mirror of
https://github.com/ollama/ollama.git
synced 2026-01-24 07:20:57 -05:00
Compare commits
7 Commits
v0.15.0-rc
...
fix-cgo-op
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
134cb6720a | ||
|
|
b44f56319f | ||
|
|
0209c268bb | ||
|
|
912d984346 | ||
|
|
aae6ecbaff | ||
|
|
64737330a4 | ||
|
|
2eda97f1c3 |
@@ -169,8 +169,10 @@ COPY . .
|
||||
RUN git clone --depth 1 --branch "$(cat MLX_VERSION)" https://github.com/ml-explore/mlx-c.git build/_deps/mlx-c-src
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
ENV CGO_CFLAGS="-I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
|
||||
ARG CGO_CFLAGS
|
||||
ARG CGO_CXXFLAGS
|
||||
ENV CGO_CFLAGS="${CGO_CFLAGS} -I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
|
||||
ENV CGO_CXXFLAGS="${CGO_CXXFLAGS}"
|
||||
RUN --mount=type=cache,target=/root/.cache/go-build \
|
||||
go build -tags mlx -trimpath -buildmode=pie -o /bin/ollama .
|
||||
|
||||
|
||||
@@ -558,7 +558,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
|
||||
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
|
||||
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
|
||||
- [Ollama for Ruby](https://github.com/crmne/ruby_llm)
|
||||
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
|
||||
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
|
||||
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)
|
||||
|
||||
@@ -75,9 +75,9 @@ The `-dev` flag enables:
|
||||
CI builds with Xcode 14.1 for OS compatibility prior to v13. If you want to manually build v11+ support, you can download the older Xcode [here](https://developer.apple.com/services-account/download?path=/Developer_Tools/Xcode_14.1/Xcode_14.1.xip), extract, then `mv ./Xcode.app /Applications/Xcode_14.1.0.app` then activate with:
|
||||
|
||||
```
|
||||
export CGO_CFLAGS=-mmacosx-version-min=12.0
|
||||
export CGO_CXXFLAGS=-mmacosx-version-min=12.0
|
||||
export CGO_LDFLAGS=-mmacosx-version-min=12.0
|
||||
export CGO_CFLAGS="-O3 -mmacosx-version-min=12.0"
|
||||
export CGO_CXXFLAGS="-O3 -mmacosx-version-min=12.0"
|
||||
export CGO_LDFLAGS="-mmacosx-version-min=12.0"
|
||||
export SDKROOT=/Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
|
||||
export DEVELOPER_DIR=/Applications/Xcode_14.1.0.app/Contents/Developer
|
||||
```
|
||||
|
||||
@@ -2031,7 +2031,7 @@ func NewCLI() *cobra.Command {
|
||||
copyCmd,
|
||||
deleteCmd,
|
||||
runnerCmd,
|
||||
config.ConfigCmd(checkServerHeartbeat),
|
||||
config.LaunchCmd(checkServerHeartbeat),
|
||||
)
|
||||
|
||||
return rootCmd
|
||||
|
||||
@@ -230,15 +230,15 @@ func runIntegration(name, modelName string) error {
|
||||
return r.Run(modelName)
|
||||
}
|
||||
|
||||
// ConfigCmd returns the cobra command for configuring integrations.
|
||||
func ConfigCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
|
||||
// LaunchCmd returns the cobra command for launching integrations.
|
||||
func LaunchCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
|
||||
var modelFlag string
|
||||
var launchFlag bool
|
||||
var configFlag bool
|
||||
|
||||
cmd := &cobra.Command{
|
||||
Use: "config [INTEGRATION]",
|
||||
Short: "Configure an external integration to use Ollama",
|
||||
Long: `Configure an external application to use Ollama models.
|
||||
Use: "launch [INTEGRATION]",
|
||||
Short: "Launch an integration with Ollama",
|
||||
Long: `Launch an integration configured with Ollama models.
