Compare commits

..

6 Commits

Author SHA1 Message Date
Bruce MacDonald
c2b11611a8 Update new_runner_benchmark_test.go 2025-01-29 10:34:09 -08:00
Bruce MacDonald
90698c7d15 benchmark: new Go runner 2025-01-28 14:55:03 -08:00
Jesse Gross
4b4a5a28bf new runner 2025-01-27 13:47:13 -08:00
Jesse Gross
3c95c21ddf tensor loading iface 2025-01-23 16:04:13 -08:00
Michael Yang
8ab13e4d3e next 2025-01-22 22:10:31 -08:00
Michael Yang
144f63e2fb next build 2025-01-22 22:08:29 -08:00
125 changed files with 4187 additions and 475960 deletions

View File

@@ -3,9 +3,7 @@ ollama
app
macapp
dist
build
.env
.cache
test_data
.git
llama/build

4
.gitattributes vendored
View File

@@ -15,10 +15,6 @@ ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
* text=auto
*.go text eol=lf

View File

@@ -9,14 +9,6 @@ body:
description: What happened? What did you expect to happen?
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false
- type: dropdown
id: os
attributes:

View File

@@ -1,66 +1,31 @@
name: release
env:
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
on:
push:
tags:
- 'v*'
env:
CGO_CFLAGS: '-O3'
CGO_CXXFLAGS: '-O3'
jobs:
setup-environment:
runs-on: ubuntu-latest
environment: release
outputs:
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
steps:
- uses: actions/checkout@v4
- name: Set environment
id: goflags
run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
darwin-build:
# Full build of the Mac assets
build-darwin:
runs-on: macos-13
environment: release
needs: setup-environment
strategy:
matrix:
os: [darwin]
arch: [amd64, arm64]
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
- run: |
go build -o dist/ .
- name: Set Version
shell: bash
run: |
echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
echo "RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" >> $GITHUB_ENV
- name: key
env:
GOOS: ${{ matrix.os }}
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: 1
CGO_CPPFLAGS: '-mmacosx-version-min=11.3'
- if: matrix.arch == 'amd64'
MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }}
MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }}
run: |
cmake --preset CPU -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_PROCESSOR=x86_64 -DCMAKE_OSX_ARCHITECTURES=x86_64
cmake --build --parallel --preset CPU
cmake --install build --component CPU --strip --parallel 8
- uses: actions/upload-artifact@v4
with:
name: build-${{ matrix.os }}-${{ matrix.arch }}
path: dist/*
darwin-sign:
runs-on: macos-13
environment: release
needs: darwin-build
steps:
- uses: actions/checkout@v4
- run: |
echo $MACOS_SIGNING_KEY | base64 --decode > certificate.p12
security create-keychain -p password build.keychain
security default-keychain -s build.keychain
@@ -68,20 +33,11 @@ jobs:
security import certificate.p12 -k build.keychain -P $MACOS_SIGNING_KEY_PASSWORD -T /usr/bin/codesign
security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain
security set-keychain-settings -lut 3600 build.keychain
env:
MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }}
MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }}
- uses: actions/download-artifact@v4
- uses: actions/setup-go@v5
with:
name: build-darwin-amd64
path: dist/darwin-amd64
- uses: actions/download-artifact@v4
with:
name: build-darwin-arm64
path: dist/darwin-arm64
- run: |
export VERSION=${GITHUB_REF_NAME#v}
./scripts/build_darwin.sh sign macapp
go-version-file: go.mod
cache: true
- name: Build Darwin
env:
APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }}
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
@@ -89,320 +45,485 @@ jobs:
APPLE_ID: ${{ vars.APPLE_ID }}
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
run: |
./scripts/build_darwin.sh
- uses: actions/upload-artifact@v4
with:
name: dist-darwin
path: |
dist/Ollama-darwin.zip
dist/ollama-darwin.tgz
dist/ollama-darwin
windows-depends:
strategy:
matrix:
os: [windows]
arch: [amd64]
preset: ['CPU']
include:
- os: windows
arch: amd64
preset: 'CUDA 11'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
cuda-version: '11.3'
- os: windows
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
cuda-version: '12.4'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
rocm-version: '6.1'
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
# Windows builds take a long time to both install the dependencies and build, so parallelize
# CPU generation step
generate-windows-cpu:
environment: release
runs-on: windows
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- name: Install system dependencies
run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: startsWith(matrix.preset, 'CUDA ') || startsWith(matrix.preset, 'ROCm ')
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- if: startsWith(matrix.preset, 'CUDA ')
name: Install CUDA ${{ matrix.cuda-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- if: startsWith(matrix.preset, 'ROCm')
name: Install ROCm ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
}
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- uses: actions/checkout@v4
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
- name: Build target "${{ matrix.preset }}"
- name: Set make jobs default
run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}"
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
CMAKE_GENERATOR: Ninja
- uses: actions/upload-artifact@v4
with:
name: depends-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
path: dist\*
windows-build:
strategy:
matrix:
os: [windows]
arch: [amd64, arm64]
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: [setup-environment]
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- name: Install AMD64 system dependencies
if: matrix.arch == 'amd64'
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- name: Add msys paths
run: |
$ErrorActionPreference = "Stop"
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install ARM64 system dependencies
if: matrix.arch == 'arm64'
- name: Install msys2 tools
run: |
$ErrorActionPreference = "Stop"
Set-ExecutionPolicy Bypass -Scope Process -Force
[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- uses: actions/checkout@v4
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: |
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
- if: matrix.arch == 'arm64'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe"
- run: |
$env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1'
& .\scripts\build_windows.ps1 buildApp
env:
VCToolsRedistDir: stub
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make dist
name: make
- uses: actions/upload-artifact@v4
with:
name: build-${{ matrix.os }}-${{ matrix.arch }}
name: generate-windows-cpu
path: |
dist\${{ matrix.os }}-${{ matrix.arch }}\*.exe
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
dist/windows-amd64/**
windows-sign:
runs-on: windows-2022
# ROCm generation step
generate-windows-rocm:
environment: release
needs: [windows-depends, windows-build]
runs-on: windows
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- uses: google-github-actions/auth@v2
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- name: Add msys paths
run: |
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
- uses: actions/setup-go@v5
with:
project_id: ollama
credentials_json: ${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}
- run: |
go-version-file: go.mod
cache: true
# ROCM installation steps
- name: 'Cache ROCm installer'
id: cache-rocm
uses: actions/cache@v4
with:
path: rocm-install.exe
key: ${{ env.ROCM_WINDOWS_URL }}
- name: 'Conditionally Download ROCm'
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${{ runner.temp }}\sdksetup.exe"
Start-Process "${{ runner.temp }}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${{ runner.temp }}\plugin.zip"
Expand-Archive -Path "${{ runner.temp }}\plugin.zip" -DestinationPath "${{ runner.temp }}\plugin\"
& "${{ runner.temp }}\plugin\*\kmscng.msi" /quiet
echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt
- uses: actions/download-artifact@v4
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
- name: 'Install ROCm'
run: |
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: make rocm runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make help-runners
make dist_rocm
- uses: actions/upload-artifact@v4
with:
pattern: build-windows-*
path: dist\
merge-multiple: true
- uses: actions/download-artifact@v4
name: generate-windows-rocm
path: |
dist/windows-amd64/**
# CUDA generation step
generate-windows-cuda:
environment: release
runs-on: windows
strategy:
matrix:
cuda:
- version: "11.3"
url: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
- version: "12.4"
url: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
- name: Set make jobs default
run: |
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- name: Install msys2
run: |
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
write-host "Downloading msys2"
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: verify tools
run: |
get-command gcc
gcc --version
get-command make
make --version
- uses: actions/setup-go@v5
with:
pattern: depends-windows-amd64-*
path: dist\windows-amd64\
merge-multiple: true
go-version-file: go.mod
cache: true
# CUDA installation steps
- name: 'Cache CUDA installer'
id: cache-cuda
uses: actions/cache@v4
with:
path: cuda-install.exe
key: ${{ matrix.cuda.url }}
- name: 'Conditionally Download CUDA'
if: steps.cache-cuda.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "cuda-install.exe"
- name: 'Install CUDA'
run: |
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ matrix.cuda.version }}"}
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
- name: 'Verify CUDA'
run: |
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
- name: make cuda runner
run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
make dist_cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda-${{ matrix.cuda.version }}
path: |
dist/windows-amd64/**
# windows arm64 generate, go build, and zip file (no installer)
# Output of this build is aggregated into the final x86 build
# for a unified windows installer
windows-arm64:
runs-on: windows-arm64
environment: release
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
# The current Windows arm64 beta image has effectively zero dev tools installed...
- name: Install git and gzip
run: |
Set-ExecutionPolicy Bypass -Scope Process -Force
[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
# pacman is buggy on win arm64, so we avoid using it, but rely on the binary artifacts
# we download the sfx (7zip bundle) which isn't fully set up, but the binaries we need to build work
- name: Install msys2 x64
run: |
$url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-base-x86_64-20240727.sfx.exe"
write-host "Downloading MSYS2"
Invoke-WebRequest -Uri "$url" -outfile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @(
'-y', '-oC:\'
) -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
# since pacman isn't reliable, we just download the tar file and extract directly
- name: Downloading and extracting msys2 make tar file
run: |
$url="https://mirror.msys2.org/msys/x86_64/make-4.4.1-2-x86_64.pkg.tar.zst"
write-host "Downloading make"
Invoke-WebRequest -Uri "$url" -outfile c:\msys64\make.tar.zst
cd c:\msys64; tar -xf make.tar.zst
rm c:\msys64\make.tar.zst
- name: Verify Make works properly
run: |
echo $env:PATH
make --version
- name: Install Visual Studio 2022
run: |
$components = @(
"Microsoft.VisualStudio.Component.CoreEditor",
"Microsoft.VisualStudio.Workload.CoreEditor",
"Microsoft.VisualStudio.Component.Roslyn.Compiler",
"Microsoft.Component.MSBuild",
"Microsoft.VisualStudio.Component.TextTemplating",
"Microsoft.VisualStudio.Component.Debugger.JustInTime",
"Microsoft.VisualStudio.Component.VC.CoreIde",
"Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"Microsoft.VisualStudio.Component.Windows11SDK.22621",
"Microsoft.VisualStudio.Component.VC.Tools.ARM64EC",
"Microsoft.VisualStudio.Component.VC.Tools.ARM64",
"Microsoft.VisualStudio.Component.VC.ATL",
"Microsoft.VisualStudio.Component.VC.ATL.ARM64",
"Microsoft.VisualStudio.Component.Graphics",
"Microsoft.VisualStudio.Component.VC.Redist.14.Latest",
"Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core",
"Microsoft.VisualStudio.Component.Windows11Sdk.WindowsPerformanceToolkit",
"Microsoft.VisualStudio.Component.CppBuildInsights",
"Microsoft.VisualStudio.Component.VC.DiagnosticTools",
"Microsoft.VisualStudio.ComponentGroup.WebToolsExtensions.CMake",
"Microsoft.VisualStudio.Component.VC.CMake.Project",
"Microsoft.VisualStudio.Component.VC.ASAN",
"Microsoft.VisualStudio.Component.Vcpkg",
"Microsoft.VisualStudio.Workload.NativeDesktop"
)
$config = @{
"version" = "1.0"
"components" = $components
"extensions" = @()
}
$configPath = "${env:RUNNER_TEMP}\vsconfig"
$config | ConvertTo-Json | Out-File -FilePath $configPath
$bootstrapperFilePath = "${env:RUNNER_TEMP}\vs_community.exe"
write-host "Downloading Visual Studio 2022"
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_community.exe" -outfile $bootstrapperFilePath
$bootstrapperArgumentList = ('/c', $bootstrapperFilePath, '--config', $configPath, '--quiet', '--wait' )
write-host "Installing Visual Studio 2022"
$process = Start-Process -FilePath cmd.exe -ArgumentList $bootstrapperArgumentList -Wait -PassThru
$exitCode = $process.ExitCode
write-host $exitCode
# pacman in mingw/msys2 is ~broken on windows arm right now - hangs consistently during attempts to install
# so we'll use this alternative GCC binary
- name: Install llvm-mingw GCC
run: |
$gcc_url="https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip"
write-host "Downloading llvm-mingw"
Invoke-WebRequest -Uri "${gcc_url}" -OutFile "${env:RUNNER_TEMP}\gcc.zip"
write-host "Unpacking llvm-mingw"
expand-archive -path "${env:RUNNER_TEMP}\gcc.zip" -destinationpath "c:\"
mv c:\llvm-mingw-* c:\llvm-mingw
echo "c:\llvm-mingw\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Verify GCC
run: |
echo $env:PATH
gcc --version
- uses: actions/checkout@v4
- name: Set Version
run: |
$ver=${env:GITHUB_REF_NAME}.trim("v")
echo VERSION=$ver | Out-File -FilePath ${env:GITHUB_ENV} -Encoding utf8 -Append
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" | Out-File -FilePath ollama_inc.crt -Encoding utf8
- name: install Windows SDK 8.1 to get signtool
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: go get ./...
- run: |
& .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
import-module 'C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\Program Files\Microsoft Visual Studio\2022\Community' -skipautomaticlocation
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
$env:ARCH="arm64"
.\scripts\build_windows.ps1 buildOllama buildApp gatherDependencies sign distZip
name: 'Windows Build'
- uses: actions/upload-artifact@v4
with:
name: windows-arm64
path: |
dist/windows-arm64/**
dist/windows-arm64-app.exe
dist/ollama-windows-arm64.zip
# Import the prior generation steps plus the full arm64 build, and build the final windows assets
build-windows:
environment: release
runs-on: windows
needs:
- generate-windows-cuda
- generate-windows-rocm
- generate-windows-cpu
- windows-arm64
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'
credentials_json: '${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}'
- run: echo "${{ vars.OLLAMA_CERT }}" > ollama_inc.crt
- name: install Windows SDK 8.1 to get signtool
run: |
$ErrorActionPreference = "Stop"
write-host "downloading SDK"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${env:RUNNER_TEMP}\sdksetup.exe"
Start-Process "${env:RUNNER_TEMP}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
write-host "Win SDK 8.1 installed"
gci -path 'C:\Program Files (x86)\Windows Kits\' -r -fi 'signtool.exe'
- name: install signing plugin
run: |
$ErrorActionPreference = "Stop"
write-host "downloading plugin"
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${env:RUNNER_TEMP}\plugin.zip"
Expand-Archive -Path "${env:RUNNER_TEMP}\plugin.zip" -DestinationPath ${env:RUNNER_TEMP}\plugin\
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- name: Install msys2
run: |
$msys2_url="https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe"
write-host "Downloading msys2"
Invoke-WebRequest -Uri "${msys2_url}" -OutFile "${env:RUNNER_TEMP}\msys2.exe"
write-host "Installing msys2"
Start-Process "${env:RUNNER_TEMP}\msys2.exe" -ArgumentList @("in", "--confirm-command", "--accept-messages", "--root", "C:/msys64") -NoNewWindow -Wait
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install msys2 tools
run: |
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang", "make") -NoNewWindow -Wait
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: verify tools
run: |
get-command gcc
gcc --version
get-command make
make --version
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache: true
- run: go get
- uses: actions/download-artifact@v4
with:
name: generate-windows-cpu
path: dist/windows-amd64/
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-11.3
path: dist/windows-amd64/
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda-12.4
path: dist/windows-amd64/
- uses: actions/download-artifact@v4
with:
name: generate-windows-rocm
path: dist/windows-amd64/
- uses: actions/download-artifact@v4
with:
name: windows-arm64
path: dist
- run: |
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
$env:OLLAMA_SKIP_GENERATE="1"
$env:ARCH="amd64"
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
& .\scripts\build_windows.ps1
- uses: actions/upload-artifact@v4
with:
name: dist-windows
path: |
dist\OllamaSetup.exe
dist\ollama-windows-*.zip
dist/OllamaSetup.exe
dist/ollama-windows-*.zip
linux-build:
strategy:
matrix:
include:
- os: linux
arch: amd64
target: archive
- os: linux
arch: amd64
target: rocm
- os: linux
arch: arm64
target: archive
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
build-linux:
environment: release
needs: setup-environment
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- uses: actions/checkout@v4
- uses: docker/setup-buildx-action@v3
- uses: docker/build-push-action@v6
with:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
target: ${{ matrix.target }}
build-args: |
GOFLAGS=${{ env.GOFLAGS }}
CGO_CFLAGS=${{ env.CGO_CFLAGS }}
CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }}
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
cache-from: type=registry,ref=ollama/ollama:latest
cache-to: type=inline
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
esac
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
done
- uses: actions/upload-artifact@v4
with:
name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }}
path: |
*.tgz
# Build each Docker variant (OS, arch, and flavor) separately. Using QEMU is unreliable and slower.
docker-build-push:
strategy:
matrix:
include:
- os: linux
arch: arm64
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
- os: linux
arch: amd64
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
- os: linux
arch: amd64
suffix: '-rocm'
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
FLAVOR=rocm
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- uses: actions/checkout@v4
- uses: docker/setup-buildx-action@v3
- uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- id: build-push
uses: docker/build-push-action@v6
with:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
build-args: ${{ matrix.build-args }}
outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=ollama/ollama:latest
cache-to: type=inline
- run: |
mkdir -p ${{ matrix.os }}-${{ matrix.arch }}
echo "${{ steps.build-push.outputs.digest }}" >${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt
working-directory: ${{ runner.temp }}
- uses: actions/upload-artifact@v4
with:
name: digest-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}
path: |
${{ runner.temp }}/${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt
# Merge Docker images for the same flavor into a single multi-arch manifest
docker-merge-push:
strategy:
matrix:
suffix: ['', '-rocm']
runs-on: linux
environment: release
needs: [docker-build-push]
strategy:
matrix:
include:
- os: linux
arch: amd64
targets: [archive, rocm]
- os: linux
arch: arm64
targets: [archive]
steps:
- uses: actions/checkout@v4
- uses: docker/setup-qemu-action@v3
- uses: docker/setup-buildx-action@v3
- run: |
apt-get update && apt-get install pigz
for TARGET in ${{ matrix.targets }}; do docker buildx build --platform $PLATFORM --target $TARGET --output type=local,dest=dist/$PLATFORM .; done
tar c -C dist/$PLATFORM . | pigz -9cv >dist/ollama-${PLATFORM//\//-}.tar.gz
env:
PLATFORM: ${{ matrix.os }}/${{ matrix.arch }}
- uses: actions/upload-artifact@v4
with:
name: dist-${{ matrix.os }}-${{ matrix.arch }}
path: |
dist/ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.gz
build-docker:
environment: release
runs-on: linux
strategy:
matrix:
include:
- flavor: |
latest=auto
platforms: linux/amd64,linux/arm64
build-args: [GOFLAGS]
- flavor: |
suffix=-rocm,onlatest=false
platforms: linux/amd64
build-args: [GOFLAGS, FLAVOR=rocm]
steps:
- uses: actions/checkout@v4
- uses: docker/setup-qemu-action@v2
- uses: docker/setup-buildx-action@v2
- uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
@@ -410,27 +531,32 @@ jobs:
- id: metadata
uses: docker/metadata-action@v4
with:
flavor: |
latest=false
suffix=${{ matrix.suffix }}
flavor: ${{ matrix.flavor }}
images: |
ollama/ollama
tags: |
type=ref,enable=true,priority=600,prefix=pr-,event=pr
type=semver,pattern={{version}}
- uses: actions/download-artifact@v4
- uses: docker/build-push-action@v6
with:
pattern: digest-*
path: ${{ runner.temp }}
merge-multiple: true
- run: |
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ')
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
working-directory: ${{ runner.temp }}
context: .
push: true
platforms: ${{ matrix.platforms }}
build-args: ${{ matrix.build-args }}
tags: ${{ steps.metadata.outputs.tags }}
labels: ${{ steps.metadata.outputs.labels }}
cache-from: type=registry,ref=ollama/ollama:latest
cache-to: type=inline
provenance: false
env:
GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ steps.metadata.outputs.version }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
# Aggregate all the assets and ship a release
release:
needs: [darwin-sign, windows-sign, linux-build]
needs:
- build-darwin
- build-windows
- build-linux-amd64
- build-linux-arm64
runs-on: linux
environment: release
permissions:
@@ -439,34 +565,33 @@ jobs:
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Set Version
shell: bash
run: |
echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
echo "RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" >> $GITHUB_ENV
- name: Retrieve built artifact
uses: actions/download-artifact@v4
with:
name: dist-darwin
path: dist
- uses: actions/download-artifact@v4
with:
name: dist-windows
path: dist
- uses: actions/download-artifact@v4
with:
pattern: dist-linux-*
path: dist
pattern: dist-*
merge-multiple: true
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
working-directory: dist
- run: |
ls -lh dist/
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
cat dist/sha256sum.txt
- name: Create or update Release
run: |
RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
echo "Looking for existing release for ${RELEASE_VERSION}"
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName")
echo "Looking for existing release for ${{ env.RELEASE_VERSION }}"
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${{ env.RELEASE_VERSION }}\") | .tagName")
if [ -n "$OLD_TAG" ]; then
echo "Updating release ${RELEASE_VERSION} to point to new tag ${GITHUB_REF_NAME}"
echo "Updating release ${{ env.RELEASE_VERSION }} to point to new tag ${GITHUB_REF_NAME}"
gh release edit ${OLD_TAG} --tag ${GITHUB_REF_NAME}
else
echo "Creating new release ${RELEASE_VERSION} pointing to tag ${GITHUB_REF_NAME}"
echo "Creating new release ${{ env.RELEASE_VERSION }} pointing to tag ${GITHUB_REF_NAME}"
gh release create ${GITHUB_REF_NAME} \
--title ${RELEASE_VERSION} \
--title ${{ env.RELEASE_VERSION }} \
--draft \
--generate-notes \
--prerelease

