t *Tokenizer) KV {
kv["glm4moelite.rope.dimension_count"] = p.QKRopeHeadDim
kv["glm4moelite.rope.freq_base"] = cmp.Or(p.RopeTheta, float32(1000000.0))
kv["glm4moelite.attention.key_length_mla"] = p.KVLoraRank + p.QKRopeHeadDim
kv["glm4moelite.attention.value_length_mla"] = p.KVLoraRank
kv["tokenizer.ggml.pre"] = "glm4"
return kv
@@ -100,6 +107,67 @@ func (p *glm4MoeLiteModel) Replacements() []string {
}
}
// repackKVB extracts K or V from the combined KV_B tensor for MLA absorption.
// K output row-major: [n_head, kv_lora_rank, qk_nope] -> GGML ne[]={qk_nope, kv_lora_rank, n_head}
// V output row-major: [n_head, v_head, kv_lora_rank] -> GGML ne[]={kv_lora_rank, v_head, n_head}
func (p *glm4MoeLiteModel) repackKVB(extractK bool, kvFirst bool, numHeads int) Repacker {
qkNope := int(p.QKNopeHeadDim)
vHeadDim := int(p.VHeadDim)
kvLoraRank := int(p.KVLoraRank)
kvPerHead := qkNope + vHeadDim
return func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var err error
// Normalize to [n_head * (qk_nope + v_head), kv_lora_rank] layout
if kvFirst {
tt, err = tensor.Transpose(tt, 1, 0)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
}
// Reshape to [n_head, qk_nope + v_head, kv_lora_rank]
if err := tt.Reshape(numHeads, kvPerHead, kvLoraRank); err != nil {
return nil, err
}
if extractK {
// Slice K: [n_head, qk_nope, kv_lora_rank]
tt, err = tt.Slice(nil, tensor.S(0, qkNope), nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
// Transpose to [n_head, kv_lora_rank, qk_nope]
tt, err = tensor.Transpose(tt, 0, 2, 1)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
} else {
// Slice V: [n_head, v_head, kv_lora_rank] - already correct layout
tt, err = tt.Slice(nil, tensor.S(qkNope, kvPerHead), nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
}
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
}
}
func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
@@ -139,6 +207,52 @@ func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
// Split attn_kv_b into separate attn_k_b and attn_v_b for MLA absorption
if strings.HasSuffix(t.Name(), ".attn_kv_b.weight") {
qkNope := int(p.QKNopeHeadDim)
vHeadDim := int(p.VHeadDim)
kvLoraRank := int(p.KVLoraRank)
kvPerHead := qkNope + vHeadDim
numHeads := int(p.NumAttentionHeads)
kvFirst := true
if len(t.Shape()) == 2 {
switch {
case int(t.Shape()[0]) == kvLoraRank:
if kvPerHead > 0 && int(t.Shape()[1])%kvPerHead == 0 {
numHeads = int(t.Shape()[1]) / kvPerHead
}
kvFirst = true
case int(t.Shape()[1]) == kvLoraRank:
if kvPerHead > 0 && int(t.Shape()[0])%kvPerHead == 0 {
numHeads = int(t.Shape()[0]) / kvPerHead
}
kvFirst = false
default:
slog.Warn("glm4moelite: unexpected attn_kv_b layout", "name", t.Name(), "shape", t.Shape())
}
}
kTensor := t.Clone()
kTensor.SetRepacker(p.repackKVB(true, kvFirst, numHeads))
out = append(out, &ggml.Tensor{
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_k_b", 1),
Kind: t.Kind(),
Shape: []uint64{uint64(numHeads), uint64(kvLoraRank), uint64(qkNope)},
WriterTo: kTensor,
})
vTensor := t.Clone()
vTensor.SetRepacker(p.repackKVB(false, kvFirst, numHeads))
out = append(out, &ggml.Tensor{
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_v_b", 1),
Kind: t.Kind(),
Shape: []uint64{uint64(numHeads), uint64(vHeadDim), uint64(kvLoraRank)},
WriterTo: vTensor,
})
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),

View File

@@ -0,0 +1,309 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: nobody <>
Date: Sat, 24 Jan 2026 02:31:01 +0000
Subject: [PATCH] ggml: enable MLA flash attention for GLM-4.7-flash
Add support for gqa_ratio 4 in MLA flash attention kernels. GLM-4.7-flash
uses head size 576 with gqa_ratio 4, which was previously only supported
for gqa_ratio 16 (DeepSeek).
Metal changes:
- Enable head size 576 for flash attention
- Increase simdgroups to 8 for large heads (>=512)
- Add case 8 kernel dispatch for 8 simdgroups
CUDA changes:
- Add gqa_ratio 4 support for head 576/512
- Add tile configs for (576, 512, 4) and (576, 512, 8)
- Add MMA config cases for ncols 4
- Add template instances for ncols2=4
- Fix nbatch_fa values in nvidia_fp32 config (32->64)
---
ggml/src/ggml-cuda/fattn-mma-f16.cuh | 40 +++++++++++++++----
ggml/src/ggml-cuda/fattn-tile.cuh | 16 ++++++++
ggml/src/ggml-cuda/fattn.cu | 12 ++++--
...ttn-mma-f16-instance-ncols1_16-ncols2_4.cu | 1 +
...attn-mma-f16-instance-ncols1_2-ncols2_4.cu | 1 +
...attn-mma-f16-instance-ncols1_4-ncols2_4.cu | 1 +
...attn-mma-f16-instance-ncols1_8-ncols2_4.cu | 1 +
ggml/src/ggml-metal/ggml-metal-device.m | 8 +---
ggml/src/ggml-metal/ggml-metal-ops.cpp | 2 +-
ggml/src/ggml-metal/ggml-metal.metal | 1 +
10 files changed, 64 insertions(+), 19 deletions(-)
diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh
index 7bd1044c1..3dea2205e 100644
--- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh
+++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh
@@ -66,7 +66,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 32, 128, 128, 128, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 32, 128, 128, 128, 2, true);
- GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -80,7 +81,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 64, 128, 128, 64, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 64, 128, 128, 64, 2, true);
- GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 96, 64, 128, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -89,7 +91,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
}
static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_config_volta(const int DKQ, const int DV, const int ncols) {
- GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 64, 1, false);
+ GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 64, 1, false);
@@ -397,7 +400,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
constexpr int ncols = ncols1 * ncols2;
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
- constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
+ constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa(DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2(DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2(DKQ, DV, ncols);
@@ -467,7 +470,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
} else {
- static_assert(cols_per_warp != 8, "cols_per_warp == 8 not implemented");
#pragma unroll
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += T_A_KQ::J) {
load_ldmatrix(Q_B[0], tile_Q + (threadIdx.y / np)*(T_B_KQ::I*stride_tile_Q) + k_KQ_0, stride_tile_Q);
@@ -479,8 +481,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
T_A_KQ K_A;
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
- // Wide version of KQ_C is column-major => swap A and B.
- mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
+ if constexpr (cols_per_warp == 8) {
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
+ } else {
+ // Wide version of KQ_C is column-major
+#if defined(AMD_WMMA_AVAILABLE)
+ // RDNA matrix C is column-major.
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
+#else
+ // swap A and B for CUDA.
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
+#endif // defined(AMD_WMMA_AVAILABLE)
+ }
}
}
}
@@ -841,7 +853,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
- constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
+ constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa (DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2 (DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2 (DKQ, DV, ncols);
@@ -1353,6 +1365,13 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
+#ifdef VOLTA_MMA_AVAILABLE
+ if (ncols1*ncols2 < 32) {
+ NO_DEVICE_CODE;
+ return;
+ }
+#endif // VOLTA_MMA_AVAILABLE
+
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
if (ncols1*ncols2 > 32) {
NO_DEVICE_CODE;
@@ -1585,3 +1604,8 @@ DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64)
extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);
+
+// For GLM 4.7 Flash
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
diff --git a/ggml/src/ggml-cuda/fattn-tile.cuh b/ggml/src/ggml-cuda/fattn-tile.cuh
index 7c4d6fe67..371be7442 100644
--- a/ggml/src/ggml-cuda/fattn-tile.cuh
+++ b/ggml/src/ggml-cuda/fattn-tile.cuh
@@ -68,6 +68,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
return 0;
@@ -122,6 +124,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 32, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
return 0;
@@ -183,6 +187,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
@@ -245,6 +251,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
@@ -1187,6 +1195,14 @@ static void launch_fattn_tile_switch_ncols2(ggml_backend_cuda_context & ctx, ggm
launch_fattn_tile_switch_ncols1<DKQ, DV, 16, use_logit_softcap>(ctx, dst);
return;
}
+ if (use_gqa_opt && gqa_ratio % 8 == 0) {
+ launch_fattn_tile_switch_ncols1<DKQ, DV, 8, use_logit_softcap>(ctx, dst);
+ return;
+ }
+ if (use_gqa_opt && gqa_ratio % 4 == 0) {
+ launch_fattn_tile_switch_ncols1<DKQ, DV, 4, use_logit_softcap>(ctx, dst);
+ return;
+ }
}
if constexpr (DV <= 256) {
diff --git a/ggml/src/ggml-cuda/fattn.cu b/ggml/src/ggml-cuda/fattn.cu
index 015540666..1693479cb 100644
--- a/ggml/src/ggml-cuda/fattn.cu
+++ b/ggml/src/ggml-cuda/fattn.cu
@@ -111,7 +111,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
break;
case 576: {
- // For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
+ // For Deepseek/GLM4, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
GGML_ASSERT(V->ne[0] == 512);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
@@ -121,8 +121,12 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
- GGML_ASSERT(gqa_ratio % 16 == 0);
- ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
+ GGML_ASSERT(gqa_ratio % 4 == 0);
+ if (gqa_ratio % 16 == 0) {
+ ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
+ } else {
+ ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 4>(ctx, dst);
+ }
} break;
default:
GGML_ABORT("fatal error");
@@ -251,7 +255,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
if (V->ne[0] != 512) {
return BEST_FATTN_KERNEL_NONE;
}
- if (!gqa_opt_applies || gqa_ratio % 16 != 0) {
+ if (!gqa_opt_applies || gqa_ratio % 4 != 0) {
return BEST_FATTN_KERNEL_NONE;
}
break;
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu
index 2074e954a..517993cb0 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu
index 24c64cf00..97b19c67a 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 2, 4);
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu
index 1ada657f1..989626dfa 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu
index 86d4ffae2..173de7aac 100644
--- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu
+++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu
@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4);
+DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
diff --git a/ggml/src/ggml-metal/ggml-metal-device.m b/ggml/src/ggml-metal/ggml-metal-device.m
index f24270bb1..7b5ee968c 100644
--- a/ggml/src/ggml-metal/ggml-metal-device.m
+++ b/ggml/src/ggml-metal/ggml-metal-device.m
@@ -1071,12 +1071,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
op->src[0]->ne[0] != 112 &&
op->src[0]->ne[0] != 128 &&
op->src[0]->ne[0] != 192 &&
- op->src[0]->ne[0] != 256) {
- return false;
- }
- if (op->src[0]->ne[0] == 576) {
- // DeepSeek sizes
- // TODO: disabled for now, until optmized
+ op->src[0]->ne[0] != 256 &&
+ op->src[0]->ne[0] != 576) {
return false;
}
if (op->src[1]->type != op->src[2]->type) {
diff --git a/ggml/src/ggml-metal/ggml-metal-ops.cpp b/ggml/src/ggml-metal/ggml-metal-ops.cpp
index e99c1763f..80864f303 100644
--- a/ggml/src/ggml-metal/ggml-metal-ops.cpp
+++ b/ggml/src/ggml-metal/ggml-metal-ops.cpp
@@ -2456,7 +2456,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
// simdgroups per threadgroup (a.k.a. warps)
//nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
- int32_t nsg = 4;
+ int32_t nsg = ne00 >= 512 ? 8 : 4;
const size_t smem = FATTN_SMEM(nsg);
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index c98d269d1..d33c16079 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -6166,6 +6166,7 @@ kernel void kernel_flash_attn_ext(
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
+ case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS

View File

@@ -66,7 +66,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 32, 128, 128, 128, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 32, 128, 128, 128, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -80,7 +81,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 32, 128, 2, 64, 128, 128, 64, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(256, 256, 64, 128, 2, 64, 128, 128, 64, 2, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 96, 64, 128, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 96, 64, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 128, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 128, 1, false);
@@ -89,7 +91,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
}
static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_config_volta(const int DKQ, const int DV, const int ncols) {
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 4, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 8, 64, 4, 32, 288, 256, 64, 1, true);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 64, 1, false);
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 64, 1, false);
@@ -397,7 +400,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
constexpr int ncols = ncols1 * ncols2;
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa(DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2(DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2(DKQ, DV, ncols);
@@ -467,7 +470,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
} else {
static_assert(cols_per_warp != 8, "cols_per_warp == 8 not implemented");
#pragma unroll
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += T_A_KQ::J) {
load_ldmatrix(Q_B[0], tile_Q + (threadIdx.y / np)*(T_B_KQ::I*stride_tile_Q) + k_KQ_0, stride_tile_Q);
@@ -479,8 +481,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
T_A_KQ K_A;
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
// Wide version of KQ_C is column-major => swap A and B.
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
if constexpr (cols_per_warp == 8) {
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
} else {
// Wide version of KQ_C is column-major
#if defined(AMD_WMMA_AVAILABLE)
// RDNA matrix C is column-major.
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
#else
// swap A and B for CUDA.
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
#endif // defined(AMD_WMMA_AVAILABLE)
}
}
}
}
@@ -841,7 +853,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr int cols_per_warp = T_B_KQ::I;
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa (DKQ, DV, ncols);
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2 (DKQ, DV, ncols);
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2 (DKQ, DV, ncols);
@@ -1353,6 +1365,13 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
#ifdef VOLTA_MMA_AVAILABLE
if (ncols1*ncols2 < 32) {
NO_DEVICE_CODE;
return;
}
#endif // VOLTA_MMA_AVAILABLE
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
if (ncols1*ncols2 > 32) {
NO_DEVICE_CODE;
@@ -1585,3 +1604,8 @@ DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64)
extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);
// For GLM 4.7 Flash
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);

View File

@@ -68,6 +68,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
return 0;
@@ -122,6 +124,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
return 0;
@@ -183,6 +187,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
@@ -245,6 +251,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
@@ -1187,6 +1195,14 @@ static void launch_fattn_tile_switch_ncols2(ggml_backend_cuda_context & ctx, ggm
launch_fattn_tile_switch_ncols1<DKQ, DV, 16, use_logit_softcap>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio % 8 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 8, use_logit_softcap>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio % 4 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 4, use_logit_softcap>(ctx, dst);
return;
}
}
if constexpr (DV <= 256) {

View File

@@ -111,7 +111,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
break;
case 576: {
// For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
// For Deepseek/GLM4, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
GGML_ASSERT(V->ne[0] == 512);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
@@ -121,8 +121,12 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
GGML_ASSERT(gqa_ratio % 16 == 0);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
GGML_ASSERT(gqa_ratio % 4 == 0);
if (gqa_ratio % 16 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 4>(ctx, dst);
}
} break;
default:
GGML_ABORT("fatal error");
@@ -251,7 +255,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
if (V->ne[0] != 512) {
return BEST_FATTN_KERNEL_NONE;
}
if (!gqa_opt_applies || gqa_ratio % 16 != 0) {
if (!gqa_opt_applies || gqa_ratio % 4 != 0) {
return BEST_FATTN_KERNEL_NONE;
}
break;

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 2, 4);

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);

View File

@@ -8,3 +8,4 @@ DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4);
DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);

View File

@@ -1071,12 +1071,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
op->src[0]->ne[0] != 112 &&
op->src[0]->ne[0] != 128 &&
op->src[0]->ne[0] != 192 &&
op->src[0]->ne[0] != 256) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek sizes
// TODO: disabled for now, until optmized
op->src[0]->ne[0] != 256 &&
op->src[0]->ne[0] != 576) {
return false;
}
if (op->src[1]->type != op->src[2]->type) {

View File

@@ -8967,6 +8967,7 @@ kernel void kernel_flash_attn_ext(
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS

View File

@@ -2456,7 +2456,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
// simdgroups per threadgroup (a.k.a. warps)
//nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
int32_t nsg = 4;
int32_t nsg = ne00 >= 512 ? 8 : 4;
const size_t smem = FATTN_SMEM(nsg);

View File

@@ -6166,6 +6166,7 @@ kernel void kernel_flash_attn_ext(
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS

View File

@@ -39,6 +39,13 @@ type Model interface {
Config() config
}
// Validator is an optional interface that models can implement to perform
// validation after tensors have been loaded. If validation fails, model
// loading will fail with the returned error.
type Validator interface {
Validate() error
}
// MultimodalProcessor must be implemented by multimodal models.
type MultimodalProcessor interface {
// EncodeMultimodal processes a single input (such as an image) and
@@ -116,6 +123,13 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
if validator, ok := m.(Validator); ok {
if err := validator.Validate(); err != nil {
return nil, err
}
}
return m, nil
}

View File

@@ -1,6 +1,7 @@
package glm4moelite
import (
"errors"
"math"
"github.com/ollama/ollama/fs"
@@ -11,6 +12,8 @@ import (
"github.com/ollama/ollama/model/input"
)
var ErrOldModelFormat = errors.New("this model uses a weight format that is no longer supported; please re-download it")
type Options struct {
numExpertsUsed int
numExperts int
@@ -47,7 +50,9 @@ type Attention struct {
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
KB *nn.Linear `gguf:"attn_k_b"`
VB *nn.Linear `gguf:"attn_v_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
@@ -78,15 +83,16 @@ func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor
qRot := opts.applyRotaryPositionEmbeddings(ctx, queryChunks[1], positions)
kRot = opts.applyRotaryPositionEmbeddings(ctx, kRot, positions)
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
// MLA absorption: absorb K projection into query
qPass := queryChunks[0].Permute(ctx, 0, 2, 1, 3)
qPassAbsorb := attn.KB.Forward(ctx, qPass).Permute(ctx, 0, 2, 1, 3)
query = qRot.Concat(ctx, qPassAbsorb, 0)
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
query = qRot.Concat(ctx, queryChunks[0], 0)
key := kRot.Concat(ctx, kvChunks[0], 0)
attention := nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
kPass = kPass.Reshape(ctx, opts.kvLoraRank, 1, seqLength)
key := kRot.Concat(ctx, kPass, 0)
attention := nn.AttentionWithVMLA(ctx, query, key, kPass, nil, attn.VB.Weight, opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
@@ -217,8 +223,12 @@ func New(c fs.Config) (model.Model, error) {
keyLength := int(c.Uint("attention.key_length"))
valueLength := int(c.Uint("attention.value_length"))
kvLoraRank := int(c.Uint("attention.kv_lora_rank"))
qkRopeHeadDim := int(c.Uint("rope.dimension_count"))
kqScale := 1.0 / math.Sqrt(float64(keyLength))
// For MLA absorption, the effective key dimension is kvLoraRank + qkRopeHeadDim
mlaKeyLength := kvLoraRank + qkRopeHeadDim
kqScale := 1.0 / math.Sqrt(float64(mlaKeyLength))
var pre []string
switch c.String("tokenizer.ggml.pre") {
@@ -279,6 +289,15 @@ func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Validate() error {
for _, layer := range m.Layers {
if layer.Attention != nil && (layer.Attention.KB == nil || layer.Attention.VB == nil) {
return ErrOldModelFormat
}
}
return nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))

View File

@@ -0,0 +1,73 @@
package glm4moelite
import (
"testing"
"github.com/ollama/ollama/ml/nn"
)
func TestValidate(t *testing.T) {
tests := []struct {
name string
model *Model
wantErr bool
}{
{
name: "valid model with KB and VB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{KB: &nn.Linear{}, VB: &nn.Linear{}}},
},
},
wantErr: false,
},
{
name: "missing KB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{VB: &nn.Linear{}}},
},
},
wantErr: true,
},
{
name: "missing VB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{KB: &nn.Linear{}}},
},
},
wantErr: true,
},
{
name: "missing both KB and VB",
model: &Model{
Layers: []Layer{
{Attention: &Attention{}},
},
},
wantErr: true,
},
{
name: "nil Attention is ok",
model: &Model{
Layers: []Layer{
{Attention: nil},
},
},
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
err := tt.model.Validate()
if (err != nil) != tt.wantErr {
t.Errorf("Validate() error = %v, wantErr %v", err, tt.wantErr)
}
if tt.wantErr && err != ErrOldModelFormat {
t.Errorf("Validate() error = %v, want %v", err, ErrOldModelFormat)
}
})
}
}

View File

@@ -3,7 +3,7 @@ package runner
import (
"github.com/ollama/ollama/runner/llamarunner"
"github.com/ollama/ollama/runner/ollamarunner"
"github.com/ollama/ollama/x/mlxrunner"
imagerunner "github.com/ollama/ollama/x/imagegen/runner"
)
func Execute(args []string) error {
@@ -12,18 +12,18 @@ func Execute(args []string) error {
}
var newRunner bool
var mlxRunner bool
var imageRunner bool
if len(args) > 0 && args[0] == "--ollama-engine" {
args = args[1:]
newRunner = true
}
if len(args) > 0 && args[0] == "--mlx-engine" {
if len(args) > 0 && args[0] == "--image-engine" {
args = args[1:]
mlxRunner = true
imageRunner = true
}
if mlxRunner {
return mlxrunner.Execute(args)
if imageRunner {
return imagerunner.Execute(args)
} else if newRunner {
return ollamarunner.Execute(args)
} else {

View File

@@ -14,8 +14,8 @@
VOL_NAME=${VOL_NAME:-"Ollama"}
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${VERSION#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
export CGO_CFLAGS="-mmacosx-version-min=14.0"
export CGO_CXXFLAGS="-mmacosx-version-min=14.0"
export CGO_CFLAGS="-O3 -mmacosx-version-min=14.0"
export CGO_CXXFLAGS="-O3 -mmacosx-version-min=14.0"
export CGO_LDFLAGS="-mmacosx-version-min=14.0"
set -e

View File

@@ -31,7 +31,6 @@ import (
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
"github.com/ollama/ollama/x/imagegen/transfer"
xserver "github.com/ollama/ollama/x/server"
)
var (
@@ -130,14 +129,6 @@ func (m *Model) Capabilities() []model.Capability {
return capabilities
}
// Check for thinking capability in safetensors LLM models based on architecture
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
if xserver.IsSafetensorsThinkingModel(model.ParseName(m.Name)) {
capabilities = append(capabilities, model.CapabilityThinking)
return capabilities
}
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(m.Template.Template)
hasTags := openingTag != "" && closingTag != ""

View File

@@ -21,7 +21,7 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/mlxrunner"
"github.com/ollama/ollama/x/imagegen"
)
type LlmRequest struct {
@@ -195,25 +195,14 @@ func (s *Scheduler) processPending(ctx context.Context) {
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "gpu_count", len(gpus))
}
// Check for image generation models - all use MLX runner
// Check for image generation model before attempting GGML load
if slices.Contains(pending.model.Config.Capabilities, "image") {
if s.loadMLX(pending) {
if s.loadImageGen(pending) {
break
}
continue
}
// Check for experimental safetensors LLM models
if pending.model.Config.ModelFormat == "safetensors" {
if slices.Contains(pending.model.Config.Capabilities, "completion") {
// LLM model with safetensors format - use MLX runner
if s.loadMLX(pending) {
break
}
continue
}
}
// Load model for fitting
logutil.Trace("loading model metadata", "model", pending.model.ModelPath)
ggml, err := llm.LoadModel(pending.model.ModelPath, 1024)
@@ -563,20 +552,11 @@ iGPUScan:
return false
}
// loadMLX loads an experimental safetensors model using the unified MLX runner.
// This supports both LLM (completion) and image generation models.
func (s *Scheduler) loadMLX(req *LlmRequest) bool {
// Determine mode based on capabilities
var mode mlxrunner.ModelMode
if slices.Contains(req.model.Config.Capabilities, "image") {
mode = mlxrunner.ModeImageGen
} else {
mode = mlxrunner.ModeLLM
}
// Use model name for MLX (it resolves manifests by name, not file path)
// loadImageGen loads an image generation model.
func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
// Use model name for imagegen (it resolves manifests by name, not file path)
modelName := req.model.ShortName
server, err := mlxrunner.NewServer(modelName, mode)
server, err := imagegen.NewServer(modelName)
if err != nil {
req.errCh <- err
return true