|
||||
|
||||
Supported integrations:
|
||||
claude Claude Code
|
||||
@@ -247,9 +247,10 @@ Supported integrations:
|
||||
opencode OpenCode
|
||||
|
||||
Examples:
|
||||
ollama config
|
||||
ollama config claude
|
||||
ollama config droid --launch`,
|
||||
ollama launch
|
||||
ollama launch claude
|
||||
ollama launch claude --model <model>
|
||||
ollama launch droid --config (does not auto-launch)`,
|
||||
Args: cobra.MaximumNArgs(1),
|
||||
PreRunE: checkServerHeartbeat,
|
||||
RunE: func(cmd *cobra.Command, args []string) error {
|
||||
@@ -272,8 +273,8 @@ Examples:
|
||||
return fmt.Errorf("unknown integration: %s", name)
|
||||
}
|
||||
|
||||
// If --launch without --model, use saved config if available
|
||||
if launchFlag && modelFlag == "" {
|
||||
// If launching without --model, use saved config if available
|
||||
if !configFlag && modelFlag == "" {
|
||||
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
|
||||
return runIntegration(name, config.Models[0])
|
||||
}
|
||||
@@ -334,29 +335,19 @@ Examples:
|
||||
}
|
||||
}
|
||||
|
||||
if slices.ContainsFunc(models, func(m string) bool {
|
||||
return !strings.HasSuffix(m, "cloud")
|
||||
}) {
|
||||
fmt.Fprintln(os.Stderr)
|
||||
fmt.Fprintln(os.Stderr, "Coding agents work best with at least 64k context. Either:")
|
||||
fmt.Fprintln(os.Stderr, " - Set the context slider in Ollama app settings")
|
||||
fmt.Fprintln(os.Stderr, " - Run: OLLAMA_CONTEXT_LENGTH=64000 ollama serve")
|
||||
if configFlag {
|
||||
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
|
||||
return runIntegration(name, models[0])
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "Run 'ollama launch %s' to start with %s\n", strings.ToLower(name), models[0])
|
||||
return nil
|
||||
}
|
||||
|
||||
if launchFlag {
|
||||
return runIntegration(name, models[0])
|
||||
}
|
||||
|
||||
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
|
||||
return runIntegration(name, models[0])
|
||||
}
|
||||
|
||||
fmt.Fprintf(os.Stderr, "Run 'ollama config %s --launch' to start with %s\n", strings.ToLower(name), models[0])
|
||||
return nil
|
||||
return runIntegration(name, models[0])
|
||||
},
|
||||
}
|
||||
|
||||
cmd.Flags().StringVar(&modelFlag, "model", "", "Model to use")
|
||||
cmd.Flags().BoolVar(&launchFlag, "launch", false, "Launch the integration after configuring")
|
||||
cmd.Flags().BoolVar(&configFlag, "config", false, "Configure without launching")
|
||||
return cmd
|
||||
}
|
||||
|
||||
@@ -81,17 +81,17 @@ func TestHasLocalModel(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestConfigCmd(t *testing.T) {
|
||||
func TestLaunchCmd(t *testing.T) {
|
||||
// Mock checkServerHeartbeat that always succeeds
|
||||
mockCheck := func(cmd *cobra.Command, args []string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
cmd := ConfigCmd(mockCheck)
|
||||
cmd := LaunchCmd(mockCheck)
|
||||
|
||||
t.Run("command structure", func(t *testing.T) {
|
||||
if cmd.Use != "config [INTEGRATION]" {
|
||||
t.Errorf("Use = %q, want %q", cmd.Use, "config [INTEGRATION]")
|
||||
if cmd.Use != "launch [INTEGRATION]" {
|
||||
t.Errorf("Use = %q, want %q", cmd.Use, "launch [INTEGRATION]")
|
||||
}
|
||||
if cmd.Short == "" {
|
||||
t.Error("Short description should not be empty")
|
||||
@@ -107,9 +107,9 @@ func TestConfigCmd(t *testing.T) {
|
||||
t.Error("--model flag should exist")
|
||||
}
|
||||
|
||||
launchFlag := cmd.Flags().Lookup("launch")
|
||||
if launchFlag == nil {
|
||||
t.Error("--launch flag should exist")
|
||||
configFlag := cmd.Flags().Lookup("config")
|
||||
if configFlag == nil {
|
||||
t.Error("--config flag should exist")
|
||||
}
|
||||
})
|
||||
|
||||
@@ -158,11 +158,11 @@ func TestHasLocalModel_DocumentsHeuristic(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestConfigCmd_NilHeartbeat(t *testing.T) {
|
||||
func TestLaunchCmd_NilHeartbeat(t *testing.T) {
|
||||
// This should not panic - cmd creation should work even with nil
|
||||
cmd := ConfigCmd(nil)
|
||||
cmd := LaunchCmd(nil)
|
||||
if cmd == nil {
|
||||
t.Fatal("ConfigCmd returned nil")
|
||||
t.Fatal("LaunchCmd returned nil")
|
||||
}
|
||||
|
||||
// PreRunE should be nil when passed nil
|
||||
|
||||