View File

@@ -40,105 +40,32 @@ jobs:
linux:
needs: [changes]
if: needs.changes.outputs.changed == 'True'
if: ${{ needs.changes.outputs.changed == 'True' }}
strategy:
matrix:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
- container: nvidia/cuda:11.8.0-devel-ubuntu22.04
preset: CUDA
- container: rocm/dev-ubuntu-22.04:6.1.2
preset: ROCm
extra-packages: rocm-libs
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
runs-on: linux
runs-on: ubuntu-latest
container: ${{ matrix.container }}
steps:
- uses: actions/checkout@v4
- run: |
[ -n "${{ matrix.container }}" ] || sudo=sudo
$sudo apt-get update
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
apt-get update
apt-get install -y cmake pkg-config ccache ${{ matrix.extra-packages }}
ccache -o cache_dir=${{ github.workspace }}\.ccache
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/cache@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
windows:
needs: [changes]
if: needs.changes.outputs.changed == 'True'
strategy:
matrix:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
runs-on: windows
steps:
- run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- if: matrix.preset == 'CUDA'
name: Install CUDA ${{ matrix.cuda-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- if: matrix.preset == 'ROCm'
name: Install ROCm ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
}
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
key: ${{ matrix.install }}
- uses: actions/checkout@v4
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:
CMAKE_GENERATOR: Ninja
cmake --preset ${{ matrix.preset }}
cmake --build --preset ${{ matrix.preset }} --parallel
test:
strategy:
@@ -163,5 +90,5 @@ jobs:
- uses: actions/checkout@v4
- name: Verify patches apply cleanly and do not change files
run: |
make -f Makefile.sync clean sync
make -f Makefile2 clean checkout sync
git diff --compact-summary --exit-code

5
.gitignore vendored
View File

@@ -4,13 +4,12 @@
.venv
.swp
dist
build
ollama
.cache
*.exe
.idea
test_data
*.crt
__debug_bin*
llama/build
llama/vendor
__debug_bin*
llama/vendor