View File

@@ -13,7 +13,6 @@ import (
"io"
"os"
"path/filepath"
"strings"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/progress"
@@ -54,20 +53,10 @@ func CreateModel(opts CreateOptions, p *progress.Progress) error {
// Determine model type settings
var modelType, spinnerKey string
var capabilities []string
var parserName, rendererName string
if isSafetensors {
modelType = "safetensors model"
spinnerKey = "create"
capabilities = []string{"completion"}
// Check if model supports thinking based on architecture
if supportsThinking(opts.ModelDir) {
capabilities = append(capabilities, "thinking")
}
// Set parser and renderer name based on architecture
parserName = getParserName(opts.ModelDir)
rendererName = getRendererName(opts.ModelDir)
} else {
modelType = "image generation model"
spinnerKey = "imagegen"
@@ -92,14 +81,14 @@ func CreateModel(opts CreateOptions, p *progress.Progress) error {
err = create.CreateSafetensorsModel(
opts.ModelName, opts.ModelDir, opts.Quantize,
newLayerCreator(), newTensorLayerCreator(),
newManifestWriter(opts, capabilities, parserName, rendererName),
newManifestWriter(opts, capabilities),
progressFn,
)
} else {
err = create.CreateImageGenModel(
opts.ModelName, opts.ModelDir, opts.Quantize,
newLayerCreator(), newTensorLayerCreator(),
newManifestWriter(opts, capabilities, "", ""),
newManifestWriter(opts, capabilities),
progressFn,
)
}
@@ -215,7 +204,7 @@ func createUnquantizedLayer(r io.Reader, name string) ([]create.LayerInfo, error
}
// newManifestWriter returns a ManifestWriter callback for writing the model manifest.
func newManifestWriter(opts CreateOptions, capabilities []string, parserName, rendererName string) create.ManifestWriter {
func newManifestWriter(opts CreateOptions, capabilities []string) create.ManifestWriter {
return func(modelName string, config create.LayerInfo, layers []create.LayerInfo) error {
name := model.ParseName(modelName)
if !name.IsValid() {
@@ -240,8 +229,6 @@ func newManifestWriter(opts CreateOptions, capabilities []string, parserName, re
ModelFormat: "safetensors",
Capabilities: caps,
Requires: MinOllamaVersion,
Parser: parserName,
Renderer: rendererName,
}
configJSON, err := json.Marshal(configData)
if err != nil {
@@ -308,146 +295,3 @@ func createModelfileLayers(mf *ModelfileConfig) ([]manifest.Layer, error) {
return layers, nil
}
// supportsThinking checks if the model supports thinking mode based on its architecture.
// This reads the config.json from the model directory and checks the architectures field.
func supportsThinking(modelDir string) bool {
configPath := filepath.Join(modelDir, "config.json")
data, err := os.ReadFile(configPath)
if err != nil {
return false
}
var cfg struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(data, &cfg); err != nil {
return false
}
// Check architectures that support thinking
thinkingArchitectures := []string{
"glm4moe", // GLM-4 MoE models
"deepseek", // DeepSeek models
"qwen3", // Qwen3 models
}
// Check the architecture list
for _, arch := range cfg.Architectures {
archLower := strings.ToLower(arch)
for _, thinkArch := range thinkingArchitectures {
if strings.Contains(archLower, thinkArch) {
return true
}
}
}
// Also check model_type
if cfg.ModelType != "" {
typeLower := strings.ToLower(cfg.ModelType)
for _, thinkArch := range thinkingArchitectures {
if strings.Contains(typeLower, thinkArch) {
return true
}
}
}
return false
}
// getParserName returns the parser name for a model based on its architecture.
// This reads the config.json from the model directory and determines the appropriate parser.
func getParserName(modelDir string) string {
configPath := filepath.Join(modelDir, "config.json")
data, err := os.ReadFile(configPath)
if err != nil {
return ""
}
var cfg struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(data, &cfg); err != nil {
return ""
}
// Check architectures for known parsers
for _, arch := range cfg.Architectures {
archLower := strings.ToLower(arch)
if strings.Contains(archLower, "glm4") || strings.Contains(archLower, "glm-4") {
return "glm-4.7"
}
if strings.Contains(archLower, "deepseek") {
return "deepseek3"
}
if strings.Contains(archLower, "qwen3") {
return "qwen3-coder"
}
}
// Also check model_type
if cfg.ModelType != "" {
typeLower := strings.ToLower(cfg.ModelType)
if strings.Contains(typeLower, "glm4") || strings.Contains(typeLower, "glm-4") {
return "glm-4.7"
}
if strings.Contains(typeLower, "deepseek") {
return "deepseek3"
}
if strings.Contains(typeLower, "qwen3") {
return "qwen3-coder"
}
}
return ""
}
// getRendererName returns the renderer name for a model based on its architecture.
// This reads the config.json from the model directory and determines the appropriate renderer.
func getRendererName(modelDir string) string {
configPath := filepath.Join(modelDir, "config.json")
data, err := os.ReadFile(configPath)
if err != nil {
return ""
}
var cfg struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(data, &cfg); err != nil {
return ""
}
// Check architectures for known renderers
for _, arch := range cfg.Architectures {
archLower := strings.ToLower(arch)
if strings.Contains(archLower, "glm4") || strings.Contains(archLower, "glm-4") {
return "glm-4.7"
}
if strings.Contains(archLower, "deepseek") {
return "deepseek3"
}
if strings.Contains(archLower, "qwen3") {
return "qwen3-coder"
}
}
// Also check model_type
if cfg.ModelType != "" {
typeLower := strings.ToLower(cfg.ModelType)
if strings.Contains(typeLower, "glm4") || strings.Contains(typeLower, "glm-4") {
return "glm-4.7"
}
if strings.Contains(typeLower, "deepseek") {
return "deepseek3"
}
if strings.Contains(typeLower, "qwen3") {
return "qwen3-coder"
}
}
return ""
}

View File

@@ -13,10 +13,7 @@ import (
// quantizeTensor loads a tensor from safetensors format, quantizes it,
// and returns safetensors data for the quantized weights, scales, and biases.
// Supported quantization types:
// - "fp4": affine 4-bit, group_size=32 (with qbiases)
// - "nvfp4": NVIDIA FP4, group_size=16 (no qbiases, E4M3 scales)
// - "fp8": affine 8-bit, group_size=32 (with qbiases)
// Supported quantization types: "fp8" (affine 8-bit)
// Uses MLX's native SaveSafetensors to ensure correct dtype handling (especially uint32 for quantized weights).
func quantizeTensor(r io.Reader, name, dtype string, shape []int32, quantize string) (qweightData, scalesData, qbiasData []byte, qweightShape, scalesShape, qbiasShape []int32, err error) {
tmpDir := ensureTempDir()
@@ -58,13 +55,10 @@ func quantizeTensor(r io.Reader, name, dtype string, shape []int32, quantize str
var qweight, scales, qbiases *mlx.Array
switch quantize {
case "fp4":
// affine mode: group_size=32, bits=4 (with qbiases for zero-point offset)
// affine mode: group_size=32, bits=4
qweight, scales, qbiases = mlx.Quantize(arr, 32, 4, "affine")
case "nvfp4":
// NVIDIA FP4: group_size=16, bits=4 (no qbiases, E4M3 scales)
qweight, scales, qbiases = mlx.Quantize(arr, 16, 4, "nvfp4")
case "fp8":
// affine mode: group_size=32, bits=8 (with qbiases for zero-point offset)
// affine mode: group_size=32, bits=8
qweight, scales, qbiases = mlx.Quantize(arr, 32, 8, "affine")
default:
return nil, nil, nil, nil, nil, nil, fmt.Errorf("unsupported quantization type: %s", quantize)

View File

@@ -262,10 +262,9 @@ func ShouldQuantize(name, component string) bool {
return strings.HasSuffix(name, ".weight")
}
// ShouldQuantizeTensor returns true if a tensor should be quantized based on name, shape, and quantize type.
// ShouldQuantizeTensor returns true if a tensor should be quantized based on name and shape.
// This is a more detailed check that also considers tensor dimensions.
// The quantize parameter specifies the quantization type (e.g., "fp4", "nvfp4", "fp8").
func ShouldQuantizeTensor(name string, shape []int32, quantize string) bool {
func ShouldQuantizeTensor(name string, shape []int32) bool {
// Use basic name-based check first
if !ShouldQuantize(name, "") {
return false
@@ -281,13 +280,8 @@ func ShouldQuantizeTensor(name string, shape []int32, quantize string) bool {
return false
}
// MLX quantization requires last dimension to be divisible by group size
// NVFP4 uses group_size=16, all other modes use group_size=32
groupSize := int32(32)
if strings.ToUpper(quantize) == "NVFP4" {
groupSize = 16
}
if shape[len(shape)-1]%groupSize != 0 {
// MLX quantization requires last dimension to be divisible by group size (32)
if shape[len(shape)-1]%32 != 0 {
return false
}
@@ -337,7 +331,7 @@ func CreateSafetensorsModel(modelName, modelDir, quantize string, createLayer La
// Determine quantization type for this tensor (empty string if not quantizing)
quantizeType := ""
if quantize != "" && ShouldQuantizeTensor(tensorName, td.Shape, quantize) {
if quantize != "" && ShouldQuantizeTensor(tensorName, td.Shape) {
quantizeType = quantize
}
@@ -394,22 +388,6 @@ func CreateSafetensorsModel(modelName, modelDir, quantize string, createLayer La
return fmt.Errorf("config.json not found in %s", modelDir)
}
// Create model_index.json with quantization info if quantizing
if quantize != "" {
modelIndex := map[string]any{
"quantization": strings.ToUpper(quantize),
}
indexData, err := json.MarshalIndent(modelIndex, "", " ")
if err != nil {
return fmt.Errorf("failed to marshal model_index.json: %w", err)
}
indexLayer, err := createLayer(strings.NewReader(string(indexData)), "application/vnd.ollama.image.json", "model_index.json")
if err != nil {
return fmt.Errorf("failed to create model_index.json layer: %w", err)
}
layers = append(layers, indexLayer)
}
fn(fmt.Sprintf("writing manifest for %s", modelName))
if err := writeManifest(modelName, configLayer, layers); err != nil {

View File

@@ -536,51 +536,41 @@ func TestShouldQuantize(t *testing.T) {
func TestShouldQuantizeTensor(t *testing.T) {
tests := []struct {
name string
tensor string
shape []int32
quantize string
want bool
name string
tensor string
shape []int32
want bool
}{
// 2D tensors with sufficient size should be quantized
{"large 2D weight fp8", "q_proj.weight", []int32{4096, 4096}, "fp8", true},
{"medium 2D weight fp8", "small_proj.weight", []int32{128, 128}, "fp8", true},
{"large 2D weight nvfp4", "q_proj.weight", []int32{4096, 4096}, "nvfp4", true},
{"large 2D weight", "q_proj.weight", []int32{4096, 4096}, true},
{"medium 2D weight", "small_proj.weight", []int32{128, 128}, true},
// Small tensors should not be quantized (< 1024 elements)
{"tiny 2D weight", "tiny.weight", []int32{16, 16}, "fp8", false},
{"small 2D weight", "small.weight", []int32{31, 31}, "fp8", false},
{"tiny 2D weight", "tiny.weight", []int32{16, 16}, false},
{"small 2D weight", "small.weight", []int32{31, 31}, false},
// 1D tensors should not be quantized
{"1D tensor", "layer_norm.weight", []int32{4096}, "fp8", false},
{"1D tensor", "layer_norm.weight", []int32{4096}, false},
// 3D+ tensors should not be quantized
{"3D tensor", "conv.weight", []int32{64, 64, 3}, "fp8", false},
{"4D tensor", "conv2d.weight", []int32{64, 64, 3, 3}, "fp8", false},
{"3D tensor", "conv.weight", []int32{64, 64, 3}, false},
{"4D tensor", "conv2d.weight", []int32{64, 64, 3, 3}, false},
// Embeddings should not be quantized regardless of shape
{"embedding 2D", "embed_tokens.weight", []int32{32000, 4096}, "fp8", false},
{"embedding 2D", "embed_tokens.weight", []int32{32000, 4096}, false},
// Norms should not be quantized regardless of shape
{"norm 2D", "layer_norm.weight", []int32{4096, 1}, "fp8", false},
{"norm 2D", "layer_norm.weight", []int32{4096, 1}, false},
// Biases should not be quantized
{"bias 2D", "proj.bias", []int32{4096, 1}, "fp8", false},
// Group size divisibility tests
// FP8/FP4 require divisible by 32
{"not divisible by 32 fp8", "proj.weight", []int32{128, 48}, "fp8", false},
{"divisible by 32 fp8", "proj.weight", []int32{128, 64}, "fp8", true},
// NVFP4 requires divisible by 16
{"not divisible by 16 nvfp4", "proj.weight", []int32{128, 24}, "nvfp4", false},
{"divisible by 16 nvfp4", "proj.weight", []int32{128, 48}, "nvfp4", true},
{"bias 2D", "proj.bias", []int32{4096, 1}, false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := ShouldQuantizeTensor(tt.tensor, tt.shape, tt.quantize)
got := ShouldQuantizeTensor(tt.tensor, tt.shape)
if got != tt.want {
t.Errorf("ShouldQuantizeTensor(%q, %v, %q) = %v, want %v", tt.tensor, tt.shape, tt.quantize, got, tt.want)
t.Errorf("ShouldQuantizeTensor(%q, %v) = %v, want %v", tt.tensor, tt.shape, got, tt.want)
}
})
}

View File

@@ -15,15 +15,15 @@ import (
// CreateImageGenModel imports an image generation model from a directory.
// Stores each tensor as a separate blob for fine-grained deduplication.
// If quantize is specified, linear weights in transformer/text_encoder are quantized.
// Supported quantization types: fp4, fp8 (or empty for no quantization).
// Supported quantization types: fp8 (or empty for no quantization).
// Layer creation and manifest writing are done via callbacks to avoid import cycles.
func CreateImageGenModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
// Validate quantization type
switch quantize {
case "", "fp4", "fp8", "nvfp4":
case "", "fp4", "fp8":
// valid
default:
return fmt.Errorf("unsupported quantization type %q: supported types are fp4, fp8, nvfp4", quantize)
return fmt.Errorf("unsupported quantization type %q: supported types are fp4, fp8", quantize)
}
var layers []LayerInfo
@@ -89,7 +89,7 @@ func CreateImageGenModel(modelName, modelDir, quantize string, createLayer Layer
// Determine quantization type for this tensor (empty string if not quantizing)
quantizeType := ""
if quantize != "" && ShouldQuantize(tensorName, component) && canQuantizeShape(td.Shape, quantize) {
if quantize != "" && ShouldQuantize(tensorName, component) && canQuantizeShape(td.Shape) {
quantizeType = quantize
}
@@ -213,15 +213,10 @@ func CreateImageGenModel(modelName, modelDir, quantize string, createLayer Layer
}
// canQuantizeShape returns true if a tensor shape is compatible with MLX quantization.
// MLX requires the last dimension to be divisible by the group size.
// NVFP4 uses group_size=16, all other modes use group_size=32.
func canQuantizeShape(shape []int32, quantize string) bool {
// MLX requires the last dimension to be divisible by the group size (32).
func canQuantizeShape(shape []int32) bool {
if len(shape) < 2 {
return false
}
groupSize := int32(32)
if strings.ToUpper(quantize) == "NVFP4" {
groupSize = 16
}
return shape[len(shape)-1]%groupSize == 0
return shape[len(shape)-1]%32 == 0
}

View File

@@ -9,7 +9,6 @@ type Cache interface {
Offset() int
Len() int
State() []*mlx.Array
Reset()
}
type KVCache struct {
@@ -64,13 +63,6 @@ func (c *KVCache) State() []*mlx.Array {
func (c *KVCache) Offset() int { return c.offset }
func (c *KVCache) Len() int { return c.offset }
// Reset clears the cache state for a new generation session
func (c *KVCache) Reset() {
c.keys = nil
c.values = nil
c.offset = 0
}
// RotatingKVCache implements sliding window attention with bounded memory
type RotatingKVCache struct {
keys, values *mlx.Array
@@ -162,11 +154,3 @@ func (c *RotatingKVCache) State() []*mlx.Array {
func (c *RotatingKVCache) Offset() int { return c.offset }
func (c *RotatingKVCache) Len() int { return min(c.offset, c.maxSize) }
// Reset clears the cache state for a new generation session
func (c *RotatingKVCache) Reset() {
c.keys = nil
c.values = nil
c.offset = 0
c.idx = 0
}

View File

@@ -19,7 +19,6 @@ import (
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/flux2"
"github.com/ollama/ollama/x/imagegen/models/gemma3"
"github.com/ollama/ollama/x/imagegen/models/glm4_moe_lite"
"github.com/ollama/ollama/x/imagegen/models/gpt_oss"
"github.com/ollama/ollama/x/imagegen/models/llama"
"github.com/ollama/ollama/x/imagegen/models/zimage"
@@ -243,8 +242,6 @@ func load(modelPath string) (Model, error) {
return gemma3.Load(modelPath)
case "gemma3_text":
return gemma3.LoadText(modelPath)
case "glm4_moe_lite":
return glm4_moe_lite.Load(modelPath)
default:
return llama.Load(modelPath)
}

View File

@@ -116,18 +116,6 @@ func (m *ModelManifest) GetTensorLayers(component string) []ManifestLayer {
return layers
}
// GetAllTensorLayers returns all tensor layers without component filtering.
// Used for LLM models where tensors don't have a component prefix.
func (m *ModelManifest) GetAllTensorLayers() []ManifestLayer {
var layers []ManifestLayer
for _, layer := range m.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.tensor" {
layers = append(layers, layer)
}
}
return layers
}
// GetConfigLayer returns the config layer for a given path.
func (m *ModelManifest) GetConfigLayer(configPath string) *ManifestLayer {
for _, layer := range m.Manifest.Layers {

View File

@@ -991,19 +991,6 @@ func Concat(a, b *Array, axis int) *Array {
return Concatenate([]*Array{a, b}, axis)
}
// Stack stacks arrays along a new axis (axis 0 by default)
func Stack(arrays []*Array, axis int) *Array {
handles := make([]C.mlx_array, len(arrays))
for i, arr := range arrays {
handles[i] = arr.c
}
vec := C.mlx_vector_array_new_data(&handles[0], C.size_t(len(handles)))
res := C.mlx_array_new()
C.mlx_stack_axis(&res, vec, C.int(axis), C.default_stream())
C.mlx_vector_array_free(vec)
return newArray(res)
}
// Slice slices the array
func Slice(a *Array, start, stop []int32) *Array {
n := len(start)