@@ -465,7 +465,7 @@ func confirmPrompt(prompt string) (bool, error) {
|
||||
}
|
||||
defer term.Restore(fd, oldState)
|
||||
|
||||
fmt.Fprintf(os.Stderr, "%s [y/n] ", prompt)
|
||||
fmt.Fprintf(os.Stderr, "%s (\033[1my\033[0m/n) ", prompt)
|
||||
|
||||
buf := make([]byte, 1)
|
||||
for {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: nobody <>
|
||||
Date: Fri, 23 Jan 2026 12:42:53 -0800
|
||||
Date: Sat, 24 Jan 2026 02:31:01 +0000
|
||||
Subject: [PATCH] ggml: enable MLA flash attention for GLM-4.7-flash
|
||||
|
||||
Add support for gqa_ratio 4 in MLA flash attention kernels. GLM-4.7-flash
|
||||
@@ -17,21 +17,22 @@ CUDA changes:
|
||||
- Add tile configs for (576, 512, 4) and (576, 512, 8)
|
||||
- Add MMA config cases for ncols 4
|
||||
- Add template instances for ncols2=4
|
||||
- Fix nbatch_fa values in nvidia_fp32 config (32->64)
|
||||
---
|
||||
ggml/src/ggml-cuda/fattn-mma-f16.cuh | 15 ++++++++++++---
|
||||
ggml/src/ggml-cuda/fattn-tile.cuh | 16 ++++++++++++++++
|
||||
ggml/src/ggml-cuda/fattn.cu | 12 ++++++++----
|
||||
.../fattn-mma-f16-instance-ncols1_16-ncols2_4.cu | 1 +
|
||||
.../fattn-mma-f16-instance-ncols1_2-ncols2_4.cu | 1 +
|
||||
.../fattn-mma-f16-instance-ncols1_4-ncols2_4.cu | 1 +
|
||||
.../fattn-mma-f16-instance-ncols1_8-ncols2_4.cu | 1 +
|
||||
ggml/src/ggml-metal/ggml-metal-device.m | 8 ++------
|
||||
ggml/src/ggml-metal/ggml-metal-ops.cpp | 2 +-
|
||||
ggml/src/ggml-metal/ggml-metal.metal | 1 +
|
||||
10 files changed, 44 insertions(+), 14 deletions(-)
|
||||
ggml/src/ggml-cuda/fattn-mma-f16.cuh | 40 +++++++++++++++----
|
||||
ggml/src/ggml-cuda/fattn-tile.cuh | 16 ++++++++
|
||||
ggml/src/ggml-cuda/fattn.cu | 12 ++++--
|
||||
...ttn-mma-f16-instance-ncols1_16-ncols2_4.cu | 1 +
|
||||
...attn-mma-f16-instance-ncols1_2-ncols2_4.cu | 1 +
|
||||
...attn-mma-f16-instance-ncols1_4-ncols2_4.cu | 1 +
|
||||
...attn-mma-f16-instance-ncols1_8-ncols2_4.cu | 1 +
|
||||
ggml/src/ggml-metal/ggml-metal-device.m | 8 +---
|
||||
ggml/src/ggml-metal/ggml-metal-ops.cpp | 2 +-
|
||||
ggml/src/ggml-metal/ggml-metal.metal | 1 +
|
||||
10 files changed, 64 insertions(+), 19 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh
|
||||
index 7bd1044c1..a627302f9 100644
|
||||
index 7bd1044c1..3dea2205e 100644
|
||||
--- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh
|
||||
+++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh
|
||||
@@ -66,7 +66,8 @@ static constexpr __host__ __device__ fattn_mma_config ggml_cuda_fattn_mma_get_co
|
||||
@@ -64,25 +65,85 @@ index 7bd1044c1..a627302f9 100644
|
||||
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 16, 64, 4, 32, 288, 256, 64, 1, false);
|
||||
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 32, 128, 2, 32, 160, 128, 64, 1, false);
|
||||
GGML_CUDA_FATTN_MMA_CONFIG_CASE(576, 512, 64, 256, 1, 32, 160, 128, 64, 1, false);
|
||||
@@ -1585,3 +1588,9 @@ DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64)
|
||||
@@ -397,7 +400,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
constexpr int ncols = ncols1 * ncols2;
|
||||
constexpr int cols_per_warp = T_B_KQ::I;
|
||||
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
|
||||
- constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
|
||||
+ constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa(DKQ, DV, ncols);
|
||||
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2(DKQ, DV, ncols);
|
||||
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2(DKQ, DV, ncols);
|
||||
@@ -467,7 +470,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
}
|
||||
}
|
||||
} else {
|
||||
- static_assert(cols_per_warp != 8, "cols_per_warp == 8 not implemented");
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += T_A_KQ::J) {
|
||||
load_ldmatrix(Q_B[0], tile_Q + (threadIdx.y / np)*(T_B_KQ::I*stride_tile_Q) + k_KQ_0, stride_tile_Q);
|
||||
@@ -479,8 +481,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
T_A_KQ K_A;
|
||||
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
|
||||
|
||||
- // Wide version of KQ_C is column-major => swap A and B.
|
||||
- mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
|
||||
+ if constexpr (cols_per_warp == 8) {
|
||||
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
|
||||