View File

@@ -21,28 +21,12 @@ set(GGML_BACKEND_SHARED ON)
set(GGML_SCHED_MAX_COPIES 4)
set(GGML_LLAMAFILE ON)
set(GGML_CPU_ALL_VARIANTS ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
set(CMAKE_BUILD_RPATH "@loader_path")
set(CMAKE_INSTALL_RPATH "@loader_path")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
@@ -53,77 +37,18 @@ set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
if(NOT CPU_VARIANTS)
set(CPU_VARIANTS "ggml-cpu")
endif()
install(TARGETS ggml-base ${CPU_VARIANTS}
RUNTIME_DEPENDENCIES
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
)
check_language(CUDA)
if(CMAKE_CUDA_COMPILER)
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
set(CMAKE_CUDA_ARCHITECTURES "native")
endif()
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
)
check_language(HIP)
if(CMAKE_HIP_COMPILER)
set(HIP_PLATFORM "amd")
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()
if(AMDGPU_TARGETS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
endif()
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()
endif()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
endif()

View File

@@ -4,7 +4,6 @@
{
"name": "Default",
"binaryDir": "${sourceDir}/build",
"installDir": "${sourceDir}/dist",
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Release"
}
@@ -56,7 +55,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
}
}
],

View File

@@ -33,33 +33,25 @@ FROM base AS cpu
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
cmake --preset 'CPU' && cmake --build --parallel --preset 'CPU'
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'CUDA 11' && cmake --build --parallel --preset 'CUDA 11'
FROM base AS cuda-12
ARG CUDA12VERSION=12.4
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'CUDA 12' && cmake --build --parallel --preset 'CUDA 12'
FROM base AS rocm-6
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
cmake --preset 'ROCm 6' && cmake --build --parallel --preset 'ROCm 6'
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@@ -68,9 +60,7 @@ RUN apt-get update && apt-get install -y curl ccache \
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'JetPack 5' && cmake --build --parallel --preset 'JetPack 5'
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
@@ -79,9 +69,7 @@ RUN apt-get update && apt-get install -y curl ccache \
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'JetPack 6' && cmake --build --parallel --preset 'JetPack 6'
FROM base AS build
ARG GOVERSION=1.23.4
@@ -95,20 +83,65 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=cuda-11 --chmod=644 \
build/lib/libggml-cuda.so \
/usr/local/cuda/lib64/libcublas.so.11 \
/usr/local/cuda/lib64/libcublasLt.so.11 \
/usr/local/cuda/lib64/libcudart.so.11.0 \
/lib/ollama/cuda_v11/
COPY --from=cuda-12 --chmod=644 \
build/lib/libggml-cuda.so \
/usr/local/cuda/lib64/libcublas.so.12 \
/usr/local/cuda/lib64/libcublasLt.so.12 \
/usr/local/cuda/lib64/libcudart.so.12 \
/lib/ollama/cuda_v12/
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
COPY --from=cuda-11 --chmod=644 \
build/lib/libggml-cuda.so \
/usr/local/cuda/lib64/libcublas.so.11 \
/usr/local/cuda/lib64/libcublasLt.so.11 \
/usr/local/cuda/lib64/libcudart.so.11.0 \
/lib/ollama/cuda_v11/
COPY --from=cuda-12 --chmod=644 \
build/lib/libggml-cuda.so \
/usr/local/cuda/lib64/libcublas.so.12 \
/usr/local/cuda/lib64/libcublasLt.so.12 \
/usr/local/cuda/lib64/libcudart.so.12 \
/lib/ollama/cuda_v12/
COPY --from=jetpack-5 --chmod=644 \
build/lib/libggml-cuda.so \
/usr/local/cuda/lib64/libcublas.so.11 \
/usr/local/cuda/lib64/libcublasLt.so.11 \
/usr/local/cuda/lib64/libcudart.so.11.0 \
/lib/ollama/cuda_jetpack5/
COPY --from=jetpack-6 --chmod=644 \
build/lib/libggml-cuda.so \
/usr/local/cuda/lib64/libcublas.so.12 \
/usr/local/cuda/lib64/libcublasLt.so.12 \
/usr/local/cuda/lib64/libcudart.so.12 \
/lib/ollama/cuda_jetpack6/
FROM --platform=linux/arm64 scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
COPY --from=rocm-6 --chmod=644 \
build/lib/libggml-hip.so \
/opt/rocm/lib/libamdhip64.so.6 \
/opt/rocm/lib/libhipblas.so.2 \
/opt/rocm/lib/librocblas.so.4 \
/opt/rocm/lib/libamd_comgr.so.2 \
/opt/rocm/lib/libhsa-runtime64.so.1 \
/opt/rocm/lib/librocprofiler-register.so.0 \
/opt/amdgpu/lib64/libdrm_amdgpu.so.1 \
/opt/amdgpu/lib64/libdrm.so.2 \
/usr/lib64/libnuma.so.1 \
/lib/ollama/rocm/
COPY --from=rocm-6 /opt/rocm/lib/rocblas/ /lib/ollama/rocm/rocblas/
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=cpu --chmod=644 \
build/lib/libggml-base.so \
build/lib/libggml-cpu-*.so \
/lib/ollama/
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:20.04
@@ -116,10 +149,10 @@ RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin
COPY --from=archive /bin/ /usr/bin/
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive /lib/ollama /usr/lib/ollama
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
COPY --from=archive /lib/ollama/ /usr/lib/ollama/
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/ollama
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434

View File

@@ -1,60 +0,0 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
.PHONY: help
help:
@echo "Available targets:"
@echo " sync Sync with upstream repositories"
@echo " checkout Checkout upstream repository"
@echo " apply-patches Apply patches to local repository"
@echo " format-patches Format patches from local repository"
@echo " clean Clean local repository"
@echo
@echo "Example:"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
.PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
.PHONY: llama/build-info.cpp
llama/build-info.cpp: llama/build-info.cpp.in
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml apply-patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
.PHONY: apply-patches
.NOTPARALLEL:
apply-patches: $(addsuffix ed, $(PATCHES))
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))

46
Makefile2 Normal file
View File

@@ -0,0 +1,46 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
all: sync
.PHONY: sync
sync: llama/llama.cpp ml/backend/ggml/ggml
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply_patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml apply_patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply_patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
PATCHES=$(wildcard llama/patches/*.patch)
.PHONY: apply_patches
.NOTPARALLEL:
apply_patches: $(addsuffix ed, $(PATCHES))
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
.PHONY: checkout
checkout: $(WORKDIR)
git -C $(WORKDIR) fetch
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format_patches
format_patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
--no-numbered \
--zero-commit \
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))

View File

@@ -18,7 +18,7 @@ Get up and running with large language models.
### Linux
```shell
```
curl -fsSL https://ollama.com/install.sh | sh
```
@@ -42,7 +42,7 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
```shell
```
ollama run llama3.2
```
@@ -54,8 +54,6 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
@@ -94,13 +92,13 @@ Ollama supports importing GGUF models in the Modelfile:
2. Create the model in Ollama
```shell
```
ollama create example -f Modelfile
```
3. Run the model
```shell
```
ollama run example
```
@@ -112,7 +110,7 @@ See the [guide](docs/import.md) on importing models for more information.
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
```shell
```
ollama pull llama3.2
```
@@ -147,13 +145,13 @@ For more information on working with a Modelfile, see the [Modelfile](docs/model
`ollama create` is used to create a model from a Modelfile.
```shell
```
ollama create mymodel -f ./Modelfile
```
### Pull a model
```shell
```
ollama pull llama3.2
```
@@ -161,13 +159,13 @@ ollama pull llama3.2
### Remove a model
```shell
```
ollama rm llama3.2
```
### Copy a model
```shell
```
ollama cp llama3.2 my-model
```
@@ -186,39 +184,37 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
### Pass the prompt as an argument
```shell
ollama run llama3.2 "Summarize this file: $(cat README.md)"
```
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```shell
```
ollama show llama3.2
```
### List models on your computer
```shell
```
ollama list
```
### List which models are currently loaded
```shell
```
ollama ps
```
### Stop a model which is currently running
```shell
```
ollama stop llama3.2
```
@@ -234,13 +230,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
Next, start the server:
```shell
```
./ollama serve
```
Finally, in a separate shell, run a model:
```shell
```
./ollama run llama3.2
```
@@ -250,7 +246,7 @@ Ollama has a REST API for running and managing models.
### Generate a response
```shell
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt":"Why is the sky blue?"
@@ -259,7 +255,7 @@ curl http://localhost:11434/api/generate -d '{
### Chat with a model
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -357,7 +353,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
@@ -374,14 +369,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
### Cloud
@@ -439,10 +426,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Homebrew](https://formulae.brew.sh/formula/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
@@ -495,9 +481,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
### Mobile
@@ -548,16 +531,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.

View File

@@ -126,8 +126,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
return err
}
}
return ctx.Err()
return nil
}
const maxBufferSize = 512 * format.KiloByte
@@ -190,7 +189,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
}
return ctx.Err()
return nil
}
// GenerateResponseFunc is a function that [Client.Generate] invokes every time

View File

@@ -2,10 +2,9 @@
Run the examples in this directory with:
```shell
```
go run example_name/main.go
```
## Chat - Chat with a model
- [chat/main.go](chat/main.go)