View File

@@ -1,709 +0,0 @@
//go:build mlx
// Package glm4_moe_lite provides the GLM4-MoE-Lite implementation for MLX.
// This model uses Multi-head Latent Attention (MLA) and Mixture of Experts (MoE).
package glm4_moe_lite
import (
"encoding/json"
"fmt"
"math"
"os"
"path/filepath"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
"github.com/ollama/ollama/x/imagegen/tokenizer"
)
// Config holds GLM4-MoE-Lite model configuration
type Config struct {
HiddenSize int32 `json:"hidden_size"`
NumHiddenLayers int32 `json:"num_hidden_layers"`
IntermediateSize int32 `json:"intermediate_size"`
MoEIntermediateSize int32 `json:"moe_intermediate_size"`
NumAttentionHeads int32 `json:"num_attention_heads"`
NumKeyValueHeads int32 `json:"num_key_value_heads"`
VocabSize int32 `json:"vocab_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
MaxPositionEmbeddings int32 `json:"max_position_embeddings"`
AttentionBias bool `json:"attention_bias"`
// MLA (Multi-head Latent Attention) parameters
QLoraRank int32 `json:"q_lora_rank"`
KVLoraRank int32 `json:"kv_lora_rank"`
QKRopeHeadDim int32 `json:"qk_rope_head_dim"`
QKNopeHeadDim int32 `json:"qk_nope_head_dim"`
VHeadDim int32 `json:"v_head_dim"`
// MoE parameters
NRoutedExperts int32 `json:"n_routed_experts"`
NSharedExperts int32 `json:"n_shared_experts"`
NumExpertsPerTok int32 `json:"num_experts_per_tok"`
RoutedScalingFactor float32 `json:"routed_scaling_factor"`
NormTopKProb bool `json:"norm_topk_prob"`
FirstKDenseReplace int32 `json:"first_k_dense_replace"`
NGroup int32 `json:"n_group"`
TopKGroup int32 `json:"topk_group"`
// Computed fields
QHeadDim int32 `json:"-"` // qk_nope_head_dim + qk_rope_head_dim
Scale float32 `json:"-"` // 1/sqrt(QHeadDim)
}
// MLAAttention implements Multi-head Latent Attention
type MLAAttention struct {
// Low-rank query projections
QAProj nn.LinearLayer `weight:"self_attn.q_a_proj"`
QALayerNorm *nn.RMSNorm `weight:"self_attn.q_a_layernorm"`
QBProj nn.LinearLayer `weight:"self_attn.q_b_proj"`
// Low-rank KV projections (with shared rope component)
KVAProjWithMQA nn.LinearLayer `weight:"self_attn.kv_a_proj_with_mqa"`
KVALayerNorm *nn.RMSNorm `weight:"self_attn.kv_a_layernorm"`
KVBProj nn.LinearLayer `weight:"self_attn.kv_b_proj"`
// Output projection
OProj nn.LinearLayer `weight:"self_attn.o_proj"`
}
// Forward computes MLA attention output
func (a *MLAAttention) Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *Config) *mlx.Array {
// Query path: q_a_proj -> layernorm -> q_b_proj
q := a.QAProj.Forward(x)
q = a.QALayerNorm.Forward(q, cfg.RMSNormEps)
q = a.QBProj.Forward(q)
// Reshape Q: [B, L, num_heads * q_head_dim] -> [B, num_heads, L, q_head_dim]
q = mlx.Reshape(q, B, L, cfg.NumAttentionHeads, cfg.QHeadDim)
q = mlx.Transpose(q, 0, 2, 1, 3)
// Split Q into nope and rope parts
qNope := mlx.Slice(q, []int32{0, 0, 0, 0}, []int32{B, cfg.NumAttentionHeads, L, cfg.QKNopeHeadDim})
qPE := mlx.Slice(q, []int32{0, 0, 0, cfg.QKNopeHeadDim}, []int32{B, cfg.NumAttentionHeads, L, cfg.QHeadDim})
// KV path: kv_a_proj_with_mqa -> split -> layernorm -> kv_b_proj
compressedKV := a.KVAProjWithMQA.Forward(x)
// Split into compressed_kv and k_pe (shared rope component)
kvCompressed := mlx.Slice(compressedKV, []int32{0, 0, 0}, []int32{B, L, cfg.KVLoraRank})
kPE := mlx.Slice(compressedKV, []int32{0, 0, cfg.KVLoraRank}, []int32{B, L, cfg.KVLoraRank + cfg.QKRopeHeadDim})
// k_pe is shared across heads (MQA-style): [B, L, rope_dim] -> [B, 1, L, rope_dim]
kPE = mlx.Reshape(kPE, B, L, 1, cfg.QKRopeHeadDim)
kPE = mlx.Transpose(kPE, 0, 2, 1, 3)
// Apply layernorm and project KV
kvCompressed = a.KVALayerNorm.Forward(kvCompressed, cfg.RMSNormEps)
kv := a.KVBProj.Forward(kvCompressed)
// Reshape KV: [B, L, num_heads * (qk_nope_head_dim + v_head_dim)]
kv = mlx.Reshape(kv, B, L, cfg.NumAttentionHeads, cfg.QKNopeHeadDim+cfg.VHeadDim)
kv = mlx.Transpose(kv, 0, 2, 1, 3)
// Split into k_nope and values
kNope := mlx.Slice(kv, []int32{0, 0, 0, 0}, []int32{B, cfg.NumAttentionHeads, L, cfg.QKNopeHeadDim})
values := mlx.Slice(kv, []int32{0, 0, 0, cfg.QKNopeHeadDim}, []int32{B, cfg.NumAttentionHeads, L, cfg.QKNopeHeadDim + cfg.VHeadDim})
// Apply RoPE to the rope parts only
offset := 0
if c != nil {
offset = c.Offset()
}
qPE = mlx.RoPE(qPE, int(cfg.QKRopeHeadDim), true, cfg.RopeTheta, 1.0, offset)
kPE = mlx.RoPE(kPE, int(cfg.QKRopeHeadDim), true, cfg.RopeTheta, 1.0, offset)
// Repeat k_pe across all heads
kPE = mlx.Tile(kPE, []int32{1, cfg.NumAttentionHeads, 1, 1})
// Concatenate nope and rope parts
queries := mlx.Concatenate([]*mlx.Array{qNope, qPE}, 3)
keys := mlx.Concatenate([]*mlx.Array{kNope, kPE}, 3)
// Update KV cache
if c != nil {
keys, values = c.Update(keys, values, int(L))
}
// Scaled dot product attention
out := mlx.ScaledDotProductAttention(queries, keys, values, cfg.Scale, L > 1)
// Reshape back: [B, num_heads, L, v_head_dim] -> [B, L, num_heads * v_head_dim]
out = mlx.Reshape(mlx.Transpose(out, 0, 2, 1, 3), B, L, cfg.NumAttentionHeads*cfg.VHeadDim)
return a.OProj.Forward(out)
}
// DenseMLP implements the standard SwiGLU MLP for dense layers
type DenseMLP struct {
GateProj nn.LinearLayer `weight:"mlp.gate_proj"`
UpProj nn.LinearLayer `weight:"mlp.up_proj"`
DownProj nn.LinearLayer `weight:"mlp.down_proj"`
}
// Forward applies the SwiGLU MLP
func (m *DenseMLP) Forward(x *mlx.Array) *mlx.Array {
gate := mlx.SiLU(m.GateProj.Forward(x))
up := m.UpProj.Forward(x)
return m.DownProj.Forward(mlx.Mul(gate, up))
}
// MoEGate implements the expert gating mechanism
type MoEGate struct {
Gate nn.LinearLayer `weight:"mlp.gate"`
EScoreCorrectionBias *mlx.Array `weight:"mlp.gate.e_score_correction_bias,optional"`
}
// Forward computes expert selection indices and scores
func (g *MoEGate) Forward(x *mlx.Array, cfg *Config) (*mlx.Array, *mlx.Array) {
// Compute gate logits through linear layer (handles both quantized and non-quantized)
gates := g.Gate.Forward(x)
// Sigmoid scoring
scores := mlx.Sigmoid(gates)
origScores := scores
// Add correction bias if present
if g.EScoreCorrectionBias != nil {
scores = mlx.Add(scores, g.EScoreCorrectionBias)
}
// Group-wise expert selection (simplified for n_group=1)
// Select top-k experts
topK := cfg.NumExpertsPerTok
negScores := mlx.Neg(scores)
inds := mlx.Argpartition(negScores, int(topK)-1, -1)
shape := inds.Shape()
inds = mlx.Slice(inds, []int32{0, 0, 0}, []int32{shape[0], shape[1], topK})
// Get scores for selected experts
scores = mlx.TakeAlongAxis(origScores, inds, -1)
// Normalize if configured
if topK > 1 && cfg.NormTopKProb {
sumScores := mlx.Sum(scores, -1, true)
scores = mlx.Div(scores, sumScores)
}
// Apply routing scaling factor
scores = mlx.MulScalar(scores, cfg.RoutedScalingFactor)
return inds, scores
}
// SwitchMLP implements the MoE expert computation using stacked weights
// Note: No weight tags - these are populated manually by stacking expert weights
type SwitchMLP struct {
GateWeight *mlx.Array
UpWeight *mlx.Array
DownWeight *mlx.Array
}
// Forward applies the switched expert MLP
func (s *SwitchMLP) Forward(x *mlx.Array, indices *mlx.Array, cfg *Config) *mlx.Array {
shape := x.Shape()
B, L := shape[0], shape[1]
topK := cfg.NumExpertsPerTok
// Expand x for expert computation: [B, L, D] -> [B, L, 1, 1, D]
xExpanded := mlx.ExpandDims(mlx.ExpandDims(x, -2), -2)
// Flatten for gather_mm: [B*L, 1, 1, D]
xFlat := mlx.Reshape(xExpanded, B*L, 1, 1, cfg.HiddenSize)
// Flatten indices: [B, L, topK] -> [B*L, topK]
idxFlat := mlx.Reshape(indices, B*L, topK)
// Sort for efficient gather (when we have many tokens)
doSort := B*L >= 64
var invOrder *mlx.Array
n := B * L * topK
if doSort {
idxAll := mlx.Flatten(idxFlat)
order := mlx.Argsort(idxAll, 0)
invOrder = mlx.Argsort(order, 0)
// Reorder x based on sorted indices
xFlat = mlx.ExpandDims(mlx.Take(mlx.Squeeze(xFlat, 1), mlx.FloorDivideScalar(order, topK), 0), 1)
idxFlat = mlx.Reshape(mlx.Take(idxAll, order, 0), n, 1)
}
// Expert computation using gather_mm
// gate: x @ gate_weight.T (indices are on the rhs/weight side)
gate := mlx.GatherMM(xFlat, mlx.Transpose(s.GateWeight, 0, 2, 1), nil, idxFlat, doSort)
// up: x @ up_weight.T
up := mlx.GatherMM(xFlat, mlx.Transpose(s.UpWeight, 0, 2, 1), nil, idxFlat, doSort)
// SwiGLU activation
hidden := mlx.Mul(mlx.SiLU(gate), up)
// down: hidden @ down_weight.T
down := mlx.GatherMM(hidden, mlx.Transpose(s.DownWeight, 0, 2, 1), nil, idxFlat, doSort)
// Unsort if we sorted
if doSort {
down = mlx.Reshape(mlx.Take(mlx.Squeeze(mlx.Squeeze(down, 2), 1), invOrder, 0), B*L, topK, cfg.HiddenSize)
} else {
down = mlx.Squeeze(down, 2)
}
return mlx.Reshape(down, B, L, topK, cfg.HiddenSize)
}
// SharedExperts implements the shared expert MLP
type SharedExperts struct {
GateProj nn.LinearLayer `weight:"mlp.shared_experts.gate_proj"`
UpProj nn.LinearLayer `weight:"mlp.shared_experts.up_proj"`
DownProj nn.LinearLayer `weight:"mlp.shared_experts.down_proj"`
}
// Forward applies the shared expert MLP
func (s *SharedExperts) Forward(x *mlx.Array) *mlx.Array {
gate := mlx.SiLU(s.GateProj.Forward(x))
up := s.UpProj.Forward(x)
return s.DownProj.Forward(mlx.Mul(gate, up))
}
// MoE implements the full Mixture of Experts layer
type MoE struct {
Gate *MoEGate
SwitchMLP *SwitchMLP
SharedExperts *SharedExperts
}
// Forward applies the MoE layer
func (m *MoE) Forward(x *mlx.Array, cfg *Config) *mlx.Array {
shape := x.Shape()
B, L := shape[0], shape[1]
// Get expert indices and scores
inds, scores := m.Gate.Forward(x, cfg)
// Apply routed experts
expertOut := m.SwitchMLP.Forward(x, inds, cfg)
// Weight by scores: [B, L, topK, D] * [B, L, topK, 1] -> sum over topK
scoresExpanded := mlx.ExpandDims(scores, -1)
y := mlx.Sum(mlx.Mul(expertOut, scoresExpanded), 2, false)
// Add shared experts if present
if m.SharedExperts != nil {
y = mlx.Add(y, m.SharedExperts.Forward(x))
}
return mlx.Reshape(y, B, L, cfg.HiddenSize)
}
// DenseBlock represents a dense transformer block (for first_k_dense_replace layers)
type DenseBlock struct {
Attention *MLAAttention
MLP *DenseMLP
InputLayerNorm *nn.RMSNorm `weight:"input_layernorm"`
PostAttentionLayerNorm *nn.RMSNorm `weight:"post_attention_layernorm"`
}
// Forward applies the dense block
func (b *DenseBlock) Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *Config) *mlx.Array {
// Pre-norm attention with residual
r := b.Attention.Forward(b.InputLayerNorm.Forward(x, cfg.RMSNormEps), c, B, L, cfg)
h := mlx.Add(x, r)
// Pre-norm MLP with residual
r = b.MLP.Forward(b.PostAttentionLayerNorm.Forward(h, cfg.RMSNormEps))
return mlx.Add(h, r)
}
// MoEBlock represents a MoE transformer block
type MoEBlock struct {
Attention *MLAAttention
MoE *MoE
InputLayerNorm *nn.RMSNorm `weight:"input_layernorm"`
PostAttentionLayerNorm *nn.RMSNorm `weight:"post_attention_layernorm"`
}
// Forward applies the MoE block
func (b *MoEBlock) Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *Config) *mlx.Array {
// Pre-norm attention with residual
r := b.Attention.Forward(b.InputLayerNorm.Forward(x, cfg.RMSNormEps), c, B, L, cfg)
h := mlx.Add(x, r)
// Pre-norm MoE with residual
r = b.MoE.Forward(b.PostAttentionLayerNorm.Forward(h, cfg.RMSNormEps), cfg)
return mlx.Add(h, r)
}
// Block interface for both dense and MoE blocks
type Block interface {
Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *Config) *mlx.Array
}
// Model represents the complete GLM4-MoE-Lite model
type Model struct {
EmbedTokens *nn.Embedding `weight:"model.embed_tokens"`
Layers []Block `weight:"-"` // Loaded manually due to different block types
Norm *nn.RMSNorm `weight:"model.norm"`
LMHead nn.LinearLayer `weight:"lm_head"`
tok *tokenizer.Tokenizer
*Config
}
// loadExpertWeight loads an expert weight, dequantizing if necessary.
// GatherMM doesn't support quantized weights, so we must dequantize for MoE.
func loadExpertWeight(weights safetensors.WeightSource, path string) *mlx.Array {
w, _ := weights.GetTensor(path + ".weight")
if w == nil {
return nil
}
// Check if this is a quantized weight by looking for scales
scalePath := path + ".weight_scale"
if weights.HasTensor(scalePath) {
scales, _ := weights.GetTensor(scalePath)
var qbiases *mlx.Array
qbiasPath := path + ".weight_qbias"
if weights.HasTensor(qbiasPath) {
qbiases, _ = weights.GetTensor(qbiasPath)
}
// Dequantize using the model's quantization parameters
groupSize, bits, mode := safetensors.QuantizationParams(weights.Quantization())
return mlx.Dequantize(w, scales, qbiases, groupSize, bits, mode)
}
return w
}
// sanitizeExpertWeights stacks individual expert weights into a single tensor.
// For quantized models, expert weights are dequantized since GatherMM doesn't support quantized weights.
func sanitizeExpertWeights(weights safetensors.WeightSource, prefix string, numExperts int32) (*mlx.Array, *mlx.Array, *mlx.Array) {
var gateWeights, upWeights, downWeights []*mlx.Array
for e := int32(0); e < numExperts; e++ {
gw := loadExpertWeight(weights, fmt.Sprintf("%s.mlp.experts.%d.gate_proj", prefix, e))
uw := loadExpertWeight(weights, fmt.Sprintf("%s.mlp.experts.%d.up_proj", prefix, e))
dw := loadExpertWeight(weights, fmt.Sprintf("%s.mlp.experts.%d.down_proj", prefix, e))
if gw != nil {
gateWeights = append(gateWeights, gw)
}
if uw != nil {
upWeights = append(upWeights, uw)
}
if dw != nil {
downWeights = append(downWeights, dw)
}
}
var stackedGate, stackedUp, stackedDown *mlx.Array
if len(gateWeights) > 0 {
stackedGate = mlx.Stack(gateWeights, 0)
}
if len(upWeights) > 0 {
stackedUp = mlx.Stack(upWeights, 0)
}
if len(downWeights) > 0 {
stackedDown = mlx.Stack(downWeights, 0)
}
return stackedGate, stackedUp, stackedDown
}
// Load loads a GLM4-MoE-Lite model from the given path
func Load(modelPath string) (*Model, error) {
data, err := os.ReadFile(filepath.Join(modelPath, "config.json"))
if err != nil {
return nil, fmt.Errorf("load config: %w", err)
}
var cfg Config
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("parse config: %w", err)
}
// Compute derived fields
cfg.QHeadDim = cfg.QKNopeHeadDim + cfg.QKRopeHeadDim
cfg.Scale = float32(1.0 / math.Sqrt(float64(cfg.QHeadDim)))
weights, err := safetensors.LoadModelWeights(modelPath)
if err != nil {
return nil, fmt.Errorf("load weights: %w", err)
}
tok, err := tokenizer.Load(filepath.Join(modelPath, "tokenizer.json"))
if err != nil {
return nil, fmt.Errorf("load tokenizer: %w", err)
}
m := &Model{
Layers: make([]Block, cfg.NumHiddenLayers),
Config: &cfg,
tok: tok,
}
// Load embedding, norm, and lm_head
if err := safetensors.LoadModule(m, weights, ""); err != nil {
return nil, err
}
// Load layers manually due to different block types
for i := int32(0); i < cfg.NumHiddenLayers; i++ {
prefix := fmt.Sprintf("model.layers.%d", i)
// Load attention (same for both block types)
attn := &MLAAttention{}
if err := safetensors.LoadModule(attn, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d attention: %w", i, err)
}
if i < cfg.FirstKDenseReplace {
// Dense block
block := &DenseBlock{Attention: attn}
if err := safetensors.LoadModule(block, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d dense: %w", i, err)
}
m.Layers[i] = block
} else {
// MoE block
block := &MoEBlock{Attention: attn}
if err := safetensors.LoadModule(block, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d moe block: %w", i, err)
}
// Stack expert weights
gateW, upW, downW := sanitizeExpertWeights(weights, prefix, cfg.NRoutedExperts)
block.MoE = &MoE{
Gate: &MoEGate{},
SwitchMLP: &SwitchMLP{
GateWeight: gateW,
UpWeight: upW,
DownWeight: downW,
},
}
// Load gate weights
if err := safetensors.LoadModule(block.MoE.Gate, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d gate: %w", i, err)
}
// Load shared experts if present
if cfg.NSharedExperts > 0 {
block.MoE.SharedExperts = &SharedExperts{}
if err := safetensors.LoadModule(block.MoE.SharedExperts, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d shared experts: %w", i, err)
}
}
m.Layers[i] = block
}
}
mlx.Eval(mlx.Collect(m)...)
weights.ReleaseAll()
return m, nil
}
// LoadFromManifest loads a GLM4-MoE-Lite model from a manifest (Ollama blob storage).
func LoadFromManifest(manifest *imagegen.ModelManifest) (*Model, error) {
// Read config from manifest
configData, err := manifest.ReadConfig("config.json")
if err != nil {
return nil, fmt.Errorf("load config: %w", err)
}
var cfg Config
if err := json.Unmarshal(configData, &cfg); err != nil {
return nil, fmt.Errorf("parse config: %w", err)
}
// Compute derived fields
cfg.QHeadDim = cfg.QKNopeHeadDim + cfg.QKRopeHeadDim
cfg.Scale = float32(1.0 / math.Sqrt(float64(cfg.QHeadDim)))
// Load weights from manifest blobs
weights, err := imagegen.LoadAllWeightsFromManifest(manifest)
if err != nil {
return nil, fmt.Errorf("load weights: %w", err)
}
// Debug: print quantization info and sample tensor names
fmt.Printf("GLM4: quantization=%q, num_tensors=%d\n", weights.Quantization(), len(weights.ListTensors()))
tensors := weights.ListTensors()
for i, name := range tensors {
if i < 20 { // Print first 20 tensor names
fmt.Printf(" tensor[%d]: %s\n", i, name)
}
}
if err := weights.Load(0); err != nil {
return nil, fmt.Errorf("load weight data: %w", err)
}
// Load tokenizer from manifest with config files for EOS token detection
tokData, err := manifest.ReadConfig("tokenizer.json")
if err != nil {
return nil, fmt.Errorf("load tokenizer config: %w", err)
}
// Build tokenizer config with companion files for EOS/BOS token loading
tokConfig := &tokenizer.TokenizerConfig{
ConfigJSON: configData, // Already loaded above, contains eos_token_id
}
// Try to load generation_config.json if available (preferred source for EOS)
if genConfigData, err := manifest.ReadConfig("generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = genConfigData
}
// Try to load tokenizer_config.json if available
if tokConfigData, err := manifest.ReadConfig("tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = tokConfigData
}
tok, err := tokenizer.LoadFromBytesWithConfig(tokData, tokConfig)
if err != nil {
return nil, fmt.Errorf("parse tokenizer: %w", err)
}
m := &Model{
Layers: make([]Block, cfg.NumHiddenLayers),
Config: &cfg,
tok: tok,
}
// Load embedding, norm, and lm_head
if err := safetensors.LoadModule(m, weights, ""); err != nil {
return nil, err
}
// Load layers manually due to different block types
for i := int32(0); i < cfg.NumHiddenLayers; i++ {
prefix := fmt.Sprintf("model.layers.%d", i)
// Load attention (same for both block types)
attn := &MLAAttention{}
if err := safetensors.LoadModule(attn, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d attention: %w", i, err)
}
if i < cfg.FirstKDenseReplace {
// Dense block
block := &DenseBlock{Attention: attn}
if err := safetensors.LoadModule(block, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d dense: %w", i, err)
}
m.Layers[i] = block
} else {
// MoE block
block := &MoEBlock{Attention: attn}
if err := safetensors.LoadModule(block, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d moe block: %w", i, err)
}
// Stack expert weights
gateW, upW, downW := sanitizeExpertWeights(weights, prefix, cfg.NRoutedExperts)
block.MoE = &MoE{
Gate: &MoEGate{},
SwitchMLP: &SwitchMLP{
GateWeight: gateW,
UpWeight: upW,
DownWeight: downW,
},
}
// Load gate weights
if err := safetensors.LoadModule(block.MoE.Gate, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d gate: %w", i, err)
}
// Load shared experts if present
if cfg.NSharedExperts > 0 {
block.MoE.SharedExperts = &SharedExperts{}
if err := safetensors.LoadModule(block.MoE.SharedExperts, weights, prefix); err != nil {
return nil, fmt.Errorf("layer %d shared experts: %w", i, err)
}
}
m.Layers[i] = block
}
}
mlx.Eval(mlx.Collect(m)...)
weights.ReleaseAll()
return m, nil
}
// Forward computes the forward pass of the model
func (m *Model) Forward(tokens *mlx.Array, caches []cache.Cache) *mlx.Array {
B, L := tokens.Shape()[0], tokens.Shape()[1]
h := m.EmbedTokens.Forward(tokens)
for i, layer := range m.Layers {
var c cache.Cache
if caches != nil {
c = caches[i]
}
h = layer.Forward(h, c, B, L, m.Config)
}
h = m.Norm.Forward(h, m.RMSNormEps)
return m.LMHead.Forward(h)
}
// Interface methods
// NumLayers returns the number of transformer layers
func (m *Model) NumLayers() int { return len(m.Layers) }
// MaxContextLength returns the maximum context length
func (m *Model) MaxContextLength() int32 { return m.MaxPositionEmbeddings }
// VocabSize returns the vocabulary size
func (m *Model) VocabSize() int32 { return m.Config.VocabSize }
// Tokenizer returns the model's tokenizer
func (m *Model) Tokenizer() *tokenizer.Tokenizer { return m.tok }
// NewCache creates a new KV cache for the model
func (m *Model) NewCache(maxSeqLen int32) []cache.Cache {
caches := make([]cache.Cache, len(m.Layers))
for i := range caches {
caches[i] = cache.NewKVCache()
}
return caches
}
// FormatPrompt applies the GLM-4 chat template with thinking enabled by default.
// This follows the GLM-4.7 format with <think> tag for reasoning mode.
func (m *Model) FormatPrompt(prompt string) string {
return "[gMASK]<sop><|user|>" + prompt + "<|assistant|><think>"
}
// FormatPromptWithThinking applies the GLM-4 chat template with explicit thinking control.
// When think is true, the prompt ends with <think> to enable reasoning mode.
// When think is false, the prompt ends with </think> to skip reasoning.
func (m *Model) FormatPromptWithThinking(prompt string, think bool) string {
if think {
return "[gMASK]<sop><|user|>" + prompt + "<|assistant|><think>"
}
return "[gMASK]<sop><|user|>" + prompt + "<|assistant|></think>"
}
// NewRenderer returns a new Renderer for formatting multi-turn conversations.
func (m *Model) NewRenderer() *Renderer {
return &Renderer{}
}
// NewParser returns a new Parser for extracting thinking and tool calls from output.
func (m *Model) NewParser() *Parser {
return &Parser{}
}

View File

@@ -1,479 +0,0 @@
//go:build mlx
package glm4_moe_lite
import (
"context"
"encoding/json"
"encoding/xml"
"fmt"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
)
type parserState int
const (
parserState_LookingForThinkingOpen parserState = iota
parserState_ThinkingStartedEatingWhitespace
parserState_CollectingThinking
parserState_ThinkingDoneEatingWhitespace
parserState_CollectingContent
parserState_ToolStartedEatingWhitespace
parserState_CollectingToolContent
)
const (
thinkingOpenTag = "<think>"
thinkingCloseTag = "</think>"
toolOpenTag = "<tool_call>"
toolCloseTag = "</tool_call>"
)
// Parser parses GLM4-MoE-Lite model output to extract thinking and tool calls.
// GLM-4's prompt ends with <think> when thinking is enabled, so the parser
// must start in CollectingThinking state (the model outputs thinking content directly).
type Parser struct {
state parserState
buffer strings.Builder
tools []api.Tool
}
// HasToolSupport returns true as GLM4 supports tool calling.
func (p *Parser) HasToolSupport() bool {
return true
}
// HasThinkingSupport returns true as GLM4 supports thinking mode.
func (p *Parser) HasThinkingSupport() bool {
return true
}
// Init initializes the parser with tools and thinking configuration.
func (p *Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
// When thinking is enabled (nil or true), the prompt ends with <think>,
// so model output starts directly with thinking content (no opening tag).
if thinkValue == nil || thinkValue.Bool() {
p.state = parserState_CollectingThinking
}
return tools
}
type parserEvent interface {
isParserEvent()
}
type eventContent struct {
content string
}
func (eventContent) isParserEvent() {}
type eventRawToolCall struct {
raw string
}
func (eventRawToolCall) isParserEvent() {}
type eventThinkingContent struct {
content string
}
func (eventThinkingContent) isParserEvent() {}
// Add processes new output text and returns parsed content, thinking, and tool calls.
func (p *Parser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case eventRawToolCall:
toolCall, err := parseToolCall(event, p.tools)
if err != nil {
slog.Warn("glm-4 tool call parsing failed", "error", err)
return "", "", nil, err
}
toolCalls = append(toolCalls, toolCall)
case eventThinkingContent:
thinkingSb.WriteString(event.content)
case eventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *Parser) parseEvents() []parserEvent {
var all []parserEvent
keepLooping := true
for keepLooping {
var events []parserEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
if len(all) > 0 {
slog.Log(context.TODO(), logutil.LevelTrace, "glm-4 events parsed", "events", all, "state", p.state, "buffer", p.buffer.String())
}
return all
}
// eatLeadingWhitespaceAndTransitionTo consumes leading whitespace from the buffer
// and transitions to the next state. Returns (nil, false) if only whitespace remains
// in the buffer (needs more input), or (nil, true) if we successfully transitioned.
func (p *Parser) eatLeadingWhitespaceAndTransitionTo(nextState parserState) ([]parserEvent, bool) {
trimmed := strings.TrimLeftFunc(p.buffer.String(), unicode.IsSpace)
p.buffer.Reset()
if trimmed == "" {
return nil, false // Still only whitespace, keep waiting for more input
}
p.state = nextState
p.buffer.WriteString(trimmed)
return nil, true // Successfully transitioned
}
// splitAtTag splits the buffer at the given tag, returns the content before (trimmed of trailing whitespace),
// the content after (optionally trimmed of leading whitespace), and updates the buffer
func (p *Parser) splitAtTag(tag string, trimAfter bool) (string, string) {
split := strings.SplitN(p.buffer.String(), tag, 2)
before := split[0]
before = strings.TrimRightFunc(before, unicode.IsSpace)
after := split[1]
if trimAfter {
after = strings.TrimLeftFunc(after, unicode.IsSpace)
}
p.buffer.Reset()
p.buffer.WriteString(after)
return before, after
}
func (p *Parser) eat() ([]parserEvent, bool) {
var events []parserEvent
switch p.state {
case parserState_LookingForThinkingOpen:
trimmed := strings.TrimLeftFunc(p.buffer.String(), unicode.IsSpace)
if strings.HasPrefix(trimmed, thinkingOpenTag) {
// Found <think> opening tag
after := strings.TrimPrefix(trimmed, thinkingOpenTag)
after = strings.TrimLeftFunc(after, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(after)
if after == "" {
p.state = parserState_ThinkingStartedEatingWhitespace
} else {
p.state = parserState_CollectingThinking
}
return events, true
} else if strings.HasPrefix(thinkingOpenTag, trimmed) {
// Partial opening tag seen, keep accumulating
return events, false
} else if trimmed == "" {
// Only whitespace, keep accumulating
return events, false
} else {
// No thinking tag found, skip to content collection
p.state = parserState_CollectingContent
// Don't trim - we want to keep the original content
return events, true
}
case parserState_ThinkingStartedEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(parserState_CollectingThinking)
case parserState_CollectingThinking:
acc := p.buffer.String()
if strings.Contains(acc, thinkingCloseTag) {
thinking, remaining := p.splitAtTag(thinkingCloseTag, true)
if len(thinking) > 0 {
events = append(events, eventThinkingContent{content: thinking})
}
if remaining == "" {
p.state = parserState_ThinkingDoneEatingWhitespace
} else {
p.state = parserState_CollectingContent
}
return events, true
} else if overlapLen := overlap(acc, thinkingCloseTag); overlapLen > 0 {
// Partial closing tag - withhold it along with any trailing whitespace before it
beforePartialTag := acc[:len(acc)-overlapLen]
trailingWsLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWsLen
unambiguous := acc[:ambiguousStart]
ambiguous := acc[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, eventThinkingContent{content: unambiguous})
}
return events, false
} else {
// Pure thinking content - withhold trailing whitespace (might precede closing tag)
whitespaceLen := trailingWhitespaceLen(acc)
ambiguousStart := len(acc) - whitespaceLen
unambiguous := acc[:ambiguousStart]
ambiguous := acc[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, eventThinkingContent{content: unambiguous})
}
return events, false
}
case parserState_ThinkingDoneEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(parserState_CollectingContent)
case parserState_CollectingContent:
if strings.Contains(p.buffer.String(), toolOpenTag) {
before, after := p.splitAtTag(toolOpenTag, true)
if len(before) > 0 {
events = append(events, eventContent{content: before})
}
if after == "" {
p.state = parserState_ToolStartedEatingWhitespace
} else {
p.state = parserState_CollectingToolContent
}
return events, true
} else if overlapLen := overlap(p.buffer.String(), toolOpenTag); overlapLen > 0 {
beforePartialTag := p.buffer.String()[:len(p.buffer.String())-overlapLen]
trailingWsLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWsLen
unambiguous := p.buffer.String()[:ambiguousStart]
ambiguous := p.buffer.String()[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, eventContent{content: unambiguous})
}
return events, false
} else {
whitespaceLen := trailingWhitespaceLen(p.buffer.String())
ambiguousStart := len(p.buffer.String()) - whitespaceLen
unambiguous := p.buffer.String()[:ambiguousStart]
ambiguous := p.buffer.String()[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, eventContent{content: unambiguous})
}
return events, false
}
case parserState_ToolStartedEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(parserState_CollectingToolContent)
case parserState_CollectingToolContent:
acc := p.buffer.String()
if strings.Contains(acc, toolCloseTag) {
toolContent, _ := p.splitAtTag(toolCloseTag, true)
if len(toolContent) == 0 {
slog.Warn("glm4 tool call closing tag found but no content before it")
}
events = append(events, eventRawToolCall{raw: toolContent})
p.state = parserState_CollectingContent
return events, true
} else {
// Keep accumulating - tool calls are not streamed
// We just wait for the closing tag
return events, false
}
default:
panic("unreachable")
}
}
// overlap returns the length of the overlap between the end of s and the start of tag.
func overlap(s, tag string) int {
for i := 1; i <= len(tag) && i <= len(s); i++ {
if strings.HasSuffix(s, tag[:i]) {
return i
}
}
return 0
}
// trailingWhitespaceLen returns the length of trailing whitespace in s.
func trailingWhitespaceLen(s string) int {
trimmed := strings.TrimRightFunc(s, unicode.IsSpace)
return len(s) - len(trimmed)
}
// ToolCallXML represents the structure of a GLM-4 tool call for XML parsing
type ToolCallXML struct {
XMLName xml.Name `xml:"tool_call"`
Content string `xml:",chardata"` // Function name (text nodes between tags)
Keys []string `xml:"arg_key"` // All arg_key elements in document order
Values []string `xml:"arg_value"` // All arg_value elements in document order
}
// escapeContent escapes XML entities in text content while preserving arg_key/arg_value tags
func escapeContent(s string) string {
var result strings.Builder
inTag := false
for i := range len(s) {
ch := s[i]
if ch == '<' {
// Check if this is a known tag
if strings.HasPrefix(s[i:], "<arg_key>") ||
strings.HasPrefix(s[i:], "</arg_key>") ||
strings.HasPrefix(s[i:], "<arg_value>") ||
strings.HasPrefix(s[i:], "</arg_value>") {
inTag = true
}
}
if inTag {
result.WriteByte(ch)
if ch == '>' {
inTag = false
}
} else {
// Escape special characters in text content
switch ch {
case '&':
result.WriteString("&amp;")
case '<':
result.WriteString("&lt;")
case '>':
result.WriteString("&gt;")
default:
result.WriteByte(ch)
}
}
}
return result.String()
}
func parseToolCall(raw eventRawToolCall, tools []api.Tool) (api.ToolCall, error) {
// Escape any unescaped entities in text content
escaped := escapeContent(raw.raw)
// Wrap the content in a root element to make it valid XML
xmlString := "<tool_call>" + escaped + "</tool_call>"
// Parse XML into struct
var parsed ToolCallXML
if err := xml.Unmarshal([]byte(xmlString), &parsed); err != nil {
return api.ToolCall{}, fmt.Errorf("failed to parse XML: %w", err)
}
// Extract and trim function name
functionName := strings.TrimSpace(parsed.Content)
if functionName == "" {
return api.ToolCall{}, fmt.Errorf("empty function name")
}
// Verify keys and values are paired correctly
if len(parsed.Keys) != len(parsed.Values) {
return api.ToolCall{}, fmt.Errorf("mismatched arg_key and arg_value counts: %d keys, %d values", len(parsed.Keys), len(parsed.Values))
}
// Find the matching tool to get parameter types
var matchedTool *api.Tool
for i := range tools {
if tools[i].Function.Name == functionName {
matchedTool = &tools[i]
break
}
}
// Build arguments map by pairing keys and values
toolCall := api.ToolCall{
Function: api.ToolCallFunction{
Name: functionName,
Arguments: api.NewToolCallFunctionArguments(),
},
}
for i := range parsed.Keys {
key := strings.TrimSpace(parsed.Keys[i])
value := parsed.Values[i] // Don't trim here - parseValue handles it
// Look up parameter type
var paramType api.PropertyType
if matchedTool != nil && matchedTool.Function.Parameters.Properties != nil {
if prop, ok := matchedTool.Function.Parameters.Properties.Get(key); ok {
// Handle anyOf by collecting all types from the union
if len(prop.AnyOf) > 0 {
for _, anyOfProp := range prop.AnyOf {
paramType = append(paramType, anyOfProp.Type...)
}
} else {
paramType = prop.Type
}
}
}
// Parse value with type coercion
toolCall.Function.Arguments.Set(key, parseValue(value, paramType))
}
return toolCall, nil
}
// parseValue parses a string value and coerces it to the appropriate type based on paramType.
func parseValue(value string, paramType api.PropertyType) any {
value = strings.TrimSpace(value)
// If no type specified, return as string
if len(paramType) == 0 {
return value
}
// Try to parse based on specified types
for _, t := range paramType {
switch t {
case "boolean":
if value == "true" {
return true
}
if value == "false" {
return false
}
case "integer":
var i int64
if _, err := fmt.Sscanf(value, "%d", &i); err == nil {
return i
}
case "number":
var f float64
if _, err := fmt.Sscanf(value, "%f", &f); err == nil {
return f
}
case "array", "object":
// Try to parse as JSON
var result any
if err := json.Unmarshal([]byte(value), &result); err == nil {
return result
}
}
}
// Default to string
return value
}