+ } else {
|
||||
+ // Wide version of KQ_C is column-major
|
||||
+#if defined(AMD_WMMA_AVAILABLE)
|
||||
+ // RDNA matrix C is column-major.
|
||||
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
|
||||
+#else
|
||||
+ // swap A and B for CUDA.
|
||||
+ mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
|
||||
+#endif // defined(AMD_WMMA_AVAILABLE)
|
||||
+ }
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -841,7 +853,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
|
||||
constexpr int cols_per_warp = T_B_KQ::I;
|
||||
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
|
||||
- constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
|
||||
+ constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa (DKQ, DV, ncols);
|
||||
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2 (DKQ, DV, ncols);
|
||||
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2 (DKQ, DV, ncols);
|
||||
@@ -1353,6 +1365,13 @@ static __global__ void flash_attn_ext_f16(
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
+#ifdef VOLTA_MMA_AVAILABLE
|
||||
+ if (ncols1*ncols2 < 32) {
|
||||
+ NO_DEVICE_CODE;
|
||||
+ return;
|
||||
+ }
|
||||
+#endif // VOLTA_MMA_AVAILABLE
|
||||
+
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
if (ncols1*ncols2 > 32) {
|
||||
NO_DEVICE_CODE;
|
||||
@@ -1585,3 +1604,8 @@ DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64)
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);
|
||||
+
|
||||
+// GLM 4.7 Flash uses gqa_ratio 4:
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 4);
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
|
||||
+// For GLM 4.7 Flash
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
|
||||
+extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
|
||||
diff --git a/ggml/src/ggml-cuda/fattn-tile.cuh b/ggml/src/ggml-cuda/fattn-tile.cuh
|
||||
index 7c4d6fe67..682fb366e 100644
|
||||
index 7c4d6fe67..371be7442 100644
|
||||
--- a/ggml/src/ggml-cuda/fattn-tile.cuh
|
||||
+++ b/ggml/src/ggml-cuda/fattn-tile.cuh
|
||||
@@ -68,6 +68,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
|
||||
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 2, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
|
||||
|
||||
@@ -91,7 +152,7 @@ index 7c4d6fe67..682fb366e 100644
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
|
||||
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 2, 32, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 32, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 32, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
|
||||
|
||||
@@ -100,7 +161,7 @@ index 7c4d6fe67..682fb366e 100644
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
|
||||
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 2, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
|
||||
@@ -109,8 +170,8 @@ index 7c4d6fe67..682fb366e 100644
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
|
||||
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 4, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 4, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
|
||||
+ GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
|
||||
|
||||
|
||||
@@ -400,7 +400,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
constexpr int ncols = ncols1 * ncols2;
|
||||
constexpr int cols_per_warp = T_B_KQ::I;
|
||||
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
|
||||
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa(DKQ, DV, ncols);
|
||||
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2(DKQ, DV, ncols);
|
||||
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2(DKQ, DV, ncols);
|
||||
@@ -470,7 +470,6 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
}
|
||||
}
|
||||
} else {
|
||||
static_assert(cols_per_warp != 8, "cols_per_warp == 8 not implemented");
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += T_A_KQ::J) {
|
||||
load_ldmatrix(Q_B[0], tile_Q + (threadIdx.y / np)*(T_B_KQ::I*stride_tile_Q) + k_KQ_0, stride_tile_Q);
|
||||
@@ -482,8 +481,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
T_A_KQ K_A;
|
||||
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
|
||||
|
||||
// Wide version of KQ_C is column-major => swap A and B.