View File

@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
In the top directory of this repo, run the following powershell script
to build the ollama CLI, ollama app, and ollama installer.
```powershell
```
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
```

25
benchmark/README.md Normal file
View File

@@ -0,0 +1,25 @@
# Benchmark
Performance benchmarking for Ollama.
## Prerequisites
- Ollama server running locally (`127.0.0.1:11434`)
- Desired models pre-downloaded (e.g., `llama3.2:1b`)
## Run Benchmark
```bash
# Run all tests
go test -bench=. -timeout 30m ./...
```
## New Runner Benchmark
```bash
go test -bench=Runner
```
or to test multiple models:
```bash
# run this from within the benchmark directory
# requires: llama3.2:1b, llama3.1:8b, llama3.3:70b
sh new_runner.sh
```

72
benchmark/new_runner.sh Normal file
View File

@@ -0,0 +1,72 @@
#!/bin/bash
kill_process_tree() {
local pid=$1
# Get all child processes using pgrep
local children=$(pgrep -P $pid)
# Kill children first
for child in $children; do
kill_process_tree $child
done
# Kill the parent process
kill -9 $pid 2>/dev/null || true
}
# Function to run the runner and benchmark for a given model
run_benchmark() {
local model=$1
echo "Starting runner with model: $model"
# Start the runner in background and save its PID
go run ../cmd/runner/main.go --new-runner -model "$model" &
runner_pid=$!
# Wait for the runner to initialize (adjust sleep time as needed)
sleep 5
echo "Running benchmark..."
# Run test and wait for it to complete
go test -bench=Runner
test_exit_code=$?
echo "Stopping runner process..."
# Kill the runner process and all its children
kill_process_tree $runner_pid
# Wait for the process to fully terminate
wait $runner_pid 2>/dev/null || true
# Make sure no processes are still listening on port 8080
lsof -t -i:8080 | xargs kill -9 2>/dev/null || true
# Additional sleep to ensure port is freed
sleep 2
# Check if test failed
if [ $test_exit_code -ne 0 ]; then
echo "Warning: Benchmark test failed with exit code $test_exit_code"
fi
echo "Benchmark complete for model: $model"
echo "----------------------------------------"
}
HOME_DIR="$HOME"
# llama3.2:1b: ~/.ollama/models/blobs/sha256-74701a8c35f6c8d9a4b91f3f3497643001d63e0c7a84e085bed452548fa88d45
# llama3.1:8b: ~/.ollama/models/blobs/sha256-667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29
# llama3.3:70b: ~/.ollama/models/blobs/sha256-4824460d29f2058aaf6e1118a63a7a197a09bed509f0e7d4e2efb1ee273b447d
models=(
"${HOME_DIR}/.ollama/models/blobs/sha256-74701a8c35f6c8d9a4b91f3f3497643001d63e0c7a84e085bed452548fa88d45"
"${HOME_DIR}/.ollama/models/blobs/sha256-667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"
# "${HOME_DIR}/.ollama/models/blobs/sha256-4824460d29f2058aaf6e1118a63a7a197a09bed509f0e7d4e2efb1ee273b447d"
)
# Run benchmarks for each model
for model in "${models[@]}"; do
run_benchmark "$model"
done
echo "All benchmarks completed!"

View File

@@ -0,0 +1,175 @@
package benchmark
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"testing"
"time"
)
const (
runnerURL = "http://localhost:8080"
warmupPrompts = 2 // Number of warm-up requests per test case
warmupTokens = 50 // Smaller token count for warm-up requests
)
var runnerMetrics []BenchmarkMetrics
// CompletionRequest represents the request body for the completion endpoint
type CompletionRequest struct {
Prompt string `json:"prompt"`
NumPredict int `json:"n_predict"`
Temperature float32 `json:"temperature"`
}
// CompletionResponse represents a single response chunk from the streaming API
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMs int `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMs int `json:"prompt_ms"`
} `json:"timings"`
}
// warmUp performs warm-up requests before the actual benchmark
func warmUp(b *testing.B, tt TestCase) {
b.Logf("Warming up for test case %s", tt.name)
warmupTest := TestCase{
name: tt.name + "_warmup",
prompt: tt.prompt,
maxTokens: warmupTokens,
}
for i := 0; i < warmupPrompts; i++ {
runCompletion(context.Background(), warmupTest, b)
time.Sleep(100 * time.Millisecond) // Brief pause between warm-up requests
}
b.Logf("Warm-up complete")
}
func BenchmarkRunnerInference(b *testing.B) {
b.Logf("Starting benchmark suite")
// Verify server availability
if _, err := http.Get(runnerURL + "/health"); err != nil {
b.Fatalf("Runner unavailable: %v", err)
}
b.Log("Runner available")
tests := []TestCase{
{
name: "short_prompt",
prompt: formatPrompt("Write a long story"),
maxTokens: 100,
},
{
name: "medium_prompt",
prompt: formatPrompt("Write a detailed economic analysis"),
maxTokens: 500,
},
{
name: "long_prompt",
prompt: formatPrompt("Write a comprehensive AI research paper"),
maxTokens: 1000,
},
}
// Register cleanup handler for results reporting
b.Cleanup(func() { reportMetrics(metrics) })
// Main benchmark loop
for _, tt := range tests {
b.Run(tt.name, func(b *testing.B) {
// Perform warm-up requests
warmUp(b, tt)
// Wait a bit after warm-up before starting the actual benchmark
time.Sleep(500 * time.Millisecond)
m := make([]BenchmarkMetrics, b.N)
for i := 0; i < b.N; i++ {
b.ResetTimer()
m[i] = runCompletion(context.Background(), tt, b)
}
metrics = append(metrics, m...)
})
}
}
func formatPrompt(text string) string {
return fmt.Sprintf("<|start_header_id|>system<|end_header_id|>\n\nCutting Knowledge Date: December 2023\n\n<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n%s<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", text)
}
func runCompletion(ctx context.Context, tt TestCase, b *testing.B) BenchmarkMetrics {
start := time.Now()
var ttft time.Duration
var tokens int
lastToken := start
// Create request body
reqBody := CompletionRequest{
Prompt: tt.prompt,
NumPredict: tt.maxTokens,
Temperature: 0.1,
}
jsonData, err := json.Marshal(reqBody)
if err != nil {
b.Fatalf("Failed to marshal request: %v", err)
}
// Create HTTP request
req, err := http.NewRequestWithContext(ctx, "POST", runnerURL+"/completion", bytes.NewBuffer(jsonData))
if err != nil {
b.Fatalf("Failed to create request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
// Execute request
resp, err := http.DefaultClient.Do(req)
if err != nil {
b.Fatalf("Request failed: %v", err)
}
defer resp.Body.Close()
// Process streaming response
decoder := json.NewDecoder(resp.Body)
for {
var chunk CompletionResponse
if err := decoder.Decode(&chunk); err != nil {
if err == io.EOF {
break
}
b.Fatalf("Failed to decode response: %v", err)
}
if ttft == 0 && chunk.Content != "" {
ttft = time.Since(start)
}
if chunk.Content != "" {
tokens++
lastToken = time.Now()
}
if chunk.Stop {
break
}
}
totalTime := lastToken.Sub(start)
return BenchmarkMetrics{
testName: tt.name,
ttft: ttft,
totalTime: totalTime,
totalTokens: tokens,
tokensPerSecond: float64(tokens) / totalTime.Seconds(),
}
}

View File

@@ -0,0 +1,293 @@
// Package benchmark provides tools for performance testing of Ollama inference server and supported models.
package benchmark
import (
"context"
"fmt"
"net/http"
"net/url"
"os"
"testing"
"text/tabwriter"
"time"
"github.com/ollama/ollama/api"
)
// ServerURL is the default Ollama server URL for benchmarking
const serverURL = "http://127.0.0.1:11434"
// metrics collects all benchmark results for final reporting
var metrics []BenchmarkMetrics
// models contains the list of model names to benchmark
var models = []string{
"llama3.2:1b",
// "qwen2.5:7b",
// "llama3.3:70b",
}
// TestCase defines a benchmark test scenario with prompt characteristics
type TestCase struct {
name string // Human-readable test name
prompt string // Input prompt text
maxTokens int // Maximum tokens to generate
}
// BenchmarkMetrics contains performance measurements for a single test run
type BenchmarkMetrics struct {
model string // Model being tested
scenario string // cold_start or warm_start
testName string // Name of the test case
ttft time.Duration // Time To First Token (TTFT)
totalTime time.Duration // Total time for complete response
totalTokens int // Total generated tokens
tokensPerSecond float64 // Calculated throughput
}
// ScenarioType defines the initialization state for benchmarking
type ScenarioType int
const (
ColdStart ScenarioType = iota // Model is loaded from cold state
WarmStart // Model is already loaded in memory
)
// String implements fmt.Stringer for ScenarioType
func (s ScenarioType) String() string {
return [...]string{"cold_start", "warm_start"}[s]
}
// BenchmarkServerInference is the main entry point for benchmarking Ollama inference performance.
// It tests all configured models with different prompt lengths and start scenarios.
func BenchmarkServerInference(b *testing.B) {
b.Logf("Starting benchmark suite with %d models", len(models))
// Verify server availability
if _, err := http.Get(serverURL + "/api/version"); err != nil {
b.Fatalf("Server unavailable: %v", err)
}
b.Log("Server available")
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
// Register cleanup handler for results reporting
b.Cleanup(func() { reportMetrics(metrics) })
// Main benchmark loop
for _, model := range models {
client := api.NewClient(mustParse(serverURL), http.DefaultClient)
// Verify model availability
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: model}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
for _, tt := range tests {
testName := fmt.Sprintf("%s/%s/%s", model, ColdStart, tt.name)
b.Run(testName, func(b *testing.B) {
m := runBenchmark(b, tt, model, ColdStart, client)
metrics = append(metrics, m...)
})
}
for _, tt := range tests {
testName := fmt.Sprintf("%s/%s/%s", model, WarmStart, tt.name)
b.Run(testName, func(b *testing.B) {
m := runBenchmark(b, tt, model, WarmStart, client)
metrics = append(metrics, m...)
})
}
}
}
// runBenchmark executes multiple iterations of a specific test case and scenario.
// Returns collected metrics for all iterations.
func runBenchmark(b *testing.B, tt TestCase, model string, scenario ScenarioType, client *api.Client) []BenchmarkMetrics {
results := make([]BenchmarkMetrics, b.N)
// Run benchmark iterations
for i := 0; i < b.N; i++ {
switch scenario {
case WarmStart:
// Pre-warm the model by generating some tokens
for i := 0; i < 2; i++ {
client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: tt.prompt,
Options: map[string]interface{}{"num_predict": tt.maxTokens, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
}
case ColdStart:
unloadModel(client, model, b)
}
b.ResetTimer()
results[i] = runSingleIteration(context.Background(), client, tt, model, b)
results[i].scenario = scenario.String()
}
return results
}
// unloadModel forces model unloading using KeepAlive: -1 parameter.
// Includes short delay to ensure unloading completes before next test.
func unloadModel(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(100 * time.Millisecond)
}
// runSingleIteration measures performance metrics for a single inference request.
// Captures TTFT, total generation time, and calculates tokens/second.
func runSingleIteration(ctx context.Context, client *api.Client, tt TestCase, model string, b *testing.B) BenchmarkMetrics {
start := time.Now()
var ttft time.Duration
var tokens int
lastToken := start
req := &api.GenerateRequest{
Model: model,
Prompt: tt.prompt,
Options: map[string]interface{}{"num_predict": tt.maxTokens, "temperature": 0.1},
}
if b != nil {
b.Logf("Prompt length: %d chars", len(tt.prompt))
}
// Execute generation request with metrics collection
client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 {
ttft = time.Since(start)
}
if resp.Response != "" {
tokens++
lastToken = time.Now()
}
return nil
})
totalTime := lastToken.Sub(start)
return BenchmarkMetrics{
model: model,
testName: tt.name,
ttft: ttft,
totalTime: totalTime,
totalTokens: tokens,
tokensPerSecond: float64(tokens) / totalTime.Seconds(),
}
}
// reportMetrics processes collected metrics and prints formatted results.
// Generates both human-readable tables and CSV output with averaged statistics.
func reportMetrics(results []BenchmarkMetrics) {
if len(results) == 0 {
return
}
// Aggregate results by test case
type statsKey struct {
model string
scenario string
testName string
}
stats := make(map[statsKey]*struct {
ttftSum time.Duration
totalTimeSum time.Duration
tokensSum int
iterations int
})
for _, m := range results {
key := statsKey{m.model, m.scenario, m.testName}
if _, exists := stats[key]; !exists {
stats[key] = &struct {
ttftSum time.Duration
totalTimeSum time.Duration
tokensSum int
iterations int
}{}
}
stats[key].ttftSum += m.ttft
stats[key].totalTimeSum += m.totalTime
stats[key].tokensSum += m.totalTokens
stats[key].iterations++
}
// Calculate averages
var averaged []BenchmarkMetrics
for key, data := range stats {
count := data.iterations
averaged = append(averaged, BenchmarkMetrics{
model: key.model,
scenario: key.scenario,
testName: key.testName,
ttft: data.ttftSum / time.Duration(count),
totalTime: data.totalTimeSum / time.Duration(count),
totalTokens: data.tokensSum / count,
tokensPerSecond: float64(data.tokensSum) / data.totalTimeSum.Seconds(),
})
}
// Print formatted results
printTableResults(averaged)
printCSVResults(averaged)
}
// printTableResults displays averaged metrics in a formatted table
func printTableResults(averaged []BenchmarkMetrics) {
w := tabwriter.NewWriter(os.Stdout, 0, 0, 2, ' ', 0)
fmt.Fprintln(w, "\nAVERAGED BENCHMARK RESULTS")
fmt.Fprintln(w, "Model\tScenario\tTest Name\tTTFT (ms)\tTotal Time (ms)\tTokens\tTokens/sec")
for _, m := range averaged {
fmt.Fprintf(w, "%s\t%s\t%s\t%.2f\t%.2f\t%d\t%.2f\n",
m.model,
m.scenario,
m.testName,
float64(m.ttft.Milliseconds()),
float64(m.totalTime.Milliseconds()),
m.totalTokens,
m.tokensPerSecond,
)
}
w.Flush()
}
// printCSVResults outputs averaged metrics in CSV format
func printCSVResults(averaged []BenchmarkMetrics) {
fmt.Println("\nCSV OUTPUT")
fmt.Println("model,scenario,test_name,ttft_ms,total_ms,tokens,tokens_per_sec")
for _, m := range averaged {
fmt.Printf("%s,%s,%s,%.2f,%.2f,%d,%.2f\n",
m.model,
m.scenario,
m.testName,
float64(m.ttft.Milliseconds()),
float64(m.totalTime.Milliseconds()),
m.totalTokens,
m.tokensPerSecond,
)
}
}
// mustParse is a helper function to parse URLs with panic on error
func mustParse(rawURL string) *url.URL {
u, err := url.Parse(rawURL)
if err != nil {
panic(err)
}
return u
}

420
cache/cache.go vendored Normal file
View File

@@ -0,0 +1,420 @@
package cache
import (
"errors"
"fmt"
"log/slog"
"math"
"slices"
"github.com/ollama/ollama/ml"
)
var ErrNotSupported = errors.New("model does not support operation")
type Cache interface {
// ** used by model implementations **
// Returns an instance of the cache for layer 'i'
Sub(i int) Cache
// Returns the history of key and value tensors plus a mask
//
// The tensors are of shape embed dim, kv heads, batch size
// The mask is of shape history size, batch size
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Stores a batch of key and value in the cache
//
// The tensors must be of shape embed dim, kv heads, batch size
Put(ctx ml.Context, key, value ml.Tensor)
// ** cache management **
// Closes the cache and frees resources associated with it
Close()
// Called before the start of the model's forward pass. For each
// token in the coming batch, there must be a corresponding entry
// in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
// Copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// Removes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex
Remove(seq int, beginIndex, endIndex int32) error
}
type Causal struct {
DType ml.DType
Capacity int32
// current forward pass
curLayer int
curLoc int
curBatchSize int
curMask ml.Tensor
curCellRange cellRange
// metadata
cells []cacheCell
cellRanges map[int]cellRange
// cache data storage
backend ml.Backend
cacheCtx ml.Context
keys, values []ml.Tensor
}
type seqCell struct {
seq int
pos int32
}
type cacheCell struct {
sequences []seqCell
}
type cellRange struct {
min int
max int
}
func (cell cacheCell) findSeq(seq int) *seqCell {
for i := range cell.sequences {
if cell.sequences[i].seq == seq {
return &cell.sequences[i]
}
}
return nil
}
func NewCausalCache(backend ml.Backend, dtype ml.DType, capacity int32) Cache {
return &Causal{
Capacity: capacity,
DType: dtype,
cells: make([]cacheCell, capacity),
cellRanges: make(map[int]cellRange),
backend: backend,
cacheCtx: backend.NewContext(),
}
}
func (c *Causal) Close() {
c.cacheCtx.Close()
}
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
if len(positions) != len(seqs) {
return fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(positions), len(seqs))
}
c.curBatchSize = len(positions)
if c.curBatchSize < 1 {
return errors.New("batch size cannot be less than 1")
}
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
c.cells[c.curLoc+i] = cacheCell{sequences: []seqCell{{seq: seq, pos: pos}}}
ranges, ok := c.cellRanges[seq]
if !ok {
ranges = newRange()
}
if c.curLoc+i > ranges.max {
ranges.max = c.curLoc + i
}
if ranges.max > c.curCellRange.max {
c.curCellRange.max = ranges.max
}
if c.curLoc+i < ranges.min {
ranges.min = c.curLoc + i
}
if ranges.min < c.curCellRange.min {
c.curCellRange.min = ranges.min
}
c.cellRanges[seq] = ranges
}
c.curMask, err = c.buildMask(ctx, positions, seqs)
return err
}
func newRange() cellRange {
return cellRange{
min: math.MaxInt,
max: 0,
}
}
func (c *Causal) findStartLoc() (int, error) {
var start, count int
for i := range c.cells {
if len(c.cells[i].sequences) == 0 {
count++
if count >= c.curBatchSize {
return start, nil
}
} else {
start = i + 1
count = 0
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
// TODO(jessegross): This makes a number of simplifications such as no padding,
// which could be an issue for CUDA graphs and/or flash attention
len := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, c.curBatchSize*len)
for i := range c.curBatchSize {
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
cellSeq := c.cells[j].findSeq(seqs[i])
if cellSeq == nil || cellSeq.pos > positions[i] {
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
}
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
}
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
for _, obj := range objs {
srcView := obj.View(ctx, int(obj.Stride(2))*src, int(obj.Dim(0)*obj.Dim(1))*len)
dstView := obj.View(ctx, int(obj.Stride(2))*dst, int(obj.Dim(0)*obj.Dim(1))*len)
ctx.Forward(srcView.Copy(ctx, dstView))
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v). For efficiency, we try to group
// multiple contiguous blocks into a single move. However, if we
// exceed the maximum number of tensors then we need to compute
// what we have and start a new batch.
maxMoves := ctx.MaxTensors() / (6 * len(c.keys))
moves := 0
var pendingSrc, pendingDst, pendingLen int
for dst := range c.cells {
if len(c.cells[dst].sequences) == 0 {
for src := len(c.cells) - 1; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute(nil)
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute(nil)
}
ctx.Close()
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if cell.findSeq(seq) != nil {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
}
func (c *Causal) Sub(i int) Cache {
if i >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, i-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, i-len(c.values)+1)...)
}
c.curLayer = i
return c
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
key = key.View(ctx, int(key.Stride(2))*c.curCellRange.min,
int(key.Dim(0)), int(key.Stride(1)),
int(key.Dim(1)), int(key.Stride(2)),
int(c.curMask.Dim(0)),
)
value = value.View(ctx, int(key.Stride(2))*c.curCellRange.min,
int(value.Dim(0)), int(value.Stride(1)),
int(value.Dim(1)), int(value.Stride(2)),
int(c.curMask.Dim(0)),
)
return key, value, c.curMask
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
if c.curBatchSize != int(key.Dim(2)) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, int(key.Dim(2))))
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int64(c.Capacity))
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int64(c.Capacity))
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, int(key.Stride(2))*c.curLoc, int(key.Dim(0)*key.Dim(1)*key.Dim(2)))))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, int(value.Stride(2))*c.curLoc, int(value.Dim(0)*value.Dim(1)*value.Dim(2)))))
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
seqRange := newRange()
for i := range c.cells {
srcCellSeq := c.cells[i].findSeq(srcSeq)