View File

@@ -1,192 +0,0 @@
//go:build mlx
package glm4_moe_lite
import (
"testing"
"github.com/ollama/ollama/api"
)
func TestParserThinking(t *testing.T) {
tests := []struct {
name string
input string
thinkEnabled bool
wantContent string
wantThinking string
wantToolCalls int
}{
{
name: "thinking enabled - simple thinking then content",
input: "Let me think about this...</think>Here is my answer.",
thinkEnabled: true,
wantThinking: "Let me think about this...",
wantContent: "Here is my answer.",
},
{
name: "thinking enabled - only thinking",
input: "I need to consider multiple factors...",
thinkEnabled: true,
wantThinking: "I need to consider multiple factors...",
wantContent: "",
},
{
name: "thinking disabled - direct content",
input: "Here is my direct answer.",
thinkEnabled: false,
wantThinking: "",
wantContent: "Here is my direct answer.",
},
{
name: "thinking with tool call",
input: "Let me search for that...</think>I'll use a tool.<tool_call>search<arg_key>query</arg_key><arg_value>test</arg_value></tool_call>",
thinkEnabled: true,
wantThinking: "Let me search for that...",
wantContent: "I'll use a tool.",
wantToolCalls: 1,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
p := &Parser{}
var thinkValue *api.ThinkValue
if tt.thinkEnabled {
thinkValue = &api.ThinkValue{Value: true}
} else {
thinkValue = &api.ThinkValue{Value: false}
}
// Define tools for tool call tests
props := api.NewToolPropertiesMap()
props.Set("query", api.ToolProperty{Type: api.PropertyType{"string"}})
tools := []api.Tool{
{
Function: api.ToolFunction{
Name: "search",
Parameters: api.ToolFunctionParameters{
Properties: props,
},
},
},
}
p.Init(tools, nil, thinkValue)
content, thinking, calls, err := p.Add(tt.input, true)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if thinking != tt.wantThinking {
t.Errorf("thinking = %q, want %q", thinking, tt.wantThinking)
}
if content != tt.wantContent {
t.Errorf("content = %q, want %q", content, tt.wantContent)
}
if len(calls) != tt.wantToolCalls {
t.Errorf("len(calls) = %d, want %d", len(calls), tt.wantToolCalls)
}
})
}
}
func TestParserToolCall(t *testing.T) {
p := &Parser{}
props := api.NewToolPropertiesMap()
props.Set("location", api.ToolProperty{Type: api.PropertyType{"string"}})
props.Set("unit", api.ToolProperty{Type: api.PropertyType{"string"}})
tools := []api.Tool{
{
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Properties: props,
},
},
},
}
// Initialize with thinking disabled
tv := &api.ThinkValue{Value: false}
p.Init(tools, nil, tv)
input := "<tool_call>get_weather<arg_key>location</arg_key><arg_value>San Francisco</arg_value><arg_key>unit</arg_key><arg_value>celsius</arg_value></tool_call>"
_, _, calls, err := p.Add(input, true)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(calls) != 1 {
t.Fatalf("expected 1 tool call, got %d", len(calls))
}
call := calls[0]
if call.Function.Name != "get_weather" {
t.Errorf("function name = %q, want %q", call.Function.Name, "get_weather")
}
location, ok := call.Function.Arguments.Get("location")
if !ok || location != "San Francisco" {
t.Errorf("location = %v, want %q", location, "San Francisco")
}
unit, ok := call.Function.Arguments.Get("unit")
if !ok || unit != "celsius" {
t.Errorf("unit = %v, want %q", unit, "celsius")
}
}
func TestOverlap(t *testing.T) {
tests := []struct {
s string
tag string
want int
}{
{"hello<", "</think>", 1},
{"hello</", "</think>", 2},
{"hello</t", "</think>", 3},
{"hello</th", "</think>", 4},
{"hello</thi", "</think>", 5},
{"hello</thin", "</think>", 6},
{"hello</think", "</think>", 7},
{"hello</think>", "</think>", 8}, // Complete tag at end returns full length
{"hello", "</think>", 0},
{"", "</think>", 0},
}
for _, tt := range tests {
t.Run(tt.s+"_"+tt.tag, func(t *testing.T) {
got := overlap(tt.s, tt.tag)
if got != tt.want {
t.Errorf("overlap(%q, %q) = %d, want %d", tt.s, tt.tag, got, tt.want)
}
})
}
}
func TestTrailingWhitespaceLen(t *testing.T) {
tests := []struct {
s string
want int
}{
{"hello ", 3},
{"hello\n\t ", 3},
{"hello", 0},
{"", 0},
{" ", 3},
}
for _, tt := range tests {
t.Run(tt.s, func(t *testing.T) {
got := trailingWhitespaceLen(tt.s)
if got != tt.want {
t.Errorf("trailingWhitespaceLen(%q) = %d, want %d", tt.s, got, tt.want)
}
})
}
}

View File

@@ -1,175 +0,0 @@
//go:build mlx
package glm4_moe_lite
import (
"encoding/json"
"fmt"
"strings"
"github.com/ollama/ollama/api"
)
// Renderer renders messages for GLM4-MoE-Lite models.
//
// GLM-4 Thinking Modes (ref: https://docs.z.ai/guides/capabilities/thinking-mode):
//
// 1. INTERLEAVED THINKING
// The model thinks between tool calls and after receiving tool results.
// This enables complex step-by-step reasoning: interpreting each tool output
// before deciding what to do next. Thinking blocks are preserved and returned
// with tool results to maintain reasoning continuity.
//
// 2. PRESERVED THINKING
// The model retains reasoning content from previous assistant turns in context.
// This preserves reasoning continuity across multi-turn conversations. The
// upstream API has a "clear_thinking" parameter to control this:
// - clear_thinking=true: clears reasoning from previous turns (outputs </think>)
// - clear_thinking=false: preserves <think>...</think> blocks from previous turns
//
// 3. TURN-LEVEL THINKING
// Controls whether the model should reason on each turn. The upstream API
// uses "enable_thinking" parameter:
// - enable_thinking=true: outputs <think> to start reasoning
// - enable_thinking=false: outputs </think> to skip reasoning
//
// OLLAMA DEFAULTS:
// - Thinking is ENABLED by default (thinkValue=nil or true outputs <think>)
// - Thinking is PRESERVED by default (reasoning content from previous turns is always
// included in <think>...</think> blocks, equivalent to clear_thinking=false)
// - Users can disable thinking per-turn via thinkValue=false
type Renderer struct{}
// Render renders messages into the GLM4 chat format.
func (r *Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
sb.WriteString("[gMASK]<sop>")
if len(tools) > 0 {
sb.WriteString("<|system|>\n")
sb.WriteString("# Tools\n\n")
sb.WriteString("You may call one or more functions to assist with the user query.\n\n")
sb.WriteString("You are provided with function signatures within <tools></tools> XML tags:\n")
sb.WriteString("<tools>\n")
for _, tool := range tools {
d, _ := json.Marshal(tool)
sb.WriteString(formatToolJSON(d))
sb.WriteString("\n")
}
sb.WriteString("</tools>\n\n")
sb.WriteString("For each function call, output the function name and arguments within the following XML format:\n")
sb.WriteString("<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call>")
}
think := true
if thinkValue != nil && !thinkValue.Bool() {
think = false
}
for i, message := range messages {
switch message.Role {
case "user":
sb.WriteString("<|user|>")
sb.WriteString(message.Content)
case "assistant":
sb.WriteString("<|assistant|>")
if message.Thinking != "" {
sb.WriteString("<think>" + message.Thinking + "</think>")
} else {
sb.WriteString("</think>")
}
if message.Content != "" {
sb.WriteString(message.Content)
}
if len(message.ToolCalls) > 0 {
for _, toolCall := range message.ToolCalls {
sb.WriteString("<tool_call>" + toolCall.Function.Name)
sb.WriteString(renderToolArguments(toolCall.Function.Arguments))
sb.WriteString("</tool_call>")
}
}
case "tool":
if i == 0 || messages[i-1].Role != "tool" {
sb.WriteString("<|observation|>")
}
sb.WriteString("<tool_response>")
sb.WriteString(message.Content)
sb.WriteString("</tool_response>")
case "system":
sb.WriteString("<|system|>")
sb.WriteString(message.Content)
}
}
sb.WriteString("<|assistant|>")
if think {
sb.WriteString("<think>")
} else {
sb.WriteString("</think>")
}
return sb.String(), nil
}
// renderToolArguments converts tool call arguments to GLM4 XML format.
func renderToolArguments(args api.ToolCallFunctionArguments) string {
var sb strings.Builder
for key, value := range args.All() {
sb.WriteString("<arg_key>" + key + "</arg_key>")
var valueStr string
if str, ok := value.(string); ok {
valueStr = str
} else {
jsonBytes, err := json.Marshal(value)
if err != nil {
valueStr = fmt.Sprintf("%v", value)
} else {
valueStr = string(jsonBytes)
}
}
sb.WriteString("<arg_value>" + valueStr + "</arg_value>")
}
return sb.String()
}
// formatToolJSON formats JSON for GLM4 tool definitions by adding spaces after : and ,
func formatToolJSON(raw []byte) string {
var sb strings.Builder
sb.Grow(len(raw) + len(raw)/10)
inString := false
escaped := false
for i := range raw {
ch := raw[i]
sb.WriteByte(ch)
if inString {
if escaped {
escaped = false
continue
}
if ch == '\\' {
escaped = true
continue
}
if ch == '"' {
inString = false
}
continue
}
if ch == '"' {
inString = true
continue
}
if ch == ':' || ch == ',' {
sb.WriteByte(' ')
}
}
return sb.String()
}

View File

@@ -1,205 +0,0 @@
//go:build mlx
package glm4_moe_lite
import (
"strings"
"testing"
"github.com/ollama/ollama/api"
)
func TestRendererSimple(t *testing.T) {
r := &Renderer{}
messages := []api.Message{
{Role: "user", Content: "Hello"},
}
// Thinking enabled (default)
result, err := r.Render(messages, nil, nil)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
expected := "[gMASK]<sop><|user|>Hello<|assistant|><think>"
if result != expected {
t.Errorf("result = %q, want %q", result, expected)
}
}
func TestRendererThinkingDisabled(t *testing.T) {
r := &Renderer{}
messages := []api.Message{
{Role: "user", Content: "Hello"},
}
tv := &api.ThinkValue{Value: false}
result, err := r.Render(messages, nil, tv)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
expected := "[gMASK]<sop><|user|>Hello<|assistant|></think>"
if result != expected {
t.Errorf("result = %q, want %q", result, expected)
}
}
func TestRendererMultiTurn(t *testing.T) {
r := &Renderer{}
messages := []api.Message{
{Role: "user", Content: "What is 2+2?"},
{Role: "assistant", Content: "4", Thinking: "Let me calculate: 2+2=4"},
{Role: "user", Content: "And 3+3?"},
}
result, err := r.Render(messages, nil, nil)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
// Check key parts
if !strings.Contains(result, "[gMASK]<sop>") {
t.Error("missing [gMASK]<sop> prefix")
}
if !strings.Contains(result, "<|user|>What is 2+2?") {
t.Error("missing first user message")
}
if !strings.Contains(result, "<|assistant|><think>Let me calculate: 2+2=4</think>4") {
t.Error("missing assistant message with thinking")
}
if !strings.Contains(result, "<|user|>And 3+3?") {
t.Error("missing second user message")
}
if !strings.HasSuffix(result, "<|assistant|><think>") {
t.Errorf("should end with <|assistant|><think>, got suffix: %q", result[len(result)-30:])
}
}
func TestRendererWithSystem(t *testing.T) {
r := &Renderer{}
messages := []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello"},
}
result, err := r.Render(messages, nil, nil)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !strings.Contains(result, "<|system|>You are a helpful assistant.") {
t.Error("missing system message")
}
}
func TestRendererWithTools(t *testing.T) {
r := &Renderer{}
messages := []api.Message{
{Role: "user", Content: "What's the weather?"},
}
props := api.NewToolPropertiesMap()
props.Set("location", api.ToolProperty{Type: api.PropertyType{"string"}, Description: "The city"})
tools := []api.Tool{
{
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the weather for a location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: props,
Required: []string{"location"},
},
},
},
}
result, err := r.Render(messages, tools, nil)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
// Check for tool system prompt
if !strings.Contains(result, "<|system|>") {
t.Error("missing system tag for tools")
}
if !strings.Contains(result, "# Tools") {
t.Error("missing tools header")
}
if !strings.Contains(result, "<tools>") {
t.Error("missing tools tag")
}
if !strings.Contains(result, "get_weather") {
t.Error("missing tool name")
}
if !strings.Contains(result, "</tools>") {
t.Error("missing closing tools tag")
}
}
func TestRendererWithToolCalls(t *testing.T) {
r := &Renderer{}
args := api.NewToolCallFunctionArguments()
args.Set("location", "San Francisco")
messages := []api.Message{
{Role: "user", Content: "What's the weather in SF?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args,
},
},
},
},
{Role: "tool", Content: "Sunny, 72F"},
}
result, err := r.Render(messages, nil, nil)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !strings.Contains(result, "<tool_call>get_weather") {
t.Error("missing tool call")
}
if !strings.Contains(result, "<arg_key>location</arg_key>") {
t.Error("missing arg_key")
}
if !strings.Contains(result, "<arg_value>San Francisco</arg_value>") {
t.Error("missing arg_value")
}
if !strings.Contains(result, "</tool_call>") {
t.Error("missing tool call closing tag")
}
if !strings.Contains(result, "<|observation|>") {
t.Error("missing observation tag")
}
if !strings.Contains(result, "<tool_response>Sunny, 72F</tool_response>") {
t.Error("missing tool response")
}
}
func TestFormatToolJSON(t *testing.T) {
input := []byte(`{"name":"test","value":123}`)
result := formatToolJSON(input)
// Should add spaces after : and ,
if !strings.Contains(result, ": ") {
t.Error("should add space after colon")
}
if !strings.Contains(result, ", ") {
t.Error("should add space after comma")
}
}

View File

@@ -32,16 +32,10 @@ func NewLinear(weight *mlx.Array, bias *mlx.Array) *Linear {
// NewQuantizedLinear creates a quantized linear layer directly from bf16 weights.
// Quantizes the weight immediately and evaluates to break lazy dependencies.
// Note: For modes like "nvfp4", qbiases will be nil.
func NewQuantizedLinear(weight *mlx.Array, bias *mlx.Array, groupSize, bits int, mode string) *QuantizedLinear {
qw, scales, qbiases := mlx.Quantize(weight, groupSize, bits, mode)
// Eval immediately so bf16 weight can be freed
// Handle modes that don't return qbiases (e.g., nvfp4)
if qbiases != nil {
mlx.Eval(qw, scales, qbiases)
} else {
mlx.Eval(qw, scales)
}
mlx.Eval(qw, scales, qbiases)
return &QuantizedLinear{
Weight: qw,
Scales: scales,
@@ -83,13 +77,10 @@ func (l *Linear) ToQuantized(groupSize, bits int, mode string) *QuantizedLinear
// QuantizedLinear applies an affine transformation using quantized weights.
// Equivalent to mlx.nn.QuantizedLinear.
// Supports multiple quantization modes:
// - "affine": scale + zero-point bias (QBiases required)
// - "nvfp4": NVIDIA FP4 with E4M3 scales (QBiases nil)
type QuantizedLinear struct {
Weight *mlx.Array // Quantized weight data
Scales *mlx.Array // Scale factors for dequantization
QBiases *mlx.Array // Quantization biases (NOT layer bias), nil for nvfp4
QBiases *mlx.Array // Quantization biases (NOT layer bias)
Bias *mlx.Array // Layer bias [output_dims] or nil
GroupSize int
Bits int

284
x/imagegen/runner/runner.go Normal file
View File

@@ -0,0 +1,284 @@
//go:build mlx
// Package runner provides a subprocess server for image generation.
// It listens on a port and handles HTTP requests for image generation.
package runner
import (
"context"
"encoding/json"
"flag"
"fmt"
"image"
"log/slog"
"net/http"
"os"
"os/signal"
"sync"
"syscall"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/flux2"
"github.com/ollama/ollama/x/imagegen/models/zimage"
)
// Request is the image generation request format
type Request struct {
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Images [][]byte `json:"images,omitempty"` // Input images for image editing/conditioning
}
// Response is streamed back for each progress update
type Response struct {
Content string `json:"content,omitempty"`
Image string `json:"image,omitempty"` // Base64-encoded PNG
Done bool `json:"done"`
Step int `json:"step,omitempty"`
Total int `json:"total,omitempty"`
}
// ImageModel is the interface for image generation models
type ImageModel interface {
GenerateImage(ctx context.Context, prompt string, width, height int32, steps int, seed int64, progress func(step, total int)) (*mlx.Array, error)
}
// ImageEditModel extends ImageModel with image editing/conditioning capability.
// Models that support input images for editing should implement this interface.
type ImageEditModel interface {
ImageModel
GenerateImageWithInputs(ctx context.Context, prompt string, width, height int32, steps int, seed int64, inputImages []image.Image, progress func(step, total int)) (*mlx.Array, error)
}
// Server holds the model and handles requests
type Server struct {
mu sync.Mutex
model ImageModel
modelName string
}
// Execute is the entry point for the image runner subprocess
func Execute(args []string) error {
fs := flag.NewFlagSet("image-runner", flag.ExitOnError)
modelName := fs.String("model", "", "path to image model")
port := fs.Int("port", 0, "port to listen on")
if err := fs.Parse(args); err != nil {
return err
}
if *modelName == "" {
return fmt.Errorf("--model is required")
}
if *port == 0 {
return fmt.Errorf("--port is required")
}
err := mlx.InitMLX()
if err != nil {
slog.Error("unable to initialize MLX", "error", err)
return err
}
slog.Info("MLX library initialized")
slog.Info("starting image runner", "model", *modelName, "port", *port)
// Detect model type and load appropriate model
modelType := imagegen.DetectModelType(*modelName)
slog.Info("detected model type", "type", modelType)
var model ImageModel
switch modelType {
case "Flux2KleinPipeline":
m := &flux2.Model{}
if err := m.Load(*modelName); err != nil {
return fmt.Errorf("failed to load model: %w", err)
}
model = m
default:
// Default to Z-Image for ZImagePipeline, FluxPipeline, etc.
m := &zimage.Model{}
if err := m.Load(*modelName); err != nil {
return fmt.Errorf("failed to load model: %w", err)
}
model = m
}
server := &Server{
model: model,
modelName: *modelName,
}
// Set up HTTP handlers
mux := http.NewServeMux()
mux.HandleFunc("/health", server.healthHandler)
mux.HandleFunc("/completion", server.completionHandler)
httpServer := &http.Server{
Addr: fmt.Sprintf("127.0.0.1:%d", *port),
Handler: mux,
}
// Handle shutdown
done := make(chan struct{})
go func() {
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM)
<-sigCh
slog.Info("shutting down image runner")
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
httpServer.Shutdown(ctx)
close(done)
}()
slog.Info("image runner listening", "addr", httpServer.Addr)
if err := httpServer.ListenAndServe(); err != http.ErrServerClosed {
return err
}
<-done
return nil
}
func (s *Server) healthHandler(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusOK)
json.NewEncoder(w).Encode(map[string]string{"status": "ok"})
}
func (s *Server) completionHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
http.Error(w, "method not allowed", http.StatusMethodNotAllowed)
return
}
var req Request
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
// Validate and decode input images
const maxInputImages = 2
if len(req.Images) > maxInputImages {
http.Error(w, fmt.Sprintf("too many input images, maximum is %d", maxInputImages), http.StatusBadRequest)
return
}
var inputImages []image.Image
if len(req.Images) > 0 {
// TODO: add memory check for input images
inputImages = make([]image.Image, len(req.Images))
for i, imgBytes := range req.Images {
img, err := imagegen.DecodeImage(imgBytes)
if err != nil {
http.Error(w, fmt.Sprintf("invalid image %d: %v", i, err), http.StatusBadRequest)
return
}
inputImages[i] = img
}
slog.Info("decoded input images", "count", len(inputImages))
// Default width/height to first input image dimensions, scaled to max 1024
bounds := inputImages[0].Bounds()
w, h := bounds.Dx(), bounds.Dy()
if w > 1024 || h > 1024 {
if w > h {
h = h * 1024 / w
w = 1024
} else {
w = w * 1024 / h
h = 1024
}
}
req.Width = int32(w)
req.Height = int32(h)
}
// Serialize generation requests - MLX model may not handle concurrent generation
s.mu.Lock()
defer s.mu.Unlock()
// Model applies its own defaults for width/height/steps
// Only seed needs to be set here if not provided
if req.Seed <= 0 {
req.Seed = time.Now().UnixNano()
}
// Set up streaming response
w.Header().Set("Content-Type", "application/x-ndjson")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "streaming not supported", http.StatusInternalServerError)
return
}
// Generate image using the common interface
ctx := r.Context()
enc := json.NewEncoder(w)
// Progress callback streams step updates
progress := func(step, total int) {
resp := Response{Step: step, Total: total}
enc.Encode(resp)
w.Write([]byte("\n"))
flusher.Flush()
}
// Use ImageEditModel if available and images provided, otherwise use basic ImageModel
var img *mlx.Array
var err error
if len(inputImages) > 0 {
editModel, ok := s.model.(ImageEditModel)
if !ok {
http.Error(w, "model does not support image editing", http.StatusBadRequest)
return
}
img, err = editModel.GenerateImageWithInputs(ctx, req.Prompt, req.Width, req.Height, req.Steps, req.Seed, inputImages, progress)
} else {
img, err = s.model.GenerateImage(ctx, req.Prompt, req.Width, req.Height, req.Steps, req.Seed, progress)
}
if err != nil {
// Don't send error for cancellation
if ctx.Err() != nil {
return
}
resp := Response{Content: fmt.Sprintf("error: %v", err), Done: true}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
return
}
// Encode image as base64 PNG
imageData, err := imagegen.EncodeImageBase64(img)
if err != nil {
resp := Response{Content: fmt.Sprintf("error encoding: %v", err), Done: true}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
return
}
// Free the generated image array and clean up MLX state
img.Free()
mlx.ClearCache()
mlx.MetalResetPeakMemory()
// Send final response with image data
resp := Response{
Image: imageData,
Done: true,
}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
flusher.Flush()
}