|
||||
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
|
||||
if constexpr (cols_per_warp == 8) {
|
||||
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
|
||||
} else {
|
||||
// Wide version of KQ_C is column-major
|
||||
#if defined(AMD_WMMA_AVAILABLE)
|
||||
// RDNA matrix C is column-major.
|
||||
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], K_A, Q_B[0]);
|
||||
#else
|
||||
// swap A and B for CUDA.
|
||||
mma(KQ_C[i_KQ_00/(np*T_A_KQ::I)], Q_B[0], K_A);
|
||||
#endif // defined(AMD_WMMA_AVAILABLE)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -844,7 +853,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
|
||||
constexpr int cols_per_warp = T_B_KQ::I;
|
||||
constexpr int cols_per_thread = 2; // This is specifically KQ columns, Volta only has a single VKQ column.
|
||||
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int np = cols_per_warp > ncols ? nwarps : nwarps * cols_per_warp/ncols; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int nbatch_fa = ggml_cuda_fattn_mma_get_nbatch_fa (DKQ, DV, ncols);
|
||||
constexpr int nbatch_K2 = ggml_cuda_fattn_mma_get_nbatch_K2 (DKQ, DV, ncols);
|
||||
constexpr int nbatch_V2 = ggml_cuda_fattn_mma_get_nbatch_V2 (DKQ, DV, ncols);
|
||||
@@ -1356,6 +1365,13 @@ static __global__ void flash_attn_ext_f16(
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#ifdef VOLTA_MMA_AVAILABLE
|
||||
if (ncols1*ncols2 < 32) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#endif // VOLTA_MMA_AVAILABLE
|
||||
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_TURING
|
||||
if (ncols1*ncols2 > 32) {
|
||||
NO_DEVICE_CODE;
|
||||
@@ -1589,8 +1605,7 @@ extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);
|
||||
|
||||
// GLM 4.7 Flash uses gqa_ratio 4:
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 4);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
|
||||
// For GLM 4.7 Flash
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 4);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 8, 4);
|
||||
extern DECL_FATTN_MMA_F16_CASE(576, 512, 16, 4);
|
||||
|
||||
@@ -68,7 +68,7 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
|
||||
|
||||
@@ -124,7 +124,7 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 2, 32, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 32, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 32, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
|
||||
|
||||
@@ -187,7 +187,7 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
|
||||
@@ -251,8 +251,8 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 256, 4, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 4, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 4, 128, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 8, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
|
||||
|
||||
|
||||
@@ -14,8 +14,8 @@
|
||||
VOL_NAME=${VOL_NAME:-"Ollama"}
|
||||
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
|
||||
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${VERSION#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
|
||||
export CGO_CFLAGS="-mmacosx-version-min=14.0"
|
||||
export CGO_CXXFLAGS="-mmacosx-version-min=14.0"
|
||||
export CGO_CFLAGS="-O3 -mmacosx-version-min=14.0"
|
||||
export CGO_CXXFLAGS="-O3 -mmacosx-version-min=14.0"
|
||||
export CGO_LDFLAGS="-mmacosx-version-min=14.0"
|
||||
|
||||
set -e
|
||||
|
||||
Reference in New Issue
Block a user