dstCellSeq := c.cells[i].findSeq(dstSeq)
if dstCellSeq != nil {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s seqCell) bool { return s.seq == dstSeq })
}
if srcCellSeq != nil && srcCellSeq.pos < len {
c.cells[i].sequences = append(c.cells[i].sequences, seqCell{seq: dstSeq, pos: srcCellSeq.pos})
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
panic("Shift not yet implemented")
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
}
seqRange := newRange()
for i := range c.cells {
cellSeq := c.cells[i].findSeq(seq)
if cellSeq != nil {
if cellSeq.pos >= beginIndex && cellSeq.pos < endIndex {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s seqCell) bool { return s.seq == seq })
} else {
if cellSeq.pos >= endIndex {
cellSeq.pos += offset
}
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
}
if endIndex != math.MaxInt32 {
err := c.shift(seq, endIndex, offset)
if err != nil {
return err
}
}
c.cellRanges[seq] = seqRange
return nil
}

47
cache/tensor.go vendored Normal file
View File

@@ -0,0 +1,47 @@
package cache
import (
"github.com/ollama/ollama/ml"
)
type TensorCache struct {
curLayer int
cacheCtx ml.Context
keys, values []ml.Tensor
}
func NewTensorCache(backend ml.Backend) *TensorCache {
return &TensorCache{
cacheCtx: backend.NewContext(),
}
}
func (c *TensorCache) Close() {
c.cacheCtx.Close()
}
func (c *TensorCache) Sub(i int) *TensorCache {
if i >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, i-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, i-len(c.values)+1)...)
}
c.curLayer = i
return c
}
func (c *TensorCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.keys[c.curLayer], c.values[c.curLayer], nil
}
func (c *TensorCache) Put(ctx ml.Context, key, value ml.Tensor) {
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
}

View File

@@ -15,11 +15,13 @@ import (
"net"
"net/http"
"os"
"os/signal"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync/atomic"
"syscall"
"time"
"github.com/containerd/console"
@@ -328,7 +330,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if err := PullHandler(cmd, []string{name}); err != nil {
return nil, err
}
return client.Show(cmd.Context(), &api.ShowRequest{Name: name})
}
return info, err
@@ -340,7 +341,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
// TODO(jessegross): We should either find another way to know if this is
// a vision model or remove the logic. Also consider that other modalities will
// need different behavior anyways.
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
opts.MultiModal = true
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -857,6 +858,17 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
spinner := progress.NewSpinner("")
p.Add("", spinner)
cancelCtx, cancel := context.WithCancel(cmd.Context())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
go func() {
<-sigChan
cancel()
}()
var state *displayResponseState = &displayResponseState{}
var latest api.ChatResponse
var fullResponse strings.Builder
@@ -891,7 +903,10 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
req.KeepAlive = opts.KeepAlive
}
if err := client.Chat(cmd.Context(), req, fn); err != nil {
if err := client.Chat(cancelCtx, req, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil, nil
}
return nil, err
}
@@ -931,6 +946,17 @@ func generate(cmd *cobra.Command, opts runOptions) error {
generateContext = []int{}
}
ctx, cancel := context.WithCancel(cmd.Context())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
go func() {
<-sigChan
cancel()
}()
var state *displayResponseState = &displayResponseState{}
fn := func(response api.GenerateResponse) error {
@@ -966,7 +992,10 @@ func generate(cmd *cobra.Command, opts runOptions) error {
KeepAlive: opts.KeepAlive,
}
if err := client.Generate(cmd.Context(), &request, fn); err != nil {
if err := client.Generate(ctx, &request, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil
}
return err
}
@@ -988,7 +1017,8 @@ func generate(cmd *cobra.Command, opts runOptions) error {
latest.Summary()
}
cmd.SetContext(context.WithValue(cmd.Context(), generateContextKey("context"), latest.Context))
ctx = context.WithValue(cmd.Context(), generateContextKey("context"), latest.Context)
cmd.SetContext(ctx)
return nil
}

View File

@@ -2,6 +2,7 @@ package convert
import "github.com/ollama/ollama/fs/ggml"
type qwen2Model struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`

View File

@@ -9,6 +9,8 @@ import (
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
@@ -39,10 +41,13 @@ func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
// Prefer explicit HIP env var

View File

@@ -77,7 +77,8 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
var libDir string
depPaths := LibraryDirs()
libDir := ""
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
@@ -352,8 +353,9 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
})
return nil, err
}
depPaths = append(depPaths, libDir)
}
gpuInfo.DependencyPath = []string{libDir}
gpuInfo.DependencyPath = depPaths
if gfxOverride == "" {
// Only load supported list once

View File

@@ -5,6 +5,7 @@ import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"slices"
"strconv"
@@ -49,13 +50,14 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
slog.Info(err.Error())
return nil, err
}
depPaths := LibraryDirs()
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
depPaths = append(depPaths, libDir)
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
@@ -111,7 +113,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: []string{libDir},
DependencyPath: depPaths,
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
@@ -162,7 +164,9 @@ func AMDValidateLibDir() (string, error) {
}
// Installer payload (if we're running from some other location)
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -23,6 +23,7 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type cudaHandles struct {
@@ -100,7 +101,15 @@ func initCudaHandles() *cudaHandles {
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
if runtime.GOOS == "windows" {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
libDirs := LibraryDirs()
for _, d := range libDirs {
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(d, CudartMgmtName))
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
@@ -231,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPaths := LibraryDirs()
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
@@ -239,9 +248,11 @@ func GetGPUInfo() GpuInfoList {
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
ID: "0",
memInfo: mem,
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
ID: "0",
DependencyPath: depPaths,
},
CPUs: details,
},
@@ -283,13 +294,17 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
if depPaths != nil {
gpuInfo.DependencyPath = depPaths
// Check for variant specific directory
if variant != "" {
for _, d := range depPaths {
if _, err := os.Stat(filepath.Join(d, "cuda_"+variant)); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{filepath.Join(d, "cuda_"+variant)}, gpuInfo.DependencyPath...)
break
}
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
@@ -361,7 +376,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = []string{LibOllamaPath}
gpuInfo.DependencyPath = depPaths
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
@@ -497,30 +512,33 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
// Start with our bundled libraries
patterns := []string{}
for _, d := range LibraryDirs() {
patterns = append(patterns, filepath.Join(d, baseLibName))
}
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
default:
return gpuLibPaths
}
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(p, baseLibName))
patterns = append(patterns, filepath.Join(d, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
@@ -697,6 +715,23 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
}
}
func LibraryDirs() []string {
// dependencies can exist wherever we found the runners (e.g. build tree for developers) and relative to the executable
// This can be simplified once we no longer carry runners as payloads
exe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
return nil
}
lib := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if _, err := os.Stat(lib); err != nil {
return nil
}
return []string{lib}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()

View File

@@ -15,6 +15,7 @@ import (
"syscall"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
const (
@@ -27,6 +28,7 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}
@@ -49,6 +51,7 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: runners.GetCPUCapability().String(),
memInfo: mem,
},
}

View File

@@ -1,56 +0,0 @@
package discover
import (
"os"
"path/filepath"
"runtime"
)
// LibPath is a path to lookup dynamic libraries
// in development it's usually 'build/lib/ollama'
// in distribution builds it's 'lib/ollama' on Windows
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {
return ""
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var libPath string
switch runtime.GOOS {
case "windows":
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
case "linux":
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
case "darwin":
libPath = filepath.Dir(exe)
}
cwd, err := os.Getwd()
if err != nil {
return ""
}
paths := []string{
libPath,
// build paths for development
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
filepath.Join(cwd, "build", "lib", "ollama"),
}
for _, p := range paths {
if _, err := os.Stat(p); err == nil {
return p
}
}
return filepath.Dir(exe)
}()

View File

@@ -5,6 +5,7 @@ import (
"log/slog"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/runners"
)
type memInfo struct {
@@ -106,7 +107,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l {
found := false
requested := info.Library
if info.Variant != "" {
if info.Variant != runners.CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
for i, lib := range libs {

View File

@@ -31,7 +31,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
## Generate a completion
```
```shell
POST /api/generate
```
@@ -306,7 +306,7 @@ curl http://localhost:11434/api/generate -d '{
#### Response
```json
```
{
"model": "llava",
"created_at": "2023-11-03T15:36:02.583064Z",
@@ -485,7 +485,7 @@ A single JSON object is returned:
## Generate a chat completion
```
```shell
POST /api/chat
```
@@ -495,14 +495,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
- `tool_calls` (optional): a list of tools the model wants to use
Advanced parameters (optional):
@@ -795,7 +795,7 @@ curl http://localhost:11434/api/chat -d '{
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -870,7 +870,7 @@ If the messages array is empty, the model will be loaded into memory.
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": []
@@ -878,7 +878,6 @@ curl http://localhost:11434/api/chat -d '{
```
##### Response
```json
{
"model": "llama3.2",
@@ -898,7 +897,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [],
@@ -925,7 +924,7 @@ A single JSON object is returned:
## Create a Model
```
```shell
POST /api/create
```
@@ -1021,7 +1020,7 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
```
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
@@ -1052,7 +1051,7 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
```
{"status":"parsing GGUF"}
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
{"status":"writing manifest"}
@@ -1119,7 +1118,7 @@ Return 200 OK if the blob exists, 404 Not Found if it does not.
## Push a Blob
```
```shell
POST /api/blobs/:digest
```
@@ -1143,7 +1142,7 @@ Return 201 Created if the blob was successfully created, 400 Bad Request if the
## List Local Models
```
```shell
GET /api/tags
```
@@ -1196,7 +1195,7 @@ A single JSON object will be returned.
## Show Model Information
```
```shell
POST /api/show
```
@@ -1262,7 +1261,7 @@ curl http://localhost:11434/api/show -d '{
## Copy a Model
```
```shell
POST /api/copy
```
@@ -1285,7 +1284,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
## Delete a Model
```
```shell
DELETE /api/delete
```
@@ -1311,7 +1310,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
## Pull a Model
```
```shell
POST /api/pull
```
@@ -1383,7 +1382,7 @@ if `stream` is set to false, then the response is a single JSON object:
## Push a Model
```
```shell
POST /api/push
```
@@ -1448,7 +1447,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```
```shell
POST /api/embed
```
@@ -1516,7 +1515,7 @@ curl http://localhost:11434/api/embed -d '{
```
## List Running Models
```
```shell
GET /api/ps
```
@@ -1563,7 +1562,7 @@ A single JSON object will be returned.
> Note: this endpoint has been superseded by `/api/embed`
```
```shell
POST /api/embeddings
```
@@ -1603,7 +1602,7 @@ curl http://localhost:11434/api/embeddings -d '{
## Version
```
```shell
GET /api/version
```

View File

@@ -1,131 +1,165 @@
# Development
Install prerequisites:
Install required tools:
- [Go](https://go.dev/doc/install)
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
- go version 1.22 or higher
- OS specific C/C++ compiler (see below)
- GNU Make
Then build and run Ollama from the root directory of the repository:
```shell
go run . serve
## Overview
Ollama uses a mix of Go and C/C++ code to interface with GPUs. The C/C++ code is compiled with both CGO and GPU library specific compilers. A set of GNU Makefiles are used to compile the project. GPU Libraries are auto-detected based on the typical environment variables used by the respective libraries, but can be overridden if necessary. The default make target will build the runners and primary Go Ollama application that will run within the repo directory. Throughout the examples below `-j 5` is suggested for 5 parallel jobs to speed up the build. You can adjust the job count based on your CPU Core count to reduce build times. If you want to relocate the built binaries, use the `dist` target and recursively copy the files in `./dist/$OS-$ARCH/` to your desired location. To learn more about the other make targets use `make help`
Once you have built the GPU/CPU runners, you can compile the main application with `go build .`
### MacOS
[Download Go](https://go.dev/dl/)
```bash
make -j 5
```
## macOS (Apple Silicon)
Now you can run `ollama`:
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
## macOS (Intel)
Install prerequisites:
- [CMake](https://cmake.org/download/) or `brew install cmake`
Then, configure and build the project:
```shell
cmake -B build
cmake --build build
```bash
./ollama
```
Lastly, run Ollama:
#### Xcode 15 warnings
```shell
go run . serve
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the makefile will auto-detect CUDA, however, if your Linux distro
or installation approach uses alternative paths, you can specify the location by
overriding `CUDA_PATH` to the location of the CUDA toolkit. You can customize
a set of target CUDA architectures by setting `CUDA_ARCHITECTURES` (e.g. `CUDA_ARCHITECTURES=50;60;70`)
```
make -j 5
```
## Windows
If both v11 and v12 tookkits are detected, runners for both major versions will be built by default. You can build just v12 with `make cuda_v12`
Install prerequisites:
#### Older Linux CUDA (NVIDIA)
- [CMake](https://cmake.org/download/)
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
- (Optional) AMD GPU support
- [ROCm](https://rocm.github.io/install.html)
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
To support older GPUs with Compute Capability 3.5 or 3.7, you will need to use an older version of the Driver from [Unix Driver Archive](https://www.nvidia.com/en-us/drivers/unix/) (tested with 470) and [CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive) (tested with cuda V11). When you build Ollama, you will need to set two make variable to adjust the minimum compute capability Ollama supports via `make -j 5 CUDA_ARCHITECTURES="35;37;50;52" EXTRA_GOLDFLAGS="\"-X=github.com/ollama/ollama/discover.CudaComputeMajorMin=3\" \"-X=github.com/ollama/ollama/discover.CudaComputeMinorMin=5\""`. To find the Compute Capability of your older GPU, refer to [GPU Compute Capability](https://developer.nvidia.com/cuda-gpus).
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
#### Linux ROCm (AMD)
> [!IMPORTANT]
> ROCm is not compatible with Visual Studio CMake generators. Use `-GNinja` when configuring the project.
_Your operating system distribution may already have packages for AMD ROCm. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
> [!IMPORTANT]
> CUDA is only compatible with Visual Studio CMake generators.
Install [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
Then, configure and build the project:
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `HIP_PATH` to the location of the ROCm
install (typically `/opt/rocm`). You can also customize
the AMD GPU targets by setting HIP_ARCHS (e.g. `HIP_ARCHS=gfx1101;gfx1102`)
```shell
cmake -B build
cmake --build build --config Release
```
make -j 5
```
Lastly, run Ollama:
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
```shell
go run . serve
#### Containerized Linux Build
If you have Docker and buildx available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting artifacts are placed in `./dist` and by default the script builds both arm64 and amd64 binaries. If you want to build only amd64, you can build with `PLATFORM=linux/amd64 ./scripts/build_linux.sh`
### Windows
The following tools are required as a minimal development environment to build CPU inference support.
- Go version 1.22 or higher
- https://go.dev/dl/
- Git
- https://git-scm.com/download/win
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
- [MSYS2](https://www.msys2.org/)
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
> [!NOTE]
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
```
make -j 5
```
## Windows (ARM)
#### GPU Support
Windows ARM does not support additional acceleration libraries at this time.
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
## Linux
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
Install prerequisites:
#### Windows CUDA (NVIDIA)
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
- (Optional) AMD GPU support
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
In addition to the common Windows development tools and MSVC described above:
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
#### Windows ROCm (AMD Radeon)
Then, configure and build the project:
In addition to the common Windows development tools and MSVC described above:
```shell
cmake -B build
cmake --build build
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```
Lastly, run Ollama:
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
```shell
go run . serve
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
```
## Docker
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
```shell
docker build .
## Advanced CPU Vector Settings
On x86, running `make` will compile several CPU runners which can run on different CPU families. At runtime, Ollama will auto-detect the best variation to load. If GPU libraries are present at build time, Ollama also compiles GPU runners with the `AVX` CPU vector feature enabled. This provides a good performance balance when loading large models that split across GPU and CPU with broad compatibility. Some users may prefer no vector extensions (e.g. older Xeon/Celeron processors, or hypervisors that mask the vector features) while other users may prefer turning on many more vector extensions to further improve performance for split model loads.
To customize the set of CPU vector features enabled for a CPU runner and all GPU runners, use CUSTOM_CPU_FLAGS during the build.
To build without any vector flags:
```
make CUSTOM_CPU_FLAGS=""
```
### ROCm
```shell
docker build --build-arg FLAVOR=rocm .
To build with both AVX and AVX2:
```
make CUSTOM_CPU_FLAGS=avx,avx2
```
## Running tests
To build with AVX512 features turned on:
To run tests, use `go test`:
```shell
go test ./...
```
make CUSTOM_CPU_FLAGS=avx,avx2,avx512,avx512vbmi,avx512vnni,avx512bf16
```
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
* `./lib/ollama` (Windows)
* `../lib/ollama` (Linux)
* `.` (macOS)
* `build/lib/ollama` (for development)
If the libraries are not found, Ollama will not run with any acceleration libraries.
> [!NOTE]
> If you are experimenting with different flags, make sure to do a `make clean` between each change to ensure everything is rebuilt with the new compiler flags