View File

@@ -1,10 +1,10 @@
//go:build !mlx
package mlxrunner
package runner
import "errors"
// Execute returns an error when not built with MLX support.
func Execute(args []string) error {
return errors.New("MLX runner not available: build with mlx tag")
return errors.New("image generation not available: build with mlx tag")
}

View File

@@ -17,26 +17,17 @@ type WeightSource interface {
GetTensor(name string) (*mlx.Array, error)
ListTensors() []string
HasTensor(name string) bool
Quantization() string // Returns "NVFP4", "FP4", "FP8", or ""
Quantization() string // Returns "FP4", "FP8", or ""
}
// QuantizationParams returns groupSize, bits, mode for a quantization type.
// MLX quantization modes:
// - "affine": scale + zero-point bias, group_size=32/64/128
// - "nvfp4": NVIDIA FP4 with E4M3 scales, group_size=16 (no bias)
func QuantizationParams(quantization string) (groupSize, bits int, mode string) {
// quantizationParams returns groupSize, bits, mode for a quantization type.
// Returns defaults (32, 8, "affine") for unknown types (backward compatibility).
func quantizationParams(quantization string) (groupSize, bits int, mode string) {
switch strings.ToUpper(quantization) {
case "NVFP4":
// NVIDIA FP4: group_size=16, bits=4, E4M3 scales (no qbias)
return 16, 4, "nvfp4"
case "FP4", "Q4", "INT4":
// 4-bit quantization with affine mode (scale + qbias)
case "FP4":
return 32, 4, "affine"
case "FP8", "Q8", "INT8", "":
// 8-bit quantization with affine mode (default for quantized models)
return 32, 8, "affine"
default:
return 32, 8, "affine" // Default to affine
return 32, 8, "affine" // FP8 or unknown
}
}
@@ -131,8 +122,7 @@ func loadStruct(v reflect.Value, weights WeightSource, prefix string, errs *[]st
}
// Handle nn.LinearLayer interface fields specially
linearLayerType := reflect.TypeOf((*nn.LinearLayer)(nil)).Elem()
if field.Type == linearLayerType {
if field.Type == reflect.TypeOf((*nn.LinearLayer)(nil)).Elem() {
if !hasTag {
continue // no tag = skip
}
@@ -227,12 +217,11 @@ func joinPath(prefix, suffix string) string {
}
// LoadLinearLayer loads a linear layer from weights, automatically detecting if it's quantized.
// If {path}.weight_scale exists, creates a QuantizedLinear layer (or dequantizes if no kernel support).
// If {path}.weight_scale exists, dequantizes the weights.
func LoadLinearLayer(weights WeightSource, path string) (nn.LinearLayer, error) {
// Check if this is a quantized layer by looking for scale tensor
scalePath := path + ".weight_scale"
hasScale := weights.HasTensor(scalePath)
if hasScale {
if weights.HasTensor(scalePath) {
weight, err := weights.GetTensor(path + ".weight")
if err != nil {
return nil, fmt.Errorf("failed to load quantized weight %s: %w", path, err)
@@ -256,11 +245,9 @@ func LoadLinearLayer(weights WeightSource, path string) (nn.LinearLayer, error)
qbiases, _ = weights.GetTensor(qbiasPath)
}
groupSize, bits, mode := QuantizationParams(weights.Quantization())
groupSize, bits, mode := quantizationParams(weights.Quantization())
// NVFP4 doesn't have native quantized matmul kernels in MLX yet,
// so we always dequantize at load time. Affine modes (FP4, FP8) have kernel support.
if mlx.MetalIsAvailable() && mode != "nvfp4" {
if mlx.MetalIsAvailable() {
return &nn.QuantizedLinear{
Weight: weight,
Scales: scales,

View File

@@ -1,4 +1,4 @@
package mlxrunner
package imagegen
import (
"bufio"
@@ -23,19 +23,19 @@ import (
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/x/imagegen"
)
// Server wraps an MLX runner subprocess to implement llm.LlamaServer.
// Server wraps an image generation subprocess to implement llm.LlamaServer.
//
// This implementation is compatible with Ollama's scheduler and can be loaded/unloaded
// like any other model. It supports both LLM (safetensors) and image generation models.
// like any other model. The plan is to eventually bring this into the llm/ package
// and evolve llm/ to support MLX and multimodal models. For now, keeping the code
// separate allows for independent iteration on image generation support.
type Server struct {
mu sync.Mutex
cmd *exec.Cmd
port int
modelName string
mode ModelMode
vramSize uint64
done chan error
client *http.Client
@@ -43,10 +43,10 @@ type Server struct {
lastErrLock sync.Mutex
}
// NewServer spawns a new MLX runner subprocess and waits until it's ready.
func NewServer(modelName string, mode ModelMode) (*Server, error) {
// NewServer spawns a new image generation subprocess and waits until it's ready.
func NewServer(modelName string) (*Server, error) {
// Validate platform support before attempting to start
if err := imagegen.CheckPlatformSupport(); err != nil {
if err := CheckPlatformSupport(); err != nil {
return nil, err
}
@@ -71,8 +71,8 @@ func NewServer(modelName string, mode ModelMode) (*Server, error) {
exe = eval
}
// Spawn subprocess: ollama runner --mlx-engine --model <path> --port <port>
cmd := exec.Command(exe, "runner", "--mlx-engine", "--model", modelName, "--port", strconv.Itoa(port))
// Spawn subprocess: ollama runner --image-engine --model <path> --port <port>
cmd := exec.Command(exe, "runner", "--image-engine", "--model", modelName, "--port", strconv.Itoa(port))
cmd.Env = os.Environ()
// On Linux, set LD_LIBRARY_PATH to include MLX library directories
@@ -105,21 +105,17 @@ func NewServer(modelName string, mode ModelMode) (*Server, error) {
slog.Debug("mlx subprocess library path", "LD_LIBRARY_PATH", pathEnvVal)
}
// Estimate VRAM based on tensor size from manifest
var vramSize uint64
if manifest, err := imagegen.LoadManifest(modelName); err == nil {
vramSize = uint64(manifest.TotalTensorSize())
} else {
// Fallback: default to 8GB if manifest can't be loaded
vramSize = 8 * 1024 * 1024 * 1024
// Get total weight size from manifest
var weightSize uint64
if manifest, err := LoadManifest(modelName); err == nil {
weightSize = uint64(manifest.TotalTensorSize())
}
s := &Server{
cmd: cmd,
port: port,
modelName: modelName,
mode: mode,
vramSize: vramSize,
vramSize: weightSize,
done: make(chan error, 1),
client: &http.Client{Timeout: 10 * time.Minute},
}
@@ -130,23 +126,23 @@ func NewServer(modelName string, mode ModelMode) (*Server, error) {
go func() {
scanner := bufio.NewScanner(stdout)
for scanner.Scan() {
slog.Info("mlx-runner", "msg", scanner.Text())
slog.Info("image-runner", "msg", scanner.Text())
}
}()
go func() {
scanner := bufio.NewScanner(stderr)
for scanner.Scan() {
line := scanner.Text()
slog.Warn("mlx-runner", "msg", line)
slog.Warn("image-runner", "msg", line)
s.lastErrLock.Lock()
s.lastErr = line
s.lastErrLock.Unlock()
}
}()
slog.Info("starting mlx runner subprocess", "exe", exe, "model", modelName, "port", port, "mode", mode)
slog.Info("starting image runner subprocess", "exe", exe, "model", modelName, "port", port)
if err := cmd.Start(); err != nil {
return nil, fmt.Errorf("failed to start mlx runner: %w", err)
return nil, fmt.Errorf("failed to start image runner: %w", err)
}
// Reap subprocess when it exits
@@ -169,7 +165,6 @@ func (s *Server) ModelPath() string {
return s.modelName
}
// Load satisfies the LlamaServer interface. MLX models don't need GPU layer assignment.
func (s *Server) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
return nil, nil
}
@@ -205,18 +200,18 @@ func (s *Server) waitUntilRunning() error {
// Include recent stderr lines for better error context
errMsg := s.getLastErr()
if errMsg != "" {
return fmt.Errorf("mlx runner failed: %s (exit: %v)", errMsg, err)
return fmt.Errorf("image runner failed: %s (exit: %v)", errMsg, err)
}
return fmt.Errorf("mlx runner exited unexpectedly: %w", err)
return fmt.Errorf("image runner exited unexpectedly: %w", err)
case <-timeout:
errMsg := s.getLastErr()
if errMsg != "" {
return fmt.Errorf("timeout waiting for mlx runner: %s", errMsg)
return fmt.Errorf("timeout waiting for image runner: %s", errMsg)
}
return errors.New("timeout waiting for mlx runner to start")
return errors.New("timeout waiting for image runner to start")
case <-ticker.C:
if err := s.Ping(ctx); err == nil {
slog.Info("mlx runner is ready", "port", s.port)
slog.Info("image runner is ready", "port", s.port)
return nil
}
}
@@ -230,12 +225,8 @@ func (s *Server) getLastErr() string {
return s.lastErr
}
// WaitUntilRunning satisfies the LlamaServer interface.
func (s *Server) WaitUntilRunning(ctx context.Context) error {
return nil
}
func (s *Server) WaitUntilRunning(ctx context.Context) error { return nil }
// Completion handles both text and image generation requests.
func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
seed := req.Seed
if seed == 0 {
@@ -249,26 +240,22 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
}
// Build request for subprocess
creq := Request{
creq := struct {
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int32 `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Images [][]byte `json:"images,omitempty"`
}{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: int(req.Steps),
Steps: req.Steps,
Seed: seed,
Images: images,
}
// Pass LLM options if present
if req.Options != nil {
creq.Options = &RequestOptions{
NumPredict: req.Options.NumPredict,
Temperature: float64(req.Options.Temperature),
TopP: float64(req.Options.TopP),
TopK: req.Options.TopK,
Stop: req.Options.Stop,
}
}
body, err := json.Marshal(creq)
if err != nil {
return err
@@ -295,40 +282,25 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
scanner := bufio.NewScanner(resp.Body)
scanner.Buffer(make([]byte, 1024*1024), 16*1024*1024) // 16MB max
for scanner.Scan() {
// Parse subprocess response
// Parse subprocess response (has singular "image" field)
var raw struct {
Image string `json:"image,omitempty"`
Content string `json:"content,omitempty"`
Done bool `json:"done"`
Step int `json:"step,omitempty"`
Total int `json:"total,omitempty"`
StopReason string `json:"stop_reason,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
PromptEvalDuration int `json:"prompt_eval_duration,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
EvalDuration int `json:"eval_duration,omitempty"`
Image string `json:"image,omitempty"`
Content string `json:"content,omitempty"`
Done bool `json:"done"`
Step int `json:"step,omitempty"`
Total int `json:"total,omitempty"`
}
if err := json.Unmarshal(scanner.Bytes(), &raw); err != nil {
slog.Debug("mlx response parse error", "error", err, "line", string(scanner.Bytes()))
continue
}
// Log stop reason when generation completes
if raw.Done && raw.StopReason != "" {
slog.Info("mlx generation completed", "stop_reason", raw.StopReason)
}
// Convert to llm.CompletionResponse
cresp := llm.CompletionResponse{
Content: raw.Content,
Done: raw.Done,
Step: raw.Step,
TotalSteps: raw.Total,
Image: raw.Image,
PromptEvalCount: raw.PromptEvalCount,
PromptEvalDuration: time.Duration(raw.PromptEvalDuration),
EvalCount: raw.EvalCount,
EvalDuration: time.Duration(raw.EvalDuration),
Content: raw.Content,
Done: raw.Done,
Step: raw.Step,
TotalSteps: raw.Total,
Image: raw.Image,
}
fn(cresp)
@@ -337,20 +309,7 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
}
}
// Scanner exited without receiving Done - connection was likely closed
scanErr := scanner.Err()
if scanErr != nil {
slog.Error("mlx scanner error", "error", scanErr)
} else {
slog.Warn("mlx scanner EOF without Done response - subprocess may have crashed")
}
// Check if subprocess is still alive
if s.HasExited() {
slog.Error("mlx subprocess has exited unexpectedly")
}
return scanErr
return scanner.Err()
}
// Close terminates the subprocess.
@@ -359,7 +318,7 @@ func (s *Server) Close() error {
defer s.mu.Unlock()
if s.cmd != nil && s.cmd.Process != nil {
slog.Info("stopping mlx runner subprocess", "pid", s.cmd.Process.Pid)
slog.Info("stopping image runner subprocess", "pid", s.cmd.Process.Pid)
s.cmd.Process.Signal(os.Interrupt)
// Wait briefly for graceful shutdown
@@ -388,51 +347,18 @@ func (s *Server) VRAMByGPU(id ml.DeviceID) uint64 {
return s.vramSize
}
// Embedding returns embeddings for the input.
func (s *Server) Embedding(ctx context.Context, input string) ([]float32, int, error) {
return nil, 0, errors.New("embeddings not supported for MLX models")
return nil, 0, errors.New("not supported")
}
// Tokenize tokenizes the input content.
func (s *Server) Tokenize(ctx context.Context, content string) ([]int, error) {
body, err := json.Marshal(map[string]string{"content": content})
if err != nil {
return nil, err
}
url := fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port)
req, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(body))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "application/json")
resp, err := s.client.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return nil, fmt.Errorf("tokenize failed: %d", resp.StatusCode)
}
var result struct {
Tokens []int `json:"tokens"`
}
if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
return nil, err
}
return result.Tokens, nil
return nil, errors.New("not supported")
}
// Detokenize converts tokens back to text.
func (s *Server) Detokenize(ctx context.Context, tokens []int) (string, error) {
return "", errors.New("detokenization not supported for MLX models")
return "", errors.New("not supported")
}
// Pid returns the process ID of the subprocess.
func (s *Server) Pid() int {
s.mu.Lock()
defer s.mu.Unlock()
@@ -442,17 +368,9 @@ func (s *Server) Pid() int {
return -1
}
// GetPort returns the port the subprocess is listening on.
func (s *Server) GetPort() int {
return s.port
}
func (s *Server) GetPort() int { return s.port }
func (s *Server) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo { return nil }
// GetDeviceInfos returns device information.
func (s *Server) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
return nil
}
// HasExited returns whether the subprocess has exited.
func (s *Server) HasExited() bool {
select {
case <-s.done:

48
x/imagegen/server_test.go Normal file
View File

@@ -0,0 +1,48 @@
package imagegen
import (
"runtime"
"testing"
)
// TestPlatformSupport verifies platform validation works correctly.
func TestPlatformSupport(t *testing.T) {
err := CheckPlatformSupport()
switch runtime.GOOS {
case "darwin":
if runtime.GOARCH == "arm64" {
// Apple Silicon should be supported
if err != nil {
t.Errorf("Expected nil error on darwin/arm64, got: %v", err)
}
} else {
// Intel Mac should fail
if err == nil {
t.Error("Expected error on darwin/amd64 (Intel), got nil")
}
if err != nil && err.Error() == "" {
t.Error("Expected meaningful error message for unsupported platform")
}
}
case "linux", "windows":
// Linux/Windows are allowed (CUDA support checked at runtime)
if err != nil {
t.Errorf("Expected nil error on %s, got: %v", runtime.GOOS, err)
}
default:
// Other platforms should fail
if err == nil {
t.Errorf("Expected error on unsupported platform %s, got nil", runtime.GOOS)
}
}
}
// TestServerInterfaceCompliance verifies Server implements llm.LlamaServer.
// This is a compile-time check but we document it as a test.
func TestServerInterfaceCompliance(t *testing.T) {
// The var _ llm.LlamaServer = (*Server)(nil) line in server.go
// ensures compile-time interface compliance.
// This test documents that requirement.
t.Log("Server implements llm.LlamaServer interface (compile-time checked)")
}

View File

@@ -44,54 +44,23 @@ func LoadWeightsFromManifest(manifest *ModelManifest, component string) (*Manife
}, nil
}
// LoadAllWeightsFromManifest creates a weight loader for all tensors without component filtering.
// Used for LLM models where tensors don't have a component prefix.
func LoadAllWeightsFromManifest(manifest *ModelManifest) (*ManifestWeights, error) {
layers := manifest.GetAllTensorLayers()
if len(layers) == 0 {
return nil, fmt.Errorf("no tensor layers found in manifest")
}
tensors := make(map[string]ManifestLayer, len(layers))
for _, layer := range layers {
tensors[layer.Name] = layer
}
return &ManifestWeights{
manifest: manifest,
tensors: tensors,
cache: make(map[string]*mlx.Array),
}, nil
}
// Load loads all tensor blobs using native mmap (zero-copy).
// Blobs are stored in safetensors format for native mlx_load_safetensors mmap.
// If dtype is non-zero, tensors are converted to the specified dtype.
func (mw *ManifestWeights) Load(dtype mlx.Dtype) error {
// Track native handles to free after batch eval
nativeHandles := make([]*mlx.SafetensorsFile, 0, len(mw.tensors))
arrays := make([]*mlx.Array, 0, len(mw.tensors))
for name, layer := range mw.tensors {
path := mw.manifest.BlobPath(layer.Digest)
// Load blob as safetensors (native mmap, zero-copy)
sf, err := mlx.LoadSafetensorsNative(path)
if err != nil {
// Free any handles we've accumulated
for _, h := range nativeHandles {
h.Free()
}
return fmt.Errorf("load %s: %w", name, err)
}
nativeHandles = append(nativeHandles, sf)
// Blob contains single tensor named "data"
arr := sf.Get("data")
if arr == nil {
for _, h := range nativeHandles {
h.Free()
}
sf.Free()
return fmt.Errorf("tensor 'data' not found in blob for %s", name)
}
@@ -99,18 +68,11 @@ func (mw *ManifestWeights) Load(dtype mlx.Dtype) error {
if dtype != 0 && arr.Dtype() != dtype {
arr = mlx.AsType(arr, dtype)
}
// Make contiguous copy to ensure independence from mmap
// ALWAYS make a contiguous copy to ensure independence from mmap
arr = mlx.Contiguous(arr)
mlx.Eval(arr)
mw.cache[name] = arr
arrays = append(arrays, arr)
}
// Batch evaluate all tensors at once (much faster than one at a time)
mlx.Eval(arrays...)
// Now safe to free all native handles
for _, sf := range nativeHandles {
sf.Free()
sf.Free() // Safe to free - arr is now an independent copy
}
return nil
@@ -145,95 +107,18 @@ func (mw *ManifestWeights) HasTensor(name string) bool {
}
// Quantization returns the model's quantization type from model_index.json.
// Returns empty string if not quantized.
// Falls back to detecting from tensor names and shapes if not in config.
// Returns empty string if not quantized or unknown.
func (mw *ManifestWeights) Quantization() string {
if mw.manifest == nil {
return ""
}
// Try to read from model_index.json first
var index struct {
Quantization string `json:"quantization"`
}
if err := mw.manifest.ReadConfigJSON("model_index.json", &index); err == nil && index.Quantization != "" {
return index.Quantization
}
// Fallback: detect from tensor names
// Check if any tensors have _scale suffix (indicates quantization)
hasScales := false
hasQBias := false
for name := range mw.tensors {
if strings.HasSuffix(name, ".weight_scale") {
hasScales = true
}
if strings.HasSuffix(name, ".weight_qbias") {
hasQBias = true
}
}
if !hasScales {
// No scales = not quantized
if err := mw.manifest.ReadConfigJSON("model_index.json", &index); err != nil {
return ""
}
// Has scales but no qbias = NVFP4 (or other non-affine mode)
if !hasQBias {
return "NVFP4"
}
// Has both scales and qbias = affine mode
// Need to determine FP4 vs FP8 from tensor shapes
// FP4: weight last dim is 1/8 of scales last dim * group_size
// FP8: weight last dim is 1/4 of scales last dim * group_size
//
// For affine mode with group_size=32:
// - FP4 (4 bits): 8 elements packed per uint32, so weight_dim = orig_dim / 8
// - FP8 (8 bits): 4 elements packed per uint32, so weight_dim = orig_dim / 4
// scales_dim = orig_dim / group_size
// So: weight_dim / scales_dim = group_size / pack_factor
// FP4: ratio = 32/8 = 4
// FP8: ratio = 32/4 = 8
// Find a weight/scale pair to check the ratio
for name := range mw.tensors {
if !strings.HasSuffix(name, ".weight") || strings.Contains(name, "_scale") || strings.Contains(name, "_qbias") {
continue
}
scaleName := name + "_scale"
if _, ok := mw.tensors[scaleName]; !ok {
continue
}
// Load both tensors to check shapes
weightLayer := mw.tensors[name]
scaleLayer := mw.tensors[scaleName]
// Get shapes from manifest layer metadata if available
// For now, default to FP4 since it's more common
// The actual shape check would require loading the tensor
// Simple heuristic: check if scale tensor is ~4x smaller than weight
// FP4: weight is packed 8 per uint32, scales are 1 per group (32)
// So scale size should be ~weight_size * 8 / 32 = weight_size / 4
// FP8: weight is packed 4 per uint32, scales are 1 per group (32)
// So scale size should be ~weight_size * 4 / 32 = weight_size / 8
// Rough size heuristic (assuming float16 scales)
// FP4: scale_bytes ≈ weight_bytes / 4 * 2 / 4 = weight_bytes / 8
// FP8: scale_bytes ≈ weight_bytes / 8 * 2 / 4 = weight_bytes / 16
ratio := float64(weightLayer.Size) / float64(scaleLayer.Size)
if ratio < 12 {
// Closer to 8 = FP4
return "FP4"
}
// Closer to 16 = FP8
return "FP8"
}
// Default to FP4 for affine mode (most common)
return "FP4"
return index.Quantization
}
// ReleaseAll frees all native handles and clears the tensor cache.

View File

@@ -1,144 +1,797 @@
//go:build mlx
package kvcache
import (
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model/input"
)
// import (
// "errors"
// "fmt"
// "log/slog"
// "math"
// "slices"
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
type Causal struct {
DType ml.DType
// "github.com/ollama/ollama/ml"
// "github.com/ollama/ollama/model/input"
// )
// locations for data storage for this batch
curLocPut ml.Tensor
// type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
// locations for data storage for this batch
curLocGet ml.Tensor
// // Causal cache stores K and V tensors according to their position in the
// // sequence. Returns the history and a mask for attending to past tokens
// //
// // The tensors are of shape embed dim, kv heads, batch size
// // The mask is of shape history size, batch size
// type Causal struct {
// DType ml.DType
// the active layer for Get and Put
curLayer int
// // swaWindowSize is the number of tokens that will be included in the mask
// // during attention operations. swaMemorySize is the number of tokens that
// // will be retained in memory for partial prefix caching. Set to math.MaxInt32
// // for unlimited or if sliding window attention is not being used.
// swaWindowSize int32
// swaMemorySize int32
capacity int
// chunkSize int32
offset int
// opts CausalOptions
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
// // maxBatch is the largest batch that we might receive
// maxBatch int
// TODO is this needed per layer, or will it always be consistent?
kHeadDims, vHeadDims, numKVHeads map[int]int
}
// // config controls mostly backend-specific optimizations
// config *ml.CacheConfig
func NewCausalCache() *Causal {
return &Causal{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
kHeadDims: make(map[int]int),
vHeadDims: make(map[int]int),
numKVHeads: make(map[int]int),
}
}
// // ** current forward pass **
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.DType = dtype
c.capacity = capacity
c.backend = backend
}
// // size of the current batch
// curBatchSize int
func (c *Causal) SetConfig(config ml.CacheConfig) {}
// // locations for data storage for this batch
// curLoc ml.Tensor
func (c *Causal) SetLayer(layer int) {
c.curLayer = layer
}
// // mask of the cache as used by this batch
// curMask ml.Tensor
func (c *Causal) Close() {
// slog.Info("XXX Causal.Close called", "number of contexts", len(c.ctxs))
for _, ctx := range c.ctxs {
ctx.Close()
}
}
// // the active layer for Get and Put
// curLayer int
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
locsPut := make([]int32, len(batch.Positions))
for i := c.offset; i < len(batch.Positions); i++ {
locsPut[i-c.offset] = int32(i)
}
c.offset += len(batch.Positions)
locsGet := make([]int32, c.offset)
for i := range c.offset {
locsGet[i] = int32(i)
}
c.curLocGet = ctx.Input().FromInts(locsGet, len(locsGet))
c.curLocPut = ctx.Input().FromInts(locsPut, len(locsPut))
// slog.Info("XXX Causal.StartForward", "offset", c.offset, "put", locsPut, "get", locsGet)
// // locations in the cache that are needed for this batch
// curCellRange cellRange
return nil
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
kHeadDim := key.Dim(3)
vHeadDim := value.Dim(3)
numKVHeads := key.Dim(1)
batchSize := key.Dim(2)
kCellSize := kHeadDim * numKVHeads
vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Put", "kHeadDim", kHeadDim, "vHeadDim", vHeadDim, "numKVHeads", numKVHeads, "batchSize", batchSize, "kCellSize", kCellSize, "vCellSize", vCellSize)
// // curSequences is the sequences corresponding to this pass's entries in the cache
// curSequences []int
if _, ok := c.ctxs[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put creating new context", "c.curLayer", c.curLayer)
c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
}
// // curPositions is the positions corresponding to this pass's entries in the cache
// curPositions []int32
if _, ok := c.keys[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put allocating keys and values", "c.curLayer", c.curLayer, "shape", []int{c.capacity, kCellSize})
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, kCellSize)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, vCellSize)
c.kHeadDims[c.curLayer] = kHeadDim
c.vHeadDims[c.curLayer] = vHeadDim
c.numKVHeads[c.curLayer] = numKVHeads
}
key = key.Reshape(ctx, batchSize, 1, kCellSize)
// // ** cache metadata **
// slog.Info("XXX Causal.Put ", "c.keys[c.curLayer]", c.keys[c.curLayer])
// slog.Info("XXX Causal.Put ", "c.curLocPut", c.curLocPut)
// slog.Info("XXX Causal.Put ", "key", key)
ctx.Forward(c.keys[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, key, []int{0}))
value = value.Reshape(ctx, batchSize, 1, vCellSize)
ctx.Forward(c.values[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, value, []int{0}))
// // for each possible location in the cache, stores the position and set of sequences
// // that reference the data there
// cells []cacheCell
}
// // maps from sequence to the range of locations where it is stored in the cache
// cellRanges map[int]cellRange
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
// // ** cache data storage **
kHeadDim := c.kHeadDims[c.curLayer]
vHeadDim := c.vHeadDims[c.curLayer]
numKVHeads := c.numKVHeads[c.curLayer]
// rowSize := numKVHeads * c.curBatchSize
// cachedSize := c.curMask.Dim(1)
cachedSize := c.curLocGet.Dim(0)
// kCellSize := kHeadDim * numKVHeads
// vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Get", "shape", []int{1, numKVHeads, cachedSize, kHeadDim})
// shiftFn shiftFn
// backend ml.Backend
// ctxs map[int]ml.Context
// keys, values map[int]ml.Tensor
key = key.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, kHeadDim)
value = value.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, vHeadDim)
return key, value, nil
}
// kHeadDims, vHeadDims, numKVHeads map[int]int
// }
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("not implemented")
}
// type cacheCell struct {
// pos int32
// sequences []int
// }
func (c *Causal) CanResume(seq int, pos int32) bool {
panic("not implemented")
}
// type cellRange struct {
// min int
// max int
// }
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
panic("not implemented")
}
// func NewCausalCache(shift shiftFn) *Causal {
// return &Causal{
// shiftFn: shift,
// ctxs: make(map[int]ml.Context),
// keys: make(map[int]ml.Tensor),
// values: make(map[int]ml.Tensor),
// kHeadDims: make(map[int]int),
// vHeadDims: make(map[int]int),
// numKVHeads: make(map[int]int),
// }
// }
// func NewSWACache(windowSize int32, shift shiftFn) *Causal {
// return &Causal{
// swaWindowSize: windowSize,
// shiftFn: shift,
// ctxs: make(map[int]ml.Context),
// keys: make(map[int]ml.Tensor),
// values: make(map[int]ml.Tensor),
// kHeadDims: make(map[int]int),
// vHeadDims: make(map[int]int),
// numKVHeads: make(map[int]int),
// }
// }
// func NewSWAMemCache(windowSize int32, memorySize int32, shift shiftFn) *Causal {
// return &Causal{
// swaWindowSize: windowSize,
// swaMemorySize: memorySize,
// shiftFn: shift,
// ctxs: make(map[int]ml.Context),
// keys: make(map[int]ml.Tensor),
// values: make(map[int]ml.Tensor),
// kHeadDims: make(map[int]int),
// vHeadDims: make(map[int]int),
// numKVHeads: make(map[int]int),
// }
// }
// func NewChunkedAttentionCache(chunkSize int32, shift shiftFn) *Causal {
// return &Causal{
// chunkSize: chunkSize,
// shiftFn: shift,
// ctxs: make(map[int]ml.Context),
// keys: make(map[int]ml.Tensor),
// values: make(map[int]ml.Tensor),
// kHeadDims: make(map[int]int),
// vHeadDims: make(map[int]int),
// numKVHeads: make(map[int]int),
// }
// }
// func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
// if c.config == nil {
// var config ml.CacheConfig
// if cc, ok := backend.(ml.BackendCacheConfig); ok {
// config = cc.CacheConfig()
// }
// c.config = &config
// }
// if c.config.CachePadding == 0 {
// c.config.CachePadding = 1
// }
// if c.config.MaskBatchPadding == 0 {
// c.config.MaskBatchPadding = 1
// }
// // TODO what types do we handle here?
// // if c.config.MaskDType == ml.DTypeOther {
// // c.config.MaskDType = ml.DTypeFloat32
// // }
// if c.swaWindowSize == 0 {
// c.swaWindowSize = math.MaxInt32
// }
// if c.swaMemorySize == 0 {
// c.swaMemorySize = c.swaWindowSize
// }
// // We will allocate space in the cache for the stop token, which won't be part of a follow on
// // sequence, so allocate an extra token of storage to ensure that we can jump back without
// // causing a cache break. As an optimization, only do this when we have parallel sequences
// // because the extra token will live in the batch buffer and won't get overwritten if we
// // only have a single sequence.
// if c.swaMemorySize != math.MaxInt32 && maxSequences > 1 {
// c.swaMemorySize = max(c.swaMemorySize, c.swaWindowSize+1)
// }
// if int(c.swaMemorySize) >= capacity {
// c.swaMemorySize = math.MaxInt32
// }
// if c.swaMemorySize < c.swaWindowSize {
// panic(fmt.Errorf("sliding window memory (%v) must be at least as large as the window (%v)", c.swaMemorySize, c.swaWindowSize))
// }
// var cacheSize int
// if c.swaMemorySize == math.MaxInt32 {
// cacheSize = maxSequences * capacity
// } else {
// cacheSize = (maxSequences * int(c.swaMemorySize)) + maxBatch
// }
// cacheSize = roundUp(cacheSize, c.config.CachePadding)
// c.cells = make([]cacheCell, cacheSize)
// c.DType = dtype
// c.cellRanges = make(map[int]cellRange)
// c.backend = backend
// c.maxBatch = maxBatch
// }
// func (c *Causal) SetConfig(config ml.CacheConfig) {
// if c.config != nil {
// panic("config cannot be changed after being previously set, either by the model or backend")
// }
// c.config = &config
// }
// func (c *Causal) Close() {
// slog.Info("XXX Causal.Close called", "number of contexts", len(c.ctxs))
// for _, ctx := range c.ctxs {
// ctx.Close()
// }
// }
// func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
// slog.Info("XXX Causal.StartForward", "cell count", len(c.cells), "prior batch size", c.curBatchSize, "positions", len(batch.Positions), "reserve", reserve, "batch", batch)
// // panic("XXX Causal.StartForward")
// c.curBatchSize = len(batch.Positions)
// c.curSequences = batch.Sequences
// c.curPositions = batch.Positions
// c.opts.Except = nil
// var locs []int32
// if !reserve {
// c.updateSlidingWindow()
// var err error
// locs, err = c.findLocs()
// if err != nil {
// return err
// }
// slog.Info("XXX Causal.StartForward", "findLocs len", len(locs))
// for i, pos := range batch.Positions {
// seq := batch.Sequences[i]
// loc := int(locs[i])
// c.cells[loc] = cacheCell{pos: pos, sequences: []int{seq}}
// seqRange, ok := c.cellRanges[seq]
// if !ok {
// seqRange = newRange()
// }
// seqRange.min = min(seqRange.min, loc)
// c.curCellRange.min = min(c.curCellRange.min, loc)
// seqRange.max = max(seqRange.max, loc)
// c.curCellRange.max = max(c.curCellRange.max, loc)
// c.cellRanges[seq] = seqRange
// }
// } else {
// // If we are reserving memory, don't update any of the cache metadata but set the size
// // to the worst case.
// locs = make([]int32, c.curBatchSize)
// for i := range locs {
// locs[i] = int32(i)
// }
// c.curCellRange.min = 0
// c.curCellRange.max = len(c.cells) - 1
// }
// // XXX Building up the locs for what's already processed (if any)
// dummyLocs := []int{}
// c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
// c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
// for i := range c.curBatchSize {
// enabled := !slices.Contains(c.opts.Except, i)
// for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
// if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
// (enabled && c.cells[j].pos > c.curPositions[i]) ||
// c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize ||
// c.cells[j].pos < c.curPositions[i]-c.swaWindowSize {
// // mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
// } else {
// if len(dummyLocs) == 0 || dummyLocs[len(dummyLocs)-1] != i {
// dummyLocs = append(dummyLocs, i)
// }
// }
// }
// }
// slog.Info("XXX Causa.StartForward calculated locations", "locs", dummyLocs)
// slog.Info("XXX Causal.StartForward", "locs", locs)
// c.curLoc = ctx.Input().FromInts(locs, len(locs))
// c.curMask = c.buildMask(ctx)
// return nil
// }
// func newRange() cellRange {
// return cellRange{
// min: math.MaxInt,
// max: 0,
// }
// }
// // Returns a slice of locations where each token in the batch should be stored
// func (c *Causal) findLocs() ([]int32, error) {
// loc := make([]int32, 0, c.curBatchSize)
// for i := range c.cells {
// if len(c.cells[i].sequences) == 0 {
// loc = append(loc, int32(i))
// if len(loc) >= c.curBatchSize {
// return loc, nil
// }
// }
// }
// return nil, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
// }
// func (c *Causal) updateSlidingWindow() {
// c.curCellRange = newRange()
// if c.swaMemorySize == math.MaxInt32 {
// for _, seq := range c.curSequences {
// if seqRange, ok := c.cellRanges[seq]; ok {
// c.curCellRange.min = min(c.curCellRange.min, seqRange.min)
// c.curCellRange.max = max(c.curCellRange.max, seqRange.max)
// }
// }
// return
// }
// type lowestPosition struct {
// pos int32
// curBatch bool
// }
// // create a map of unique sequences to the lowest position in that sequence
// lowestPos := make(map[int]lowestPosition)
// for i := range c.curPositions {
// seq := c.curSequences[i]
// lowest, ok := lowestPos[seq]
// if !ok {
// lowest = lowestPosition{pos: c.curPositions[i], curBatch: true}
// } else if c.curPositions[i] < lowest.pos {
// lowest.pos = c.curPositions[i]
// }
// lowestPos[seq] = lowest
// }
// // for any sequences are not part of this batch, clean up any tokens
// // that are no longer needed after the processing of the previous
// // batch
// for seq, seqRange := range c.cellRanges {
// if _, ok := lowestPos[seq]; !ok {
// var last int32
// for i := seqRange.min; i <= seqRange.max; i++ {
// if slices.Contains(c.cells[i].sequences, seq) {
// last = max(last, c.cells[i].pos)
// }
// }
// lowestPos[seq] = lowestPosition{pos: last + 1, curBatch: false}
// }
// }
// // delete any entries that are beyond the window of the oldest position in the sequence
// for seq, lowest := range lowestPos {
// oldRange, ok := c.cellRanges[seq]
// if !ok {
// continue
// }
// newRange := newRange()
// for i := oldRange.min; i <= oldRange.max; i++ {
// if slices.Contains(c.cells[i].sequences, seq) {
// if c.cells[i].pos < lowest.pos-c.swaMemorySize {
// c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
// } else {
// newRange.min = min(newRange.min, i)
// newRange.max = max(newRange.max, i)
// }
// if lowest.curBatch && c.cells[i].pos >= lowest.pos-c.swaWindowSize {
// c.curCellRange.min = min(c.curCellRange.min, i)
// c.curCellRange.max = max(c.curCellRange.max, i)
// }
// }
// }
// c.cellRanges[seq] = newRange
// }
// }
// func roundDown(length, pad int) int {
// return (length / pad) * pad
// }
// func roundUp(length, pad int) int {
// return ((length + pad - 1) / pad) * pad
// }
// // Builds a mask of history x batch indicating whether for each token in the batch the
// // token in the history should apply. This is based on both the sequence and causality (the
// // position of the history is not ahead of the token in the batch).
// func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// // Align and pad the two dimensions as required by the backend
// batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
// c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
// c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
// length := c.curCellRange.max - c.curCellRange.min + 1
// mask := make([]float32, batchSize*length)
// for i := range c.curBatchSize {
// enabled := !slices.Contains(c.opts.Except, i)
// for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
// if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
// (enabled && c.cells[j].pos > c.curPositions[i]) ||
// c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize ||
// c.cells[j].pos < c.curPositions[i]-c.swaWindowSize {
// mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
// }
// }
// }
// // Mask out any padding tokens we added. For padding that we added to the cache history, this
// // has already been masked out because the sequence doesn't match.
// for i := c.curBatchSize * length; i < len(mask); i++ {
// mask[i] = float32(math.Inf(-1))
// }
// maskTensor := ctx.Input().FromFloats(mask, batchSize, length)
// // if c.config.MaskDType != ml.DTypeFloat32 {
// // maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
// // }
// slog.Info("XXX Causal.buildMask", "c.curBatchSize", c.curBatchSize, "c.config.MaskBatchPadding", c.config.MaskBatchPadding, "c.curCellRange.min", c.curCellRange.min, "c.curCellRange.max", c.curCellRange.max, "size", len(mask), "shape", []int{1, batchSize, length})
// return maskTensor
// }
// func (c *Causal) SetLayer(layer int) {
// c.curLayer = layer
// }
// type CausalOptions struct {
// // Enabled controls whether the causal mask is generated for a particular index in a batch
// Except []int
// }
// // SetCausal disables causal mask generation for a particular range of indicies in
// // the current batch for subsequent calls to Get. The state resets for the next forward pass.
// func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
// if !slices.Equal(c.opts.Except, opts.Except) {
// c.opts = opts
// if ctx != nil {
// c.curMask = c.buildMask(ctx)
// }
// }
// }
// func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
// key := c.keys[c.curLayer]
// value := c.values[c.curLayer]
// kHeadDim := c.kHeadDims[c.curLayer]
// vHeadDim := c.vHeadDims[c.curLayer]
// numKVHeads := c.numKVHeads[c.curLayer]
// // rowSize := numKVHeads * c.curBatchSize
// // cachedSize := c.curMask.Dim(1)
// cachedSize := c.curLoc.Dim(0)
// // kCellSize := kHeadDim * numKVHeads
// // vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Get full cache", "key", key)
// slog.Info("XXX Causal.Get full cache", "value", value)
// slog.Info("XXX Causal.Get full cache", "curloc", c.curLoc)
// slog.Info("XXX Causal.Get", "curMask", c.curMask)
// slog.Info("XXX Causal.Get", "kHeadDim", kHeadDim, "numKVHeads", numKVHeads, "cachedSize", cachedSize, "kHeadDim", kHeadDim)
// // panic("XXX")
// // fmt.Fprintln(os.Stderr, key.ToString())
// // panic("full cache value")
// // TODO we should use TakeAxes to gather the cells from curLoc, but for now to be consistent with GGML, just grab a larger chunk and mask
// key = key.TakeAxes(ctx, c.curLoc, 0).Reshape(ctx, 1, numKVHeads, cachedSize, kHeadDim)
// // key = key.AsStrided(ctx, []int{1, numKVHeads, cachedSize, kHeadDim}, []int{}, rowSize*c.curCellRange.min)
// // slog.Info("XXX Causal.Get after AsStrided", "key", key)
// // panic("XXX")
// // if c.config.PermutedV {
// // panic("permuted")
// // // TODO not converted
// // vHeadDim := value.Dim(1)
// // elemSize := value.Stride(2)
// // value = value.AsStrided(ctx,
// // []int{numKVHeads, vHeadDim, cachedSize},
// // []int{value.Stride(0), value.Stride(1)},
// // elemSize*c.curCellRange.min,
// // )
// // } else {
// // vHeadDim := c.vHeadDims[c.curLayer]
// // rowSize := value.Stride(2)
// // slog.Info("XXX Causal.Get before AsStrided", "vHeadDim", vHeadDim, "rowSize", rowSize)
// // panic("XXX")
// // TODO we should use TakeAxes to gather the cells from curLoc, but for now to be consistent with GGML, just grab a larger chunk and mask
// value = value.TakeAxes(ctx, c.curLoc, 0).Reshape(ctx, 1, numKVHeads, cachedSize, vHeadDim)
// // value = value.AsStrided(ctx, []int{1, numKVHeads, cachedSize, vHeadDim}, []int{}, rowSize*c.curCellRange.min)
// // slog.Info("XXX Causal.Get after AsStrided", "value", value)
// // panic("XXX")
// // }
// // // TODO The mask changes from X,X to 1,X, and with the Row-order change
// // // the 1 becomes trailing and messes up later operations
// // // This isn't the right solution, but works around it...
// // if c.curMask.Dim(1) == 1 {
// // return key, value, c.curMask.Transpose(ctx, 1, 0, 2, 3)
// // }
// // fmt.Fprintln(os.Stderr, key.ToString())
// // fmt.Fprintln(os.Stderr, value.ToString())
// // panic("XXX")
// slog.Info("XXX Mask", "curLayer", c.curLayer, "shape", c.curMask.Shape())
// return key, value, c.curMask
// }
// func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
// kHeadDim := key.Dim(3)
// vHeadDim := value.Dim(3)
// numKVHeads := key.Dim(1)
// batchSize := key.Dim(2)
// kCellSize := kHeadDim * numKVHeads
// vCellSize := vHeadDim * numKVHeads
// // slog.Info("XXX Causal.Put", "key", key, "value", value)
// slog.Info("XXX Causal.Put", "kHeadDim", kHeadDim, "vHeadDim", vHeadDim, "numKVHeads", numKVHeads, "batchSize", batchSize)
// // panic("XXX")
// if c.curBatchSize != batchSize {
// panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
// }
// // slog.Info("XXX", "c.ctxs", c.ctxs, "c.curLayer", c.curLayer, "backend", c.backend)
// if _, ok := c.ctxs[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put creating new context", "c.curLayer", c.curLayer)
// c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
// }
// if _, ok := c.keys[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put allocating keys", "c.curLayer", c.curLayer, "shape", []int{len(c.cells), kCellSize})
// c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), kCellSize)
// c.kHeadDims[c.curLayer] = kHeadDim
// c.vHeadDims[c.curLayer] = vHeadDim
// c.numKVHeads[c.curLayer] = numKVHeads
// }
// if _, ok := c.values[c.curLayer]; !ok {
// // if c.config.PermutedV {
// // c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, numKVHeads, vHeadDim, len(c.cells))
// // } else {
// c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vCellSize)
// // }
// }
// key = key.Reshape(ctx, batchSize, 1, kCellSize) //.Contiguous(ctx, false) // TODO contiguous may not be needed
// // slog.Info("XXX Causal.Put after reshape", "keyCache", keyCache)
// // panic("XXX")
// // curLoc := 0 // TODO c.curLoc is now a tensor
// // kSize := numKVHeads * kHeadDim
// // vSize := numKVHeads * vHeadDim
// // start := []int{int(curLoc), 0}
// // kStop := []int{int(curLoc + batchSize), int(kSize)}
// // vStop := []int{int(curLoc + batchSize), int(vSize)}
// // strides := []int{1, 1}
// // slog.Info("XXX Causal.Put Key SliceUpdate", "keyCache", keyCache)
// // slog.Info("XXX Causal.Put Key SliceUpdate", "key", key)
// // slog.Info("XXX Causal.Put Key SliceUpdate", "start", start, "kStop", kStop, "strides", strides)
// // ctx.Forward(c.keys[c.curLayer].SliceUpdate(ctx, key, start, kStop, strides))
// ctx.Forward(c.keys[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLoc}, key, []int{0}))
// // fmt.Fprintln(os.Stderr, keyCache.ToString())
// // panic("input value")
// // fmt.Fprintln(os.Stderr, t.ToString())
// // panic("XXX")
// // if c.config.PermutedV {
// // panic("permuted")
// // // TODO not adjusted
// // value = value.Reshape(ctx, vHeadDim*numKVHeads, 1, batchSize)
// // value = value.Transpose(ctx, 2, 0, 1, 3)
// // valueCache := c.values[c.curLayer]
// // valueCache = valueCache.Reshape(ctx, 1, len(c.cells), vHeadDim*numKVHeads)
// // ctx.Forward(valueCache.SliceUpdate(ctx, value, start, vStop, strides))
// // } else {
// value = value.Reshape(ctx, batchSize, 1, vCellSize) //.Contiguous(ctx, false) // TODO contiguous may not be needed
// // slog.Info("XXX Causal.Put Value SliceUpdate", "valueCache", valueCache)
// // slog.Info("XXX Causal.Put Value SliceUpdate", "value", value)
// // slog.Info("XXX Causal.Put Value SliceUpdate", "start", start, "vStop", vStop, "strides", strides)
// ctx.Forward(c.values[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLoc}, value, []int{0}))
// // }
// // fmt.Fprintln(os.Stderr, c.keys[c.curLayer].ToString())
// // fmt.Fprintln(os.Stderr, c.values[c.curLayer].ToString())
// // panic("XXX")
// }
// func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
// seqRange := newRange()
// for i := range c.cells {
// // Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
// if slices.Contains(c.cells[i].sequences, dstSeq) {
// c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
// }
// if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
// c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
// if i < seqRange.min {
// seqRange.min = i
// }
// if i > seqRange.max {
// seqRange.max = i
// }
// }
// }
// c.cellRanges[dstSeq] = seqRange
// }
// func (c *Causal) CanResume(seq int, pos int32) bool {
// if c.swaMemorySize == math.MaxInt32 {
// return true
// }
// seqRange, ok := c.cellRanges[seq]
// if !ok {
// return false
// }
// // for sliding window, check that the window of the new sequence is contained in
// // the window of what we are storing
// var first int32 = math.MaxInt32
// var last int32 = -1
// for i := seqRange.min; i <= seqRange.max; i++ {
// if slices.Contains(c.cells[i].sequences, seq) {
// first = min(first, c.cells[i].pos)
// last = max(last, c.cells[i].pos)
// }
// }
// if last == -1 {
// return false
// }
// posWindowStart := max(0, pos-c.swaWindowSize)
// return posWindowStart >= first && pos <= last+1
// }
// func (c *Causal) shift(seq int, beginIndex, offset int32) error {
// if c.shiftFn == nil {
// return ErrNotSupported
// }
// seqRange := c.cellRanges[seq]
// for start := seqRange.min; start <= seqRange.max; start += c.maxBatch {
// size := min(seqRange.max-start+1, c.maxBatch)
// offsets := make([]int32, size)
// var batchFirst, batchLast int
// batchFirst = -1
// for i := range offsets {
// cell := c.cells[start+i]
// if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
// offsets[i] = offset
// if batchFirst < 0 {
// batchFirst = i
// }
// batchLast = i
// }
// }
// if batchFirst < 0 {
// continue
// }
// offsets = offsets[batchFirst : batchLast+1]
// slog.Info("XXX Causal.shift creating new temporary context")
// ctx := c.backend.NewContext()
// kShift := ctx.Input().FromInts(offsets, len(offsets))
// for i, key := range c.keys {
// if key == nil {
// continue
// }
// kHeadDim := key.Dim(2)
// numKVHeads := key.Dim(1)
// rowSize := key.Stride(0)
// key = key.AsStrided(ctx,
// []int{len(offsets), numKVHeads, kHeadDim},
// []int{key.Stride(0), key.Stride(1)},
// rowSize*(start+batchFirst),
// )
// roped, err := c.shiftFn(ctx, i, key, kShift)
// if err != nil {
// ctx.Close()
// return err
// }
// ctx.Forward(roped.Copy(ctx, key))
// }
// ctx.Compute()
// ctx.Close()
// }
// return nil
// }
// func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
// // TODO(jessegross): We should check to see if removing the middle of the sequence will
// // cause the sliding window to encompass tokens that we no longer have. If so, then we
// // should return an error, which will trigger the runner to evaluate the full history and
// // rebuild the window. However, if we have multimodal inputs in our history, this reuse
// // results in use after free, so we don't do it for now.
// var offset int32
// if endIndex != math.MaxInt32 {
// offset = beginIndex - endIndex
// }
// seqRange := newRange()
// for i := range c.cells {
// if slices.Contains(c.cells[i].sequences, seq) {
// if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
// c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
// } else {
// if c.cells[i].pos >= endIndex {
// if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// return errors.New("shifting cells shared by multiple sequences not supported")
// }
// c.cells[i].pos += offset
// }
// if i < seqRange.min {
// seqRange.min = i
// }
// if i > seqRange.max {
// seqRange.max = i
// }
// }
// }
// }
// if seqRange == newRange() {
// delete(c.cellRanges, seq)
// return nil
// }
// c.cellRanges[seq] = seqRange
// if endIndex != math.MaxInt32 {
// err := c.shift(seq, endIndex+offset, offset)
// if err != nil {
// return err
// }
// }
// return nil
// }