View File

@@ -2,7 +2,7 @@
### CPU only
```shell
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -11,46 +11,42 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
#### Install with Apt
1. Configure the repository
```shell
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```shell
sudo apt-get install -y nvidia-container-toolkit
```
```bash
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```shell
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```shell
sudo yum install -y nvidia-container-toolkit
```
```bash
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```shell
```
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```shell
```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -61,7 +57,7 @@ docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ol
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```shell
```
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
@@ -69,7 +65,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```shell
```
docker exec -it ollama ollama run llama3.2
```

View File

@@ -24,7 +24,7 @@ By default, Ollama uses a context window size of 2048 tokens.
To change this when using `ollama run`, use `/set parameter`:
```shell
```
/set parameter num_ctx 4096
```
@@ -46,15 +46,10 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
```shell
ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR UNTIL
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
> ```
The `Processor` column will show which memory the model was loaded in to:
* `100% GPU` means the model was loaded entirely into the GPU
* `100% CPU` means the model was loaded entirely in system memory
@@ -71,7 +66,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
launchctl setenv OLLAMA_HOST "0.0.0.0"
```
2. Restart Ollama application.
@@ -86,14 +81,14 @@ If Ollama is run as a systemd service, environment variables should be set using
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="OLLAMA_HOST=0.0.0.0"
```
3. Save and exit.
4. Reload `systemd` and restart Ollama:
```shell
```bash
systemctl daemon-reload
systemctl restart ollama
```
@@ -226,19 +221,16 @@ properties.
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
To preload the mistral model using the generate endpoint, use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
```
To use the chat completions endpoint, use:
```shell
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
```
To preload a model using the CLI, use the command:
```shell
ollama run llama3.2 ""
```
@@ -258,13 +250,11 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
* '0' which will unload the model immediately after generating a response
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
```