973
x/kvcache/causal_test.go Normal file
View File

@@ -0,0 +1,973 @@
package kvcache
// import (
// "fmt"
// "math"
// "slices"
// "testing"
// "github.com/ollama/ollama/ml"
// "github.com/ollama/ollama/model/input"
// )
// type testCase struct {
// name string
// in []float32
// inShape []int
// seqs []int
// pos []int32
// expected []float32
// expectedShape []int
// expectedMask []float32
// }
// func runPermutedVariants(t *testing.T, fn func(t *testing.T, backend *testBackend)) {
// t.Helper()
// for _, permuted := range []bool{false, true} {
// t.Run(fmt.Sprintf("PermutedV=%t", permuted), func(t *testing.T) {
// fn(t, &testBackend{permutedV: permuted})
// })
// }
// }
// func TestStore(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewCausalCache(nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// tests := []testCase{
// {
// name: "FirstBatch",
// in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
// inShape: []int{2, 3, 4},
// seqs: []int{0, 0, 0, 0},
// pos: []int32{0, 1, 2, 3},
// expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
// expectedShape: []int{2, 3, 4},
// expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
// },
// {
// name: "SecondBatch",
// in: []float32{115, 215, 125, 225, 135, 235},
// inShape: []int{2, 3, 1},
// seqs: []int{0},
// pos: []int32{4},
// expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
// expectedShape: []int{2, 3, 5},
// expectedMask: []float32{0, 0, 0, 0, 0},
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func TestSWA(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewSWACache(1, nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// x := float32(math.Inf(-1))
// tests := []testCase{
// {
// name: "FirstBatch",
// in: []float32{1, 2, 3, 4},
// inShape: []int{1, 1, 4},
// seqs: []int{0, 0, 0, 0},
// pos: []int32{0, 1, 2, 3},
// expected: []float32{1, 2, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{
// 0, x, x, x,
// 0, 0, x, x,
// x, 0, 0, x,
// x, x, 0, 0,
// },
// },
// {
// name: "SecondBatch",
// in: []float32{5, 6},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{4, 5},
// expected: []float32{5, 6, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{
// 0, x, x, 0,
// 0, 0, x, x,
// },
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func TestSWASeparateBatches(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewSWACache(1, nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 2, 16, 2)
// x := float32(math.Inf(-1))
// tests := []testCase{
// {
// name: "First seq 0",
// in: []float32{1, 2},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{0, 1},
// expected: []float32{1, 2},
// expectedShape: []int{1, 1, 2},
// expectedMask: []float32{
// 0, x,
// 0, 0,
// },
// },
// {
// name: "Second seq 0",
// in: []float32{3, 4},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{2, 3},
// expected: []float32{2, 3, 4},
// expectedShape: []int{1, 1, 3},
// expectedMask: []float32{
// 0, 0, x,
// x, 0, 0,
// },
// },
// {
// name: "First seq 1",
// in: []float32{5, 6},
// inShape: []int{1, 1, 2},
// seqs: []int{1, 1},
// pos: []int32{0, 1},
// expected: []float32{5, 6},
// expectedShape: []int{1, 1, 2},
// expectedMask: []float32{
// 0, x,
// 0, 0,
// },
// },
// {
// name: "Second seq 1",
// in: []float32{7, 8},
// inShape: []int{1, 1, 2},
// seqs: []int{1, 1},
// pos: []int32{2, 3},
// expected: []float32{6, 3, 4, 7, 8},
// expectedShape: []int{1, 1, 5},
// expectedMask: []float32{
// 0, x, x, 0, x,
// x, x, x, 0, 0,
// },
// },
// {
// name: "Third seq 0",
// in: []float32{9, 10},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{4, 5},
// expected: []float32{9, 10, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{
// 0, x, x, 0,
// 0, 0, x, x,
// },
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func TestSWAMem(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewSWAMemCache(1, 3, nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// x := float32(math.Inf(-1))
// tests := []testCase{
// {
// name: "FirstBatch",
// in: []float32{1, 2, 3, 4},
// inShape: []int{1, 1, 4},
// seqs: []int{0, 0, 0, 0},
// pos: []int32{0, 1, 2, 3},
// expected: []float32{1, 2, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{
// 0, x, x, x,
// 0, 0, x, x,
// x, 0, 0, x,
// x, x, 0, 0,
// },
// },
// {
// name: "SecondBatch",
// in: []float32{5, 6},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{4, 5},
// expected: []float32{5, 2, 3, 4, 6},
// expectedShape: []int{1, 1, 5},
// expectedMask: []float32{
// 0, x, x, 0, x,
// 0, x, x, x, 0,
// },
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func TestChunkedAttention(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewChunkedAttentionCache(2, nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// x := float32(math.Inf(-1))
// testCache(
// t, backend, cache,
// []testCase{
// {
// name: "FirstBatch",
// in: []float32{1, 2, 3, 4},
// inShape: []int{1, 1, 4},
// seqs: []int{0, 0, 0, 0},
// pos: []int32{0, 1, 2, 3},
// expected: []float32{1, 2, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{
// 0, x, x, x,
// 0, 0, x, x,
// x, x, 0, x,
// x, x, 0, 0,
// },
// },
// {
// name: "SecondBatch",
// in: []float32{5, 6, 7},
// inShape: []int{1, 1, 3},
// seqs: []int{0, 0, 0},
// pos: []int32{4, 5, 6},
// expected: []float32{1, 2, 3, 4, 5, 6, 7},
// expectedShape: []int{1, 1, 7},
// expectedMask: []float32{
// x, x, x, x, 0, x, x,
// x, x, x, x, 0, 0, x,
// x, x, x, x, x, x, 0,
// },
// },
// {
// name: "ThirdBatch",
// in: []float32{8, 9},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{7, 8},
// expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9},
// expectedShape: []int{1, 1, 9},
// expectedMask: []float32{
// x, x, x, x, x, x, 0, 0, x,
// x, x, x, x, x, x, x, x, 0,
// },
// },
// },
// )
// })
// }
// func TestSequences(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewCausalCache(nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// tests := []testCase{
// {
// name: "FirstBatch",
// in: []float32{1, 2, 3, 4},
// inShape: []int{1, 1, 4},
// seqs: []int{0, 0, 1, 1},
// pos: []int32{0, 1, 0, 1},
// expected: []float32{1, 2, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
// },
// {
// name: "SecondBatch",
// in: []float32{5, 6},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 1},
// pos: []int32{2, 2},
// expected: []float32{1, 2, 3, 4, 5, 6},
// expectedShape: []int{1, 1, 6},
// expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func TestRemove(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// return key.Add(ctx, shift), nil
// })
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// x := float32(math.Inf(-1))
// tests := []testCase{
// {
// name: "FirstBatch",
// in: []float32{1, 2, 3, 4},
// inShape: []int{1, 1, 4},
// seqs: []int{0, 0, 1, 1},
// pos: []int32{0, 1, 0, 1},
// expected: []float32{1, 2, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{
// 0, x, x, x,
// 0, 0, x, x,
// x, x, 0, x,
// x, x, 0, 0,
// },
// },
// }
// testCache(t, backend, cache, tests)
// err := cache.Remove(0, 1, math.MaxInt32)
// if err != nil {
// panic(err)
// }
// tests = []testCase{
// {
// name: "RemoveEnd",
// in: []float32{5, 6},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 1},
// pos: []int32{1, 2},
// expected: []float32{1, 5, 3, 4, 6},
// expectedShape: []int{1, 1, 5},
// expectedMask: []float32{
// 0, 0, x, x, x,
// x, x, 0, 0, 0,
// },
// },
// }
// testCache(t, backend, cache, tests)
// err = cache.Remove(0, 0, 1)
// if err != nil {
// panic(err)
// }
// tests = []testCase{
// {
// name: "RemoveMiddle",
// in: []float32{7, 8},
// inShape: []int{1, 1, 2},
// seqs: []int{0, 0},
// pos: []int32{1, 2},
// expected: []float32{7, 4, 3, 4, 6, 8},
// expectedShape: []int{1, 1, 6},
// expectedMask: []float32{
// 0, 0, x, x, x, x,
// 0, 0, x, x, x, 0,
// },
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func TestCopy(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// tests := []testCase{
// {
// name: "FirstBatch",
// in: []float32{1, 2, 3, 4},
// inShape: []int{1, 1, 4},
// seqs: []int{0, 0, 0, 0},
// pos: []int32{0, 1, 2, 3},
// expected: []float32{1, 2, 3, 4},
// expectedShape: []int{1, 1, 4},
// expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
// },
// }
// testCache(t, backend, cache, tests)
// cache.CopyPrefix(0, 1, 2)
// tests = []testCase{
// {
// name: "Copy",
// in: []float32{5, 6},
// inShape: []int{1, 1, 2},
// seqs: []int{1, 1},
// pos: []int32{3, 4},
// expected: []float32{1, 2, 3, 4, 5, 6},
// expectedShape: []int{1, 1, 6},
// expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
// },
// }
// testCache(t, backend, cache, tests)
// })
// }
// func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
// for _, test := range tests {
// t.Run(test.name, func(t *testing.T) {
// context := backend.NewContext()
// defer context.Close()
// err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
// if err != nil {
// panic(err)
// }
// cache.SetLayer(0)
// tensor := context.FromFloats(test.in, test.inShape...)
// cache.Put(context, tensor, tensor)
// out, _, mask := cache.Get(context)
// context.Forward(out, mask).Compute(out, mask)
// if !slices.Equal(out.Floats(), test.expected) {
// t.Errorf("TestCache: have %v; want %v", out.Floats(), test.expected)
// }
// if !slices.Equal(out.Shape(), test.expectedShape) {
// t.Errorf("TestCache: has shape %v; want %v", out.Shape(), test.expectedShape)
// }
// if !slices.Equal(mask.Floats(), test.expectedMask) {
// t.Errorf("TestCache: have mask: have %v want %v", mask.Floats(), test.expectedMask)
// }
// })
// }
// }
// func TestCanResume(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// windowSize := int32(4)
// cache := NewSWACache(windowSize, nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// context := backend.NewContext()
// defer context.Close()
// err := cache.StartForward(context, input.Batch{
// Positions: []int32{0, 1, 2, 3, 4},
// Sequences: []int{0, 0, 0, 0, 0},
// }, false)
// if err != nil {
// t.Fatalf("StartForward failed: %v", err)
// }
// cache.SetLayer(0)
// tensor := context.FromFloats([]float32{1, 2, 3, 4, 5}, 1, 1, 5)
// cache.Put(context, tensor, tensor)
// // with window size 4, nothing has slid out of the window yet
// if !cache.CanResume(0, 0) {
// t.Errorf("CanResume(0, 0) = false, want true (within window)")
// }
// if !cache.CanResume(0, 1) {
// t.Errorf("CanResume(0, 1) = false, want true (within window)")
// }
// if !cache.CanResume(0, 2) {
// t.Errorf("CanResume(0, 2) = false, want true (within window)")
// }
// if !cache.CanResume(0, 3) {
// t.Errorf("CanResume(0, 3) = false, want true (latest position)")
// }
// if !cache.CanResume(0, 4) {
// t.Errorf("CanResume(0, 4) = false, want true (latest position)")
// }
// // shift window by adding position 5
// err = cache.StartForward(context, input.Batch{
// Positions: []int32{5},
// Sequences: []int{0},
// }, false)
// if err != nil {
// t.Fatalf("StartForward failed: %v", err)
// }
// cache.SetLayer(0)
// tensor = context.FromFloats([]float32{6}, 1, 1, 1)
// cache.Put(context, tensor, tensor)
// // only the latest position has overlapping windows
// if cache.CanResume(0, 0) {
// t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
// }
// if cache.CanResume(0, 1) {
// t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
// }
// if cache.CanResume(0, 2) {
// t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
// }
// if cache.CanResume(0, 3) {
// t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
// }
// if cache.CanResume(0, 4) {
// t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
// }
// if !cache.CanResume(0, 5) {
// t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
// }
// })
// }
// func TestCanResumeSWAMem(t *testing.T) {
// runPermutedVariants(t, func(t *testing.T, backend *testBackend) {
// windowSize := int32(4)
// memSize := int32(5)
// cache := NewSWAMemCache(windowSize, memSize, nil)
// defer cache.Close()
// cache.Init(backend, ml.DTypeF16, 1, 16, 16)
// context := backend.NewContext()
// defer context.Close()
// err := cache.StartForward(context, input.Batch{
// Positions: []int32{0, 1, 2, 3, 4, 5, 6},
// Sequences: []int{0, 0, 0, 0, 0, 0, 0},
// }, false)
// if err != nil {
// t.Fatalf("StartForward failed: %v", err)
// }
// cache.SetLayer(0)
// tensor := context.FromFloats([]float32{1, 2, 3, 4, 5, 6, 7}, 1, 1, 7)
// cache.Put(context, tensor, tensor)
// // shift window by adding position 7
// err = cache.StartForward(context, input.Batch{
// Positions: []int32{7},
// Sequences: []int{0},
// }, false)
// if err != nil {
// t.Fatalf("StartForward failed: %v", err)
// }
// cache.SetLayer(0)
// tensor = context.FromFloats([]float32{8}, 1, 1, 1)
// cache.Put(context, tensor, tensor)
// // only the latest position has overlapping windows
// if cache.CanResume(0, 0) {
// t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
// }
// if cache.CanResume(0, 1) {
// t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
// }
// if cache.CanResume(0, 2) {
// t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
// }
// if cache.CanResume(0, 3) {
// t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
// }
// if cache.CanResume(0, 4) {
// t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
// }
// if cache.CanResume(0, 5) {
// t.Errorf("after shift: CanResume(0, 5) = true, want false (outside window)")
// }
// if !cache.CanResume(0, 6) {
// t.Errorf("after shift: CanResume(0, 6) = false, want true (inside window)")
// }
// if !cache.CanResume(0, 7) {
// t.Errorf("after shift: CanResume(0, 7) = false, want true (latest position)")
// }
// })
// }
// type testBackend struct {
// ml.Backend
// permutedV bool
// }
// func (b *testBackend) NewContext() ml.Context {
// return &testContext{}
// }
// func (b *testBackend) NewContextSize(int) ml.Context {
// return &testContext{}
// }
// func (b *testBackend) CacheConfig() ml.CacheConfig {
// return ml.CacheConfig{PermutedV: b.permutedV}
// }
// type testContext struct {
// ml.Context
// }
// func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
// total := 0
// if len(shape) > 0 {
// total = 1
// for _, s := range shape {
// total *= s
// }
// }
// return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
// }
// func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
// return c.Empty(dtype, shape...)
// }
// func (c *testContext) FromFloats(s []float32, shape ...int) ml.Tensor {
// t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
// copy(t.data, s)
// return t
// }
// func (c *testContext) FromInts(s []int32, shape ...int) ml.Tensor {
// f := make([]float32, len(s))
// for i := range f {
// f[i] = float32(s[i])
// }
// out := c.FromFloats(f, shape...)
// out.(*testTensor).dtype = ml.DTypeI32
// return out
// }
// func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
// s := make([]float32, 0, int((stop-start)/step))
// for i := start; i < stop; i += step {
// s = append(s, i)
// }
// out := c.FromFloats(s, len(s))
// out.(*testTensor).dtype = dtype
// return out
// }
// func (c *testContext) Input() ml.Context { return c }
// func (c *testContext) Layer(int) ml.Context { return c }
// func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
// func (c *testContext) Compute(...ml.Tensor) {}
// func (c *testContext) Reserve() {}
// func (c *testContext) MaxGraphNodes() int {
// return 10
// }
// func (c *testContext) Close() {}
// type testTensor struct {
// ml.Tensor
// dtype ml.DType
// elementSize int
// data []float32
// shape []int
// }
// func (t *testTensor) Dim(n int) int {
// return t.shape[n]
// }
// func (t *testTensor) Stride(n int) int {
// stride := t.elementSize
// for i := range n {
// stride *= t.shape[i]
// }
// return stride
// }
// func (t *testTensor) Shape() []int {
// return t.shape
// }
// func (t *testTensor) DType() ml.DType {
// return t.dtype
// }
// func (t *testTensor) Floats() []float32 {
// out := make([]float32, len(t.data))
// copy(out, t.data)
// return out
// }
// func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
// out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
// for i := range out.data {
// out.data[i] = -t.data[i]
// }
// return out
// }
// func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
// out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
// for i := range out.data {
// out.data[i] = t.data[i] + t2.(*testTensor).data[i]
// }
// return out
// }
// func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
// return &testTensor{
// dtype: t.dtype,
// elementSize: t.elementSize,
// data: t.data,
// shape: shape,
// }
// }
// func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
// offset /= t.elementSize
// var s []int
// switch len(shape) {
// case 1:
// s = []int{shape[0]}
// case 3:
// s = []int{shape[0], shape[2]}
// case 5:
// s = []int{shape[0], shape[2], shape[4]}
// default:
// panic("unsupported number of dimensions")
// }
// context := &testContext{}
// view := context.Empty(t.dtype, s...).(*testTensor)
// view.data = t.data[offset : offset+len(view.data)]
// return view
// }
// func (t *testTensor) Permute(ctx ml.Context, order ...int) ml.Tensor {
// if len(t.shape) > 4 || len(order) > 4 {
// panic("permute only supports up to 4 dimensions")
// }
// if len(order) != len(t.shape) && len(order) != 4 {
// panic("invalid number of dimensions for permute")
// }
// // ggml_permute expects 4 axes, so fill in any missing dimensions.
// orderFull := append(make([]int, 0, 4), order...)
// for len(orderFull) < 4 {
// orderFull = append(orderFull, len(orderFull))
// }
// seen := [4]bool{}
// shape4 := [4]int{1, 1, 1, 1}
// for i := 0; i < len(t.shape) && i < 4; i++ {
// shape4[i] = t.shape[i]
// }
// newShape4 := [4]int{1, 1, 1, 1}
// for axis := range 4 {
// dst := orderFull[axis]
// if dst < 0 || dst >= 4 {
// panic("invalid axis for permute")
// }
// if seen[dst] {
// panic("duplicate axis for permute")
// }
// seen[dst] = true
// newShape4[dst] = shape4[axis]
// }
// total := len(t.data)
// newData := make([]float32, total)
// if total > 0 {
// oldDims := shape4
// newDims := newShape4
// oldStride := [4]int{1, 1, 1, 1}
// newStride := [4]int{1, 1, 1, 1}
// for i := 1; i < 4; i++ {
// oldStride[i] = oldStride[i-1] * oldDims[i-1]
// newStride[i] = newStride[i-1] * newDims[i-1]
// }
// var coords [4]int
// var newCoords [4]int
// for idx := range total {
// remainder := idx
// for axis := range 4 {
// dim := oldDims[axis]
// if dim == 0 {
// coords[axis] = 0
// continue
// }
// coords[axis] = remainder % dim
// remainder /= dim
// }
// for axis := range 4 {
// newCoords[orderFull[axis]] = coords[axis]
// }
// newIndex := 0
// for axis := range 4 {
// if newDims[axis] == 0 {
// continue
// }
// newIndex += newCoords[axis] * newStride[axis]
// }
// newData[newIndex] = t.data[idx]
// }
// }
// numDims := 4
// for numDims > 1 && newShape4[numDims-1] <= 1 {
// numDims--
// }
// newShape := make([]int, numDims)
// copy(newShape, newShape4[:numDims])
// return &testTensor{
// dtype: t.dtype,
// elementSize: t.elementSize,
// data: newData,
// shape: newShape,
// }
// }
// func (t *testTensor) SetRows(ctx ml.Context, src ml.Tensor, idxs ml.Tensor) ml.Tensor {
// dst := t
// srcTensor := src.(*testTensor)
// idxTensor := idxs.(*testTensor)
// shapeTo4D := func(shape []int) [4]int {
// out := [4]int{1, 1, 1, 1}
// for i := 0; i < len(shape) && i < 4; i++ {
// out[i] = shape[i]
// }
// return out
// }
// computeStrides := func(shape [4]int) [4]int {
// out := [4]int{1, 1, 1, 1}
// for i := 1; i < 4; i++ {
// out[i] = out[i-1] * shape[i-1]
// }
// return out
// }
// dstShape4D := shapeTo4D(dst.shape)
// srcShape4D := shapeTo4D(srcTensor.shape)
// idxShape4D := shapeTo4D(idxTensor.shape)
// if dstShape4D[0] != srcShape4D[0] || dstShape4D[2] != srcShape4D[2] || dstShape4D[3] != srcShape4D[3] {
// panic("SetRows requires matching tensor shapes")
// }
// if srcShape4D[1] != idxShape4D[0] {
// panic("SetRows rows/index mismatch")
// }
// if srcShape4D[2]%idxShape4D[1] != 0 || srcShape4D[3]%idxShape4D[2] != 0 {
// panic("SetRows cannot broadcast indices")
// }
// if idxShape4D[3] != 1 {
// panic("SetRows expects 1D or 2D index tensors")
// }
// dstStride := computeStrides(dstShape4D)
// srcStride := computeStrides(srcShape4D)
// idxStride := computeStrides(idxShape4D)
// numColumns := srcShape4D[0]
// numRows := srcShape4D[1]
// for dim3Index := range dstShape4D[3] {
// for dim2Index := range dstShape4D[2] {
// idxDim2 := 0
// idxDim3 := 0
// if idxShape4D[1] > 0 {
// idxDim2 = dim2Index % idxShape4D[1]
// }
// if idxShape4D[2] > 0 {
// idxDim3 = dim3Index % idxShape4D[2]
// }
// idxBase := idxDim3*idxStride[2] + idxDim2*idxStride[1]
// srcBase := dim3Index*srcStride[3] + dim2Index*srcStride[2]
// dstBase := dim3Index*dstStride[3] + dim2Index*dstStride[2]
// for row := range numRows {
// idx := int(idxTensor.data[idxBase+row*idxStride[0]])
// if idx < 0 || idx >= dstShape4D[1] {
// panic("SetRows index out of range")
// }
// srcOffset := srcBase + row*srcStride[1]
// dstOffset := dstBase + idx*dstStride[1]
// copy(dst.data[dstOffset:dstOffset+numColumns], srcTensor.data[srcOffset:srcOffset+numColumns])
// }
// }
// }
// return dst
// }
// func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
// copy(t2.(*testTensor).data, t.data)
// return nil
// }

144
x/kvcache/mlx.go Normal file
View File

@@ -0,0 +1,144 @@
//go:build mlx
package kvcache
import (
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model/input"
)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
type MLXCausal struct {
DType ml.DType
// locations for data storage for this batch
curLocPut ml.Tensor
// locations for data storage for this batch
curLocGet ml.Tensor
// the active layer for Get and Put
curLayer int
capacity int
offset int
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
// TODO is this needed per layer, or will it always be consistent?
kHeadDims, vHeadDims, numKVHeads map[int]int
}
func NewMLXCausalCache() *MLXCausal {
return &MLXCausal{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
kHeadDims: make(map[int]int),
vHeadDims: make(map[int]int),
numKVHeads: make(map[int]int),
}
}
func (c *MLXCausal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.DType = dtype
c.capacity = capacity
c.backend = backend
}
func (c *MLXCausal) SetConfig(config ml.CacheConfig) {}
func (c *MLXCausal) SetLayer(layer int) {
c.curLayer = layer
}
func (c *MLXCausal) Close() {
// slog.Info("XXX MLXCausal.Close called", "number of contexts", len(c.ctxs))
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *MLXCausal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
locsPut := make([]int32, len(batch.Positions))
for i := c.offset; i < len(batch.Positions); i++ {
locsPut[i-c.offset] = int32(i)
}
c.offset += len(batch.Positions)
locsGet := make([]int32, c.offset)
for i := range c.offset {
locsGet[i] = int32(i)
}
c.curLocGet = ctx.Input().FromInts(locsGet, len(locsGet))
c.curLocPut = ctx.Input().FromInts(locsPut, len(locsPut))
// slog.Info("XXX MLXCausal.StartForward", "offset", c.offset, "put", locsPut, "get", locsGet)
return nil
}
func (c *MLXCausal) Put(ctx ml.Context, key, value ml.Tensor) {
kHeadDim := key.Dim(3)
vHeadDim := value.Dim(3)
numKVHeads := key.Dim(1)
batchSize := key.Dim(2)
kCellSize := kHeadDim * numKVHeads
vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Put", "kHeadDim", kHeadDim, "vHeadDim", vHeadDim, "numKVHeads", numKVHeads, "batchSize", batchSize, "kCellSize", kCellSize, "vCellSize", vCellSize)
if _, ok := c.ctxs[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put creating new context", "c.curLayer", c.curLayer)
c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
// slog.Info("XXX MLXCausal.Put allocating keys and values", "c.curLayer", c.curLayer, "shape", []int{c.capacity, kCellSize})
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, kCellSize)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, vCellSize)
c.kHeadDims[c.curLayer] = kHeadDim
c.vHeadDims[c.curLayer] = vHeadDim
c.numKVHeads[c.curLayer] = numKVHeads
}
key = key.Reshape(ctx, batchSize, 1, kCellSize)
// slog.Info("XXX MLXCausal.Put ", "c.keys[c.curLayer]", c.keys[c.curLayer])
// slog.Info("XXX MLXCausal.Put ", "c.curLocPut", c.curLocPut)
// slog.Info("XXX MLXCausal.Put ", "key", key)
ctx.Forward(c.keys[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, key, []int{0}))
value = value.Reshape(ctx, batchSize, 1, vCellSize)
ctx.Forward(c.values[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, value, []int{0}))
}
func (c *MLXCausal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
kHeadDim := c.kHeadDims[c.curLayer]
vHeadDim := c.vHeadDims[c.curLayer]
numKVHeads := c.numKVHeads[c.curLayer]
// rowSize := numKVHeads * c.curBatchSize
// cachedSize := c.curMask.Dim(1)
cachedSize := c.curLocGet.Dim(0)
// kCellSize := kHeadDim * numKVHeads
// vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX MLXCausal.Get", "shape", []int{1, numKVHeads, cachedSize, kHeadDim})
key = key.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, kHeadDim)
value = value.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, vHeadDim)
return key, value, nil
}
func (c *MLXCausal) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("not implemented")
}
func (c *MLXCausal) CanResume(seq int, pos int32) bool {
panic("not implemented")
}
func (c *MLXCausal) Remove(seq int, beginIndex, endIndex int32) error {
panic("not implemented")
}