View File

@@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 9.0 | NVIDIA | `H200` `H100` |
| 9.0 | NVIDIA | `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |

View File

@@ -20,13 +20,13 @@ Make sure that you use the same base model in the `FROM` command as you used to
Now run `ollama create` from the directory where the `Modelfile` was created:
```shell
```bash
ollama create my-model
```
Lastly, test the model:
```shell
```bash
ollama run my-model
```

View File

@@ -119,7 +119,7 @@ sudo systemctl status ollama
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
```shell
```
sudo systemctl edit ollama
```
@@ -152,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
```
## Viewing logs
@@ -186,9 +186,3 @@ sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama
```
Remove installed libraries:
```shell
sudo rm -rf /usr/local/lib/ollama
```

View File

@@ -28,7 +28,7 @@ A model file is the blueprint to create and share models with Ollama.
The format of the `Modelfile`:
```
```modelfile
# comment
INSTRUCTION arguments
```
@@ -49,7 +49,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```
```modelfile
FROM llama3.2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -67,32 +67,28 @@ To use this:
3. `ollama run choose-a-model-name`
4. Start using the model!
More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```shell
ollama show --modelfile llama3.2
```
```bash
> ollama show --modelfile llama3.2
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3.2:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
> **Output**:
>
> ```
> # Modelfile generated by "ollama show"
> # To build a new Modelfile based on this one, replace the FROM line with:
> # FROM llama3.2:latest
> FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
> TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
>
> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
>
> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
>
> {{ .Response }}<|eot_id|>"""
> PARAMETER stop "<|start_header_id|>"
> PARAMETER stop "<|end_header_id|>"
> PARAMETER stop "<|eot_id|>"
> PARAMETER stop "<|reserved_special_token"
> ```
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|reserved_special_token"
```
## Instructions
@@ -100,13 +96,13 @@ ollama show --modelfile llama3.2
The `FROM` instruction defines the base model to use when creating a model.
```
```modelfile
FROM <model name>:<tag>
```
#### Build from existing model
```
```modelfile
FROM llama3.2
```
@@ -117,7 +113,7 @@ Additional models can be found at:
#### Build from a Safetensors model
```
```modelfile
FROM <model directory>
```
@@ -131,7 +127,7 @@ Currently supported model architectures:
#### Build from a GGUF file
```
```modelfile
FROM ./ollama-model.gguf
```
@@ -142,7 +138,7 @@ The GGUF file location should be specified as an absolute path or relative to th
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
```
```modelfile
PARAMETER <parameter> <parametervalue>
```
@@ -189,7 +185,7 @@ TEMPLATE """{{ if .System }}<|im_start|>system
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```
```modelfile
SYSTEM """<system message>"""
```
@@ -199,7 +195,7 @@ The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply
#### Safetensor adapter
```
```modelfile
ADAPTER <path to safetensor adapter>
```
@@ -210,7 +206,7 @@ Currently supported Safetensor adapters:
#### GGUF adapter
```
```modelfile
ADAPTER ./ollama-lora.gguf
```
@@ -218,7 +214,7 @@ ADAPTER ./ollama-lora.gguf
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```
```modelfile
LICENSE """
<license text>
"""
@@ -228,7 +224,7 @@ LICENSE """
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way.
```
```modelfile
MESSAGE <role> <message>
```
@@ -243,7 +239,7 @@ MESSAGE <role> <message>
#### Example conversation
```
```modelfile
MESSAGE user Is Toronto in Canada?
MESSAGE assistant yes
MESSAGE user Is Sacramento in Canada?

View File

@@ -1,7 +1,6 @@
# OpenAI compatibility
> [!NOTE]
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
@@ -60,10 +59,8 @@ embeddings = client.embeddings.create(
input=["why is the sky blue?", "why is the grass green?"],
)
```
#### Structured outputs
```python
```py
from pydantic import BaseModel
from openai import OpenAI
@@ -147,7 +144,7 @@ const embedding = await openai.embeddings.create({
### `curl`
```shell
``` shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
@@ -322,7 +319,7 @@ ollama pull llama3.2
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```shell
```
ollama cp llama3.2 gpt-3.5-turbo
```
@@ -346,7 +343,7 @@ curl http://localhost:11434/v1/chat/completions \
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```
```modelfile
FROM <some model>
PARAMETER num_ctx <context size>
```

View File

@@ -17,7 +17,6 @@ When you run Ollama in a **container**, the logs go to stdout/stderr in the cont
```shell
docker logs <container-name>
```
(Use `docker ps` to find the container name)
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
@@ -29,7 +28,6 @@ When you run Ollama on **Windows**, there are a few different locations. You can
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
```powershell
$env:OLLAMA_DEBUG="1"
& "ollama app.exe"
@@ -51,13 +49,12 @@ Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
```shell
```
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
```
You can see what features your CPU has with the following.
```shell
```
cat /proc/cpuinfo| grep flags | head -1
```
@@ -65,8 +62,8 @@ cat /proc/cpuinfo| grep flags | head -1
If you run into problems on Linux and want to install an older version, or you'd like to try out a pre-release before it's officially released, you can tell the install script which version to install.
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
```
## Linux tmp noexec

View File

@@ -47,7 +47,6 @@ If Ollama is already running, Quit the tray application and relaunch it from the
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
@@ -55,7 +54,7 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<Ctrl>+R` and type in:
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains most resent logs from the GUI application
- *server.log* contains the most recent server logs

View File

@@ -166,7 +166,7 @@ var (
// MultiUserCache optimizes prompt caching for multi-user scenarios
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
// Enable the new Ollama engine
NewEngine = Bool("OLLAMA_NEW_ENGINE")
NewRunners = Bool("OLLAMA_NEW_RUNNERS")
)
func String(s string) func() string {
@@ -252,7 +252,7 @@ func AsMap() map[string]EnvVar {
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_NEW_RUNNERS": {"OLLAMA_NEW_RUNNERS", NewRunners(), "Enable the new Ollama engine"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
@@ -291,3 +291,12 @@ func Values() map[string]string {
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}
// On windows, we keep the binary at the top directory, but
// other platforms use a "bin" directory, so this returns ".."
func LibRelativeToExe() string {
if runtime.GOOS == "windows" {
return "."
}
return ".."
}

View File

@@ -40,6 +40,8 @@ func HumanBytes(b int64) string {
}
switch {
case value >= 100:
return fmt.Sprintf("%d %s", int(value), unit)
case value >= 10:
return fmt.Sprintf("%d %s", int(value), unit)
case value != math.Trunc(value):

View File

@@ -1,91 +0,0 @@
package format
import (
"testing"
)
func TestHumanBytes(t *testing.T) {
type testCase struct {
input int64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{999, "999 B"},
// Test kilobytes (KB)
{1000, "1 KB"},
{1500, "1.5 KB"},
{999999, "999 KB"},
// Test megabytes (MB)
{1000000, "1 MB"},
{1500000, "1.5 MB"},
{999999999, "999 MB"},
// Test gigabytes (GB)
{1000000000, "1 GB"},
{1500000000, "1.5 GB"},
{999999999999, "999 GB"},
// Test terabytes (TB)
{1000000000000, "1 TB"},
{1500000000000, "1.5 TB"},
{1999999999999, "2.0 TB"},
// Test fractional values
{1234, "1.2 KB"},
{1234567, "1.2 MB"},
{1234567890, "1.2 GB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}
func TestHumanBytes2(t *testing.T) {
type testCase struct {
input uint64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{1023, "1023 B"},
// Test kibibytes (KiB)
{1024, "1.0 KiB"},
{1536, "1.5 KiB"},
{1048575, "1024.0 KiB"},
// Test mebibytes (MiB)
{1048576, "1.0 MiB"},
{1572864, "1.5 MiB"},
{1073741823, "1024.0 MiB"},
// Test gibibytes (GiB)
{1073741824, "1.0 GiB"},
{1610612736, "1.5 GiB"},
{2147483648, "2.0 GiB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes2(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}

View File

@@ -12,9 +12,6 @@ func TestHumanNumber(t *testing.T) {
testCases := []testCase{
{0, "0"},
{999, "999"},
{1000, "1K"},
{1001, "1K"},
{1000000, "1M"},
{125000000, "125M"},
{500500000, "500.50M"},

View File

@@ -153,17 +153,19 @@ func (s Tensors) Items(prefix ...string) []*Tensor {
return items
}
func (ts Tensors) GroupLayers() map[string]Layer {
func (ts Tensors) Layers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.items {
parts := strings.Split(t.Name, ".")
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
if i := slices.Index(parts, "blk"); i > 0 {
parts = append([]string{
strings.Join(parts[:i], "."),
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
} else if i == 0 {
parts = append([]string{
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
}
if _, ok := layers[parts[0]]; !ok {
@@ -375,22 +377,22 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
layers := f.Tensors().GroupLayers()
layers := llm.Tensors().Layers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kv = uint64(float64(context*llm.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch f.KV().Architecture() {
switch llm.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
@@ -405,7 +407,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
// mixtral 8x22b
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
@@ -422,11 +424,11 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
@@ -441,7 +443,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
)
var ropeFreqsCount uint64
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
@@ -545,20 +547,20 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
}
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
func (llm GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
func (llm GGML) SupportsFlashAttention() bool {
_, isEmbedding := llm.KV()[fmt.Sprintf("%s.pooling_type", llm.KV().Architecture())]
if isEmbedding {
return false
}
// Check head counts match and are non-zero
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
headCountK := llm.KV().EmbeddingHeadCountK()
headCountV := llm.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}

View File

@@ -1,159 +0,0 @@
package ggml
import (
"maps"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTensorLayers(t *testing.T) {
tensors := make(map[string]*Tensor)
for _, name := range []string{
"token_embd.weight",
"blk.0.attn_k.weight",
"blk.0.attn_output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_v.weight",
"blk.0.attn_norm.weight",
"blk.0.ffn_down.weight",
"blk.0.ffn_gate.weight",
"blk.0.ffn_up.weight",
"blk.0.ffn_norm.weight",
"output_norm.weight",
"mm.0.bias",
"mm.0.weight",
"v.blk.0.attn_k.weight",
"v.blk.0.attn_output.weight",
"v.blk.0.attn_q.weight",
"v.blk.0.attn_v.weight",
"v.blk.0.attn_norm.weight",
"v.blk.0.ffn_down.weight",
"v.blk.0.ffn_gate.weight",
"v.blk.0.ffn_up.weight",
"v.blk.0.ffn_norm.weight",
"v.patch_embd.weight",
"v.position_embd.gate",
"v.position_embd.weight",
} {
tensors[name] = &Tensor{Name: name}
}
cases := []struct {
name string
items []*Tensor
want map[string]Layer
}{
{
name: "text",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
},
},
{
name: "vision",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
{
name: "vision and text",
items: slices.Collect(maps.Values(tensors)),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got := Tensors{items: tt.items}.GroupLayers()
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("unexpected layers (-got +want):\n%s", diff)
}
})
}
}

View File

@@ -32,10 +32,9 @@ const (
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ2_M
fileTypeIQ1_M
fileTypeBF16
@@ -94,14 +93,12 @@ func ParseFileType(s string) (fileType, error) {
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
case "BF16":
@@ -163,8 +160,6 @@ func (t fileType) String() string {
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:

View File

@@ -1,54 +0,0 @@
package kvcache
import (
"errors"
"github.com/ollama/ollama/ml"
)
var (
ErrKvCacheFull = errors.New("could not find a kv cache slot")
ErrNotSupported = errors.New("model does not support operation")
)
type Cache interface {
// ** used by model implementations **
// SetLayer sets the active layer of the cache
SetLayer(layer int)
// Get returns the history of key and value tensors plus a mask
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Put stores a batch of key and value in the cache
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// ** cache management **
// Init sets up runtime parameters
Init(backend ml.Backend, dtype ml.DType, capacity int32)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//
// If an error occurs, the entire context for the sequence should be
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}

View File

@@ -1,455 +0,0 @@
package kvcache
import (
"errors"
"fmt"
"log/slog"
"math"
"slices"
"github.com/ollama/ollama/ml"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
//
// The tensors are of shape embed dim, kv heads, batch size
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
Capacity int32
windowSize int32
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// starting location for data storage for this batch
curLoc int
// size of the current batch
curBatchSize int
// mask of the cache as used by this batch
curMask ml.Tensor
// locations in the cache that are needed for this batch
curCellRange cellRange
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
// that reference the data there
cells []cacheCell
// maps from sequence to the range of locations where it is stored in the cache
cellRanges map[int]cellRange
// ** cache data storage **
shiftFn shiftFn
backend ml.Backend
cacheCtx ml.Context
keys, values []ml.Tensor
}
type cacheCell struct {
pos int32
sequences []int
}
type cellRange struct {
min int
max int
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{windowSize: windowSize, shiftFn: shift}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.DType = dtype
c.Capacity = capacity
c.cells = make([]cacheCell, capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *Causal) Close() {
c.cacheCtx.Close()
}
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx, positions, seqs)
return err
}
func newRange() cellRange {
return cellRange{
min: math.MaxInt,
max: 0,
}
}
// Find the first contiguous block of at least curBatchSize
func (c *Causal) findStartLoc() (int, error) {
var start, count int
for i := range c.cells {
if len(c.cells[i].sequences) == 0 {
count++
if count >= c.curBatchSize {
return start, nil
}
} else {
start = i + 1
count = 0
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
// TODO(jessegross): This does not do padding, which is required for flash attention
len := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, c.curBatchSize*len)
for i := range c.curBatchSize {
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
c.cells[j].pos < positions[i]-c.windowSize {
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
}
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
}
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
for _, obj := range objs {
if obj == nil {
continue
}
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
ctx.Forward(srcView.Copy(ctx, dstView))
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see that the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v).
layers := 0
for _, key := range c.keys {
if key == nil {
continue
}
layers++
}
maxMoves := ctx.MaxTensors() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
src := len(c.cells) - 1
for dst := 0; dst < src; dst++ {
if len(c.cells[dst].sequences) == 0 {
for ; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute()
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute()
}
ctx.Close()
// Reset range metadata
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if slices.Contains(cell.sequences, seq) {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
}
func (c *Causal) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
c.curMask.Dim(0),
)
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
value.Dim(0), value.Stride(1),
value.Dim(1), value.Stride(2),
c.curMask.Dim(0),
)
return key, value, c.curMask
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
if c.curBatchSize != key.Dim(2) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
seqRange := newRange()
for i := range c.cells {
// Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
if slices.Contains(c.cells[i].sequences, dstSeq) {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
}
if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
if c.shiftFn == nil {
return ErrNotSupported
}
ctx := c.backend.NewContext()
defer ctx.Close()
seqRange := c.cellRanges[seq]
size := seqRange.max - seqRange.min + 1
offsets := make([]int32, size)
for i := range offsets {
cell := c.cells[seqRange.min+i]
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
offsets[i] = offset
}
}
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys {
if key == nil {
continue
}
key = key.View(ctx, key.Stride(2)*seqRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
size,
)
roped, err := c.shiftFn(ctx, i, key, kShift)
if err != nil {
return err
}
ctx.Forward(roped.Copy(ctx, key))
}
ctx.Compute()
return nil
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
}
seqRange := newRange()
for i := range c.cells {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
if c.cells[i].pos >= endIndex {
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// TODO(jessegross): Need to be careful about data shared between sequences
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
}
c.cells[i].pos += offset
}
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
}
if seqRange == newRange() {
delete(c.cellRanges, seq)
return nil
}
c.cellRanges[seq] = seqRange
if endIndex != math.MaxInt32 {
err := c.shift(seq, endIndex+offset, offset)
if err != nil {
return err
}
}
return nil
}

View File

@@ -1,510 +0,0 @@
package kvcache
import (
"math"
"slices"
"testing"
"github.com/ollama/ollama/ml"
)
type testCase struct {
name string
in []float32
inShape []int
seqs []int
pos []int32
expected []float32
expectedShape []int
expectedMask []float32
}
func TestStore(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
inShape: []int{2, 3, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
expectedShape: []int{2, 3, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
{
name: "SecondBatch",
in: []float32{115, 215, 125, 225, 135, 235},
inShape: []int{2, 3, 1},
seqs: []int{0},
pos: []int32{4},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
expectedShape: []int{2, 3, 5},
expectedMask: []float32{0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSWA(t *testing.T) {
backend := &testBackend{}
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF32, 16)
tests := []testCase{
{
name: "SlidingWindow",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSequences(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{2, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestRemove(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 1, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveEnd",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{1, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
err = cache.Remove(0, 0, 1)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveMiddle",
in: []float32{7, 8},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{1, 2},
expected: []float32{7, 8, 3, 4, 4},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestDefrag(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
inShape: []int{1, 1, 16},
seqs: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
pos: []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 2, 4)
if err != nil {
panic(err)
}
err = cache.Remove(0, 13, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "Defrag",
in: []float32{17, 18, 19},
inShape: []int{1, 1, 3},
seqs: []int{0, 0, 0},
pos: []int32{16, 17, 18},
expected: []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestCopy(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
cache.CopyPrefix(0, 1, 2)
tests = []testCase{
{
name: "Copy",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{3, 4},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, test.pos, test.seqs)
if err != nil {
panic(err)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
context.Forward(out)
context.Forward(mask)
context.Compute(out, mask)
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
}
})
}
}
type testBackend struct{}
func (b *testBackend) Config() ml.Config {
panic("not implemented")
}
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
if len(shape) > 0 {
total = 1
for _, s := range shape {
total *= s
}
}
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out, _ := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
}
func (c *testContext) Forward(ml.Tensor) {}
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxTensors() int {
return 10
}
func (c *testContext) Close() {}
type testTensor struct {
dtype ml.DType
elementSize int
data []float32
shape []int
}
func (t *testTensor) Dim(n int) int {
return t.shape[n]
}
func (t *testTensor) Stride(n int) int {
stride := t.elementSize
for i := range n {
stride *= t.shape[i]
}
return stride
}
func (t *testTensor) Shape() []int {
return t.shape
}
func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
}
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
var s []int
switch len(shape) {
case 1:
s = []int{shape[0]}
case 5:
s = []int{shape[0], shape[2], shape[4]}
default:
panic("unsupported number of dimensions")
}
context := &testContext{}
view := context.Zeros(t.dtype, s...).(*testTensor)
view.data = t.data[offset : offset+len(view.data)]
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil
}

View File

@@ -1,97 +0,0 @@
package kvcache
import (
"github.com/ollama/ollama/ml"
)
// Encoder cache stores K and V tensors that are position independent
//
// The tensors can be of any shape and will be returned as they were stored
// The mask is currently always nil
//
// Not currently safe for multiple sequences
type EncoderCache struct {
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// if something is stored during this pass, this
// will be the position (but there is no guarantee
// anything will be stored)
curPos int32
// ** cache metadata **
// was something stored in the cache?
encoderCached bool
// position of the cached data
encoderPos int32
// ** cache data storage **
cacheCtx ml.Context
keys, values []ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.cacheCtx = backend.NewContext()
}
func (c *EncoderCache) Close() {
c.cacheCtx.Close()
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *EncoderCache) EncoderCached() bool {
return c.encoderCached
}
func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.keys[c.curLayer], c.values[c.curLayer], nil
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.encoderPos = c.curPos
c.encoderCached = true
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
}
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("encoder cache does not support multiple sequences")
}
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
c.encoderCached = false
}
return nil
}

View File

@@ -1,93 +0,0 @@
package kvcache
import (
"math"
"github.com/ollama/ollama/ml"
)
// Wrapper cache is a container for multiple types of caches,
// such as for the encoding and decoding portions of a model.
type WrapperCache struct {
// caches we are wrapping
caches []Cache
// cache to be used for this layer
curType int
}
func NewWrapperCache(caches ...Cache) *WrapperCache {
return &WrapperCache{
caches: caches,
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
for _, cache := range c.caches {
cache.Init(backend, dtype, capacity)
}
}
func (c *WrapperCache) Close() {
for _, cache := range c.caches {
cache.Close()
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, positions, seqs)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
}
}
return err
}
}
c.curType = 0
return nil
}
func (c *WrapperCache) SetLayer(layer int) {
for _, cache := range c.caches {
cache.SetLayer(layer)
}
}
func (c *WrapperCache) SetLayerType(layerType int) {
c.curType = layerType
}
func (c *WrapperCache) UnderlyingCache() Cache {
return c.caches[c.curType]
}
func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.caches[c.curType].Get(ctx)
}
func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.caches[c.curType].Put(ctx, key, value)
}
func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
for _, cache := range c.caches {
cache.CopyPrefix(srcSeq, dstSeq, len)
}
}
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
for _, cache := range c.caches {
err := cache.Remove(seq, beginIndex, endIndex)
if err != nil {
return err
}
}
return nil
}

View File

@@ -1,52 +1,156 @@
# `llama`
This package provides Go bindings to [llama.cpp](https://github.com/ggerganov/llama.cpp).
This package integrates the [llama.cpp](https://github.com/ggerganov/llama.cpp) library as a Go package and makes it easy to build it with tags for different CPU and GPU processors.
Supported:
- [x] CPU
- [x] avx, avx2
- [x] macOS Metal
- [x] Windows CUDA
- [x] Windows ROCm
- [x] Linux CUDA
- [x] Linux ROCm
- [x] Llava
Extra build steps are required for CUDA and ROCm on Windows since `nvcc` and `hipcc` both require using msvc as the host compiler. For these shared libraries are created:
- `ggml_cuda.dll` on Windows or `ggml_cuda.so` on Linux
- `ggml_hipblas.dll` on Windows or `ggml_hipblas.so` on Linux
> Note: it's important that memory is allocated and freed by the same compiler (e.g. entirely by code compiled with msvc or mingw). Issues from this should be rare, but there are some places where pointers are returned by the CUDA or HIP runtimes and freed elsewhere, causing a a crash. In a future change the same runtime should be used in both cases to avoid crashes.
## Building
```
go build .
```
### AVX
```shell
go build -tags avx .
```
### AVX2
```shell
# go doesn't recognize `-mfma` as a valid compiler flag
# see https://github.com/golang/go/issues/17895
go env -w "CGO_CPPFLAGS_ALLOW=-mfma|-mf16c"
go build -tags=avx,avx2 .
```
## Linux
### CUDA
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive):
```shell
make ggml_cuda.so
go build -tags avx,cuda .
```
### ROCm
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.so
go build -tags avx,rocm .
```
## Windows
Download [w64devkit](https://github.com/skeeto/w64devkit/releases/latest) for a simple MinGW development environment.
### CUDA
Install the [CUDA toolkit v11.3.1](https://developer.nvidia.com/cuda-11-3-1-download-archive) then build the cuda code:
```shell
make ggml_cuda.dll
go build -tags avx,cuda .
```
### ROCm
Install [ROCm](https://rocm.docs.amd.com/en/latest/).
```shell
make ggml_hipblas.dll
go build -tags avx,rocm .
```
## Building runners
```shell
# build all runners for this platform
make -j
```
## Vendoring
Ollama vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/llama.cpp/tree/master/ggml/src). While we generally strive to contribute changes back upstream to avoid drift, we carry a small set of patches which are applied to the tracking commit.
Ollama currently vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/ggml) through a vendoring model. While we generally strive to contribute changes back upstream to avoid drift, we cary a small set of patches which are applied to the tracking commit. A set of make targets are available to aid developers in updating to a newer tracking commit, or to work on changes.