View File

@@ -1,134 +0,0 @@
//go:build mlx
package mlxrunner
import (
"context"
"encoding/json"
"fmt"
"log/slog"
"net/http"
"sync"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/flux2"
"github.com/ollama/ollama/x/imagegen/models/zimage"
)
// ImageModel is the interface for image generation models.
type ImageModel interface {
GenerateImage(ctx context.Context, prompt string, width, height int32, steps int, seed int64, progress func(step, total int)) (*mlx.Array, error)
}
var imageGenMu sync.Mutex
// loadImageModel loads an image generation model.
func (s *server) loadImageModel() error {
// Check memory requirements before loading
var requiredMemory uint64
if manifest, err := imagegen.LoadManifest(s.modelName); err == nil {
requiredMemory = uint64(manifest.TotalTensorSize())
}
availableMemory := mlx.GetMemoryLimit()
if availableMemory > 0 && requiredMemory > 0 && availableMemory < requiredMemory {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
requiredMemory/(1024*1024*1024), availableMemory/(1024*1024*1024))
}
// Detect model type and load appropriate model
modelType := imagegen.DetectModelType(s.modelName)
slog.Info("detected image model type", "type", modelType)
var model ImageModel
switch modelType {
case "Flux2KleinPipeline":
m := &flux2.Model{}
if err := m.Load(s.modelName); err != nil {
return fmt.Errorf("failed to load flux2 model: %w", err)
}
model = m
default:
// Default to Z-Image for ZImagePipeline, FluxPipeline, etc.
m := &zimage.Model{}
if err := m.Load(s.modelName); err != nil {
return fmt.Errorf("failed to load zimage model: %w", err)
}
model = m
}
s.imageModel = model
return nil
}
// handleImageCompletion handles image generation requests.
func (s *server) handleImageCompletion(w http.ResponseWriter, r *http.Request, req Request) {
// Serialize generation requests - MLX model may not handle concurrent generation
imageGenMu.Lock()
defer imageGenMu.Unlock()
// Set seed if not provided
if req.Seed <= 0 {
req.Seed = time.Now().UnixNano()
}
// Set up streaming response
w.Header().Set("Content-Type", "application/x-ndjson")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "streaming not supported", http.StatusInternalServerError)
return
}
ctx := r.Context()
enc := json.NewEncoder(w)
// Progress callback streams step updates
progress := func(step, total int) {
resp := Response{Step: step, Total: total}
enc.Encode(resp)
w.Write([]byte("\n"))
flusher.Flush()
}
// Generate image
img, err := s.imageModel.GenerateImage(ctx, req.Prompt, req.Width, req.Height, req.Steps, req.Seed, progress)
if err != nil {
// Don't send error for cancellation
if ctx.Err() != nil {
return
}
resp := Response{Content: fmt.Sprintf("error: %v", err), Done: true}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
return
}
// Encode image as base64 PNG
imageData, err := imagegen.EncodeImageBase64(img)
if err != nil {
resp := Response{Content: fmt.Sprintf("error encoding: %v", err), Done: true}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
return
}
// Free the generated image array and clean up MLX state
img.Free()
mlx.ClearCache()
mlx.MetalResetPeakMemory()
// Send final response with image data
resp := Response{
Image: imageData,
Done: true,
}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
flusher.Flush()
}

View File

@@ -1,420 +0,0 @@
//go:build mlx
package mlxrunner
import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"net/http"
"strings"
"sync"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/glm4_moe_lite"
"github.com/ollama/ollama/x/imagegen/tokenizer"
)
// TextModel is the interface for LLM text generation models.
type TextModel interface {
Forward(tokens *mlx.Array, caches []cache.Cache) *mlx.Array
NewCache(maxSeqLen int32) []cache.Cache
Tokenizer() *tokenizer.Tokenizer
VocabSize() int32
MaxContextLength() int32
NumLayers() int
}
// llmState holds the state for LLM generation
type llmState struct {
model TextModel
}
var llmMu sync.Mutex
// Dedicated stream for generation (like mlx-lm's generation_stream)
var generationStream *mlx.Stream
// withStream runs fn with the generation stream as default
func withStream(fn func()) {
// Lazy initialization of generationStream
if generationStream == nil {
generationStream = mlx.NewStream()
}
orig := mlx.GetDefaultStream()
mlx.SetDefaultStream(generationStream)
fn()
mlx.SetDefaultStream(orig)
}
// Decoder wraps model + cache for autoregressive generation.
// This matches the pattern from cmd/engine/generate.go
type Decoder struct {
model TextModel
caches []cache.Cache
vocabSize int32
temp float32
token *mlx.Array // Current token (kept across iterations)
oldCacheState []*mlx.Array // Preallocated slice for old cache state
}
func NewDecoder(m TextModel, temp float32) *Decoder {
caches := m.NewCache(0)
return &Decoder{
model: m,
caches: caches,
vocabSize: m.VocabSize(),
temp: temp,
oldCacheState: make([]*mlx.Array, 0, len(caches)*2),
}
}
func (d *Decoder) prefill(inputIDs []int32) int {
processed := 0
// Track old cache state to free after each chunk
var oldCacheState []*mlx.Array
// Process all-but-1 tokens in chunks, eval cache state for memory management
for len(inputIDs) > 1 {
chunkSize := min(2048, len(inputIDs)-1)
if chunkSize <= 0 {
break
}
chunk := inputIDs[:chunkSize]
// Save old cache state before forward
oldCacheState = oldCacheState[:0]
for _, c := range d.caches {
oldCacheState = append(oldCacheState, c.State()...)
}
var cacheState []*mlx.Array
withStream(func() {
x := mlx.NewArrayInt32(chunk, []int32{1, int32(len(chunk))})
d.model.Forward(x, d.caches)
for _, c := range d.caches {
cacheState = append(cacheState, c.State()...)
}
})
mlx.Eval(cacheState...)
// Free old cache state
for _, arr := range oldCacheState {
if arr != nil {
arr.Free()
}
}
inputIDs = inputIDs[chunkSize:]
processed += chunkSize
}
// Save old cache state before final step
oldCacheState = oldCacheState[:0]
for _, c := range d.caches {
oldCacheState = append(oldCacheState, c.State()...)
}
// Final token + sampling
withStream(func() {
x := mlx.NewArrayInt32(inputIDs, []int32{1, int32(len(inputIDs))})
mlx.Eval(x) // Materialize before any other evals
logits := d.model.Forward(x, d.caches)
d.token = sample(logits, d.temp, d.vocabSize)
})
// Keep cache state (token auto-kept by AsyncEval)
for _, c := range d.caches {
mlx.Keep(c.State()...)
}
mlx.AsyncEval(d.token)
// Free old cache state from before final step
for _, arr := range oldCacheState {
if arr != nil {
arr.Free()
}
}
mlx.ClearCache()
return processed + len(inputIDs)
}
func (d *Decoder) step() int32 {
prevToken := d.token
// Save old cache state (reuse preallocated slice)
d.oldCacheState = d.oldCacheState[:0]
for _, c := range d.caches {
d.oldCacheState = append(d.oldCacheState, c.State()...)
}
withStream(func() {
logits := d.model.Forward(mlx.Reshape(prevToken, 1, 1), d.caches)
d.token = sample(logits, d.temp, d.vocabSize)
})
// Keep token and new cache state so they survive cleanup
mlx.Keep(d.token)
for _, c := range d.caches {
mlx.Keep(c.State()...)
}
mlx.AsyncEval(d.token)
// Sync on previous token (GPU already working on next step)
val := prevToken.ItemInt32()
// Free old token and old cache state
prevToken.Free()
for _, arr := range d.oldCacheState {
arr.Free()
}
return val
}
// sample samples from logits using temperature scaling
func sample(logits *mlx.Array, temp float32, vocabSize int32) *mlx.Array {
// Get last position logits: [1, L, vocab] -> [vocab]
shape := logits.Shape()
seqLen := shape[1]
lastLogits := mlx.Slice(logits, []int32{0, seqLen - 1, 0}, []int32{1, seqLen, vocabSize})
lastLogits = mlx.Reshape(lastLogits, vocabSize)
if temp <= 0 || temp < 0.01 {
// Greedy decoding
return mlx.Argmax(lastLogits, -1, false)
}
// Apply temperature scaling
scaled := mlx.DivScalar(lastLogits, temp)
return mlx.RandomCategorical(scaled, -1, 1)
}
// loadLLMModel loads a safetensors LLM model and its tokenizer from manifest storage.
func (s *server) loadLLMModel() error {
// Load the manifest to get model information
manifest, err := imagegen.LoadManifest(s.modelName)
if err != nil {
return fmt.Errorf("failed to load manifest: %w", err)
}
// Detect model architecture from config.json
configData, err := manifest.ReadConfig("config.json")
if err != nil {
return fmt.Errorf("failed to read config.json: %w", err)
}
var modelConfig struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(configData, &modelConfig); err != nil {
return fmt.Errorf("failed to parse config.json: %w", err)
}
arch := ""
if len(modelConfig.Architectures) > 0 {
arch = modelConfig.Architectures[0]
}
if arch == "" {
arch = modelConfig.ModelType
}
slog.Info("detected LLM architecture", "architecture", arch, "model_type", modelConfig.ModelType)
// Load the appropriate model based on architecture
var model TextModel
archLower := strings.ToLower(arch)
switch {
case strings.Contains(archLower, "glm4moelite"):
m, err := glm4_moe_lite.LoadFromManifest(manifest)
if err != nil {
return fmt.Errorf("failed to load glm4-moe-lite model: %w", err)
}
model = m
slog.Info("loaded glm4-moe-lite model", "vocab_size", m.VocabSize(), "layers", m.NumLayers())
default:
return fmt.Errorf("LLM architecture %q is not yet supported. "+
"Supported architectures: glm4-moe-lite. "+
"Please convert your model to GGUF format or use a supported architecture", arch)
}
s.llmModel = &llmState{
model: model,
}
return nil
}
// handleLLMCompletion handles LLM text generation requests.
func (s *server) handleLLMCompletion(w http.ResponseWriter, r *http.Request, req Request) {
if s.llmModel == nil {
http.Error(w, "LLM model not loaded", http.StatusInternalServerError)
return
}
// Serialize generation requests
llmMu.Lock()
defer llmMu.Unlock()
if err := s.llmGenerate(w, r, req); err != nil {
slog.Error("LLM generation failed", "error", err)
// Don't send error if we've already started streaming
}
}
// llmGenerate runs the generation loop using the Decoder pattern from cmd/engine
func (s *server) llmGenerate(w http.ResponseWriter, r *http.Request, req Request) error {
state := s.llmModel
// Set up streaming response
w.Header().Set("Content-Type", "application/x-ndjson")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
return errors.New("streaming not supported")
}
tok := state.model.Tokenizer()
// The prompt is already formatted by the server using the model's renderer
// (see server/prompt.go renderPrompt), so we don't apply FormatPrompt here.
prompt := req.Prompt
// Tokenize the prompt
inputIDs := tok.Encode(prompt, true)
slog.Debug("tokenized prompt", "num_tokens", len(inputIDs))
// Generation parameters
maxTokens := int(state.model.MaxContextLength())
if maxTokens <= 0 {
maxTokens = 4096
}
if req.Options != nil && req.Options.NumPredict > 0 {
maxTokens = req.Options.NumPredict
}
temperature := float32(0.7)
if req.Options != nil && req.Options.Temperature > 0 {
temperature = float32(req.Options.Temperature)
}
// Enable MLX compilation for better performance
mlx.EnableCompile()
// Create decoder with fresh caches
dec := NewDecoder(state.model, temperature)
prefillStart := time.Now()
prefillTokens := dec.prefill(inputIDs)
// Prefill measurement includes time to first token
firstToken := dec.step()
prefillDuration := time.Since(prefillStart)
promptEvalDuration := prefillDuration
enc := json.NewEncoder(w)
ctx := r.Context()
generated := 0
stopReason := "max_tokens"
// Handle first token
generated++
if tok.IsEOS(firstToken) {
resp := Response{
Done: true,
StopReason: fmt.Sprintf("first_token_eos:%d", firstToken),
PromptEvalCount: prefillTokens,
PromptEvalDuration: int(promptEvalDuration.Nanoseconds()),
}
enc.Encode(resp)
flusher.Flush()
return nil
}
text := tok.Decode([]int32{firstToken})
resp := Response{Content: text}
enc.Encode(resp)
flusher.Flush()
genStart := time.Now()
// Generation loop
for n := 1; n < maxTokens; n++ {
// Check for cancellation
select {
case <-ctx.Done():
stopReason = fmt.Sprintf("context_cancelled:%d", generated)
break
default:
}
if stopReason != "max_tokens" {
break
}
token := dec.step()
generated++
if tok.IsEOS(token) {
stopReason = fmt.Sprintf("eos_token:%d", token)
break
}
text := tok.Decode([]int32{token})
// Check for stop sequences
if req.Options != nil && len(req.Options.Stop) > 0 {
shouldStop := false
var matchedStop string
for _, stop := range req.Options.Stop {
if strings.Contains(text, stop) {
text = strings.Split(text, stop)[0]
shouldStop = true
matchedStop = stop
break
}
}
if shouldStop {
if text != "" {
resp := Response{Content: text}
enc.Encode(resp)
flusher.Flush()
}
stopReason = fmt.Sprintf("stop_sequence:%s", matchedStop)
break
}
}
resp := Response{Content: text}
enc.Encode(resp)
flusher.Flush()
// Periodically clear MLX cache
if n%256 == 0 {
mlx.ClearCache()
}
}
// Clean up
mlx.ClearCache()
// Send final response with stats
evalDuration := time.Since(genStart)
resp = Response{
Done: true,
StopReason: fmt.Sprintf("%s:generated=%d", stopReason, generated),
PromptEvalCount: prefillTokens,
PromptEvalDuration: int(promptEvalDuration.Nanoseconds()),
EvalCount: generated,
EvalDuration: int(evalDuration.Nanoseconds()),
}
enc.Encode(resp)
flusher.Flush()
return nil
}

View File

@@ -1,204 +0,0 @@
//go:build mlx
// Package mlxrunner provides a unified MLX runner for both LLM and image generation models.
package mlxrunner
import (
"context"
"encoding/json"
"flag"
"fmt"
"log/slog"
"net/http"
"os"
"os/signal"
"syscall"
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// Execute is the entry point for the unified MLX runner subprocess.
func Execute(args []string) error {
// Set up logging with appropriate level from environment
slog.SetDefault(slog.New(slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{Level: envconfig.LogLevel()})))
fs := flag.NewFlagSet("mlx-runner", flag.ExitOnError)
modelName := fs.String("model", "", "path to model")
port := fs.Int("port", 0, "port to listen on")
if err := fs.Parse(args); err != nil {
return err
}
if *modelName == "" {
return fmt.Errorf("--model is required")
}
if *port == 0 {
return fmt.Errorf("--port is required")
}
// Initialize MLX
if err := mlx.InitMLX(); err != nil {
slog.Error("unable to initialize MLX", "error", err)
return err
}
slog.Info("MLX library initialized")
// Detect model type from capabilities
mode := detectModelMode(*modelName)
slog.Info("starting mlx runner", "model", *modelName, "port", *port, "mode", mode)
// Create and start server
server, err := newServer(*modelName, *port, mode)
if err != nil {
return fmt.Errorf("failed to create server: %w", err)
}
// Set up HTTP handlers
mux := http.NewServeMux()
mux.HandleFunc("/health", server.healthHandler)
mux.HandleFunc("/completion", server.completionHandler)
// LLM-specific endpoints
if mode == ModeLLM {
mux.HandleFunc("/tokenize", server.tokenizeHandler)
mux.HandleFunc("/embedding", server.embeddingHandler)
}
httpServer := &http.Server{
Addr: fmt.Sprintf("127.0.0.1:%d", *port),
Handler: mux,
}
// Handle shutdown
done := make(chan struct{})
go func() {
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM)
<-sigCh
slog.Info("shutting down mlx runner")
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
httpServer.Shutdown(ctx)
close(done)
}()
slog.Info("mlx runner listening", "addr", httpServer.Addr)
if err := httpServer.ListenAndServe(); err != http.ErrServerClosed {
return err
}
<-done
return nil
}
// detectModelMode determines whether a model is an LLM or image generation model.
func detectModelMode(modelName string) ModelMode {
// Check for image generation model by looking at model_index.json
modelType := imagegen.DetectModelType(modelName)
if modelType != "" {
// Known image generation model types
switch modelType {
case "ZImagePipeline", "FluxPipeline", "Flux2KleinPipeline":
return ModeImageGen
}
}
// Default to LLM mode for safetensors models without known image gen types
return ModeLLM
}
// server holds the model and handles HTTP requests.
type server struct {
mode ModelMode
modelName string
port int
// Image generation model (when mode == ModeImageGen)
imageModel ImageModel
// LLM model (when mode == ModeLLM)
llmModel *llmState
}
// newServer creates a new server instance and loads the appropriate model.
func newServer(modelName string, port int, mode ModelMode) (*server, error) {
s := &server{
mode: mode,
modelName: modelName,
port: port,
}
switch mode {
case ModeImageGen:
if err := s.loadImageModel(); err != nil {
return nil, fmt.Errorf("failed to load image model: %w", err)
}
case ModeLLM:
if err := s.loadLLMModel(); err != nil {
return nil, fmt.Errorf("failed to load LLM model: %w", err)
}
}
return s, nil
}
func (s *server) healthHandler(w http.ResponseWriter, r *http.Request) {
resp := HealthResponse{Status: "ok"}
w.Header().Set("Content-Type", "application/json")
json.NewEncoder(w).Encode(resp)
}
func (s *server) completionHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
http.Error(w, "method not allowed", http.StatusMethodNotAllowed)
return
}
var req Request
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
switch s.mode {
case ModeImageGen:
s.handleImageCompletion(w, r, req)
case ModeLLM:
s.handleLLMCompletion(w, r, req)
}
}
func (s *server) tokenizeHandler(w http.ResponseWriter, r *http.Request) {
if s.llmModel == nil {
http.Error(w, "LLM model not loaded", http.StatusInternalServerError)
return
}
var req struct {
Content string `json:"content"`
}
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
tok := s.llmModel.model.Tokenizer()
tokens := tok.Encode(req.Content, false)
// Convert int32 to int for JSON response
intTokens := make([]int, len(tokens))
for i, t := range tokens {
intTokens[i] = int(t)
}
w.Header().Set("Content-Type", "application/json")
json.NewEncoder(w).Encode(map[string][]int{"tokens": intTokens})
}
func (s *server) embeddingHandler(w http.ResponseWriter, r *http.Request) {
http.Error(w, "embeddings not yet implemented for MLX models", http.StatusNotImplemented)
}

View File

@@ -1,81 +0,0 @@
// Package mlxrunner provides a unified MLX runner for both LLM and image generation models.
//
// This package handles safetensors models created with `ollama create --experimental`,
// supporting both text generation (LLM) and image generation (diffusion) models
// through a single unified interface.
package mlxrunner
// Request is the request format for completion requests.
type Request struct {
Prompt string `json:"prompt"`
// LLM-specific fields
Options *RequestOptions `json:"options,omitempty"`
// Image generation fields
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Images [][]byte `json:"images,omitempty"` // Input images for image editing/conditioning
}
// RequestOptions contains LLM-specific generation options.
type RequestOptions struct {
NumPredict int `json:"num_predict,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
TopP float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
Stop []string `json:"stop,omitempty"`
}
// Response is streamed back for each progress update.
type Response struct {
// Text generation response
Content string `json:"content,omitempty"`
// Image generation response
Image string `json:"image,omitempty"` // Base64-encoded PNG
// Common fields
Done bool `json:"done"`
DoneReason int `json:"done_reason,omitempty"`
StopReason string `json:"stop_reason,omitempty"` // Debug: why generation stopped
// Progress fields
Step int `json:"step,omitempty"`
Total int `json:"total,omitempty"`
// Statistics
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
PromptEvalDuration int `json:"prompt_eval_duration,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
EvalDuration int `json:"eval_duration,omitempty"`
}
// HealthResponse is returned by the health endpoint.
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress,omitempty"`
}
// ModelMode represents the type of model being run.
type ModelMode int
const (
// ModeLLM indicates a text generation model.
ModeLLM ModelMode = iota
// ModeImageGen indicates an image generation model.
ModeImageGen
)
func (m ModelMode) String() string {
switch m {
case ModeLLM:
return "llm"
case ModeImageGen:
return "imagegen"
default:
return "unknown"
}
}

View File

@@ -87,7 +87,7 @@ func New(c fs.Config) (model.Model, error) {
// m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
// TODO need to implement sliding window...
m.Cache = kvcache.NewCausalCache()
m.Cache = kvcache.NewMLXCausalCache()
return &m, nil
}

View File

@@ -199,7 +199,7 @@ func getTensorInfoFromManifest(mf *manifest.Manifest) ([]api.Tensor, error) {
}
// GetSafetensorsDtype returns the quantization type for a safetensors model.
// Reads from model_index.json first, falls back to detection from tensor names.
// If the model is quantized (has _scale tensors), returns the quantization type (e.g., "FP8").
// Otherwise returns the torch_dtype from config.json.
func GetSafetensorsDtype(name model.Name) (string, error) {
mf, err := manifest.ParseNamedManifest(name)
@@ -207,38 +207,16 @@ func GetSafetensorsDtype(name model.Name) (string, error) {
return "", fmt.Errorf("failed to load manifest: %w", err)
}
// First try to read quantization from model_index.json
var modelIndex struct {
Quantization string `json:"quantization"`
}
if err := mf.ReadConfigJSON("model_index.json", &modelIndex); err == nil && modelIndex.Quantization != "" {
return modelIndex.Quantization, nil
}
// Fallback: detect from tensor names
hasScales := false
hasQBias := false
// Check if model is quantized by looking for _scale tensors
for _, layer := range mf.Layers {
if layer.MediaType == manifest.MediaTypeImageTensor {
if strings.HasSuffix(layer.Name, "_scale") {
hasScales = true
}
if strings.HasSuffix(layer.Name, "_qbias") {
hasQBias = true
// Model is quantized - return FP8 (affine quantization)
return "FP8", nil
}
}
}
if hasScales {
if hasQBias {
// Affine mode (has scale + qbias) - could be FP4 or FP8
// Default to FP4 as it's more common
return "FP4", nil
}
// No qbias = NVFP4
return "NVFP4", nil
}
// Not quantized - return torch_dtype from config.json
var cfg struct {
TorchDtype string `json:"torch_dtype"`

View File

@@ -1,51 +0,0 @@
package server
import (
"strings"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
// IsSafetensorsThinkingModel checks if a safetensors model supports thinking
// based on its architecture from config.json.
func IsSafetensorsThinkingModel(name model.Name) bool {
mf, err := manifest.ParseNamedManifest(name)
if err != nil {
return false
}
var config struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := mf.ReadConfigJSON("config.json", &config); err != nil {
return false
}
// Determine architecture
arch := config.ModelType
if arch == "" && len(config.Architectures) > 0 {
arch = config.Architectures[0]
}
if arch == "" {
return false
}
archLower := strings.ToLower(arch)
// List of architectures that support thinking
thinkingArchitectures := []string{
"glm4moe", // GLM-4 MoE models
"deepseek", // DeepSeek models
"qwen3", // Qwen3 models
}
for _, thinkArch := range thinkingArchitectures {
if strings.Contains(archLower, thinkArch) {
return true
}
}
return false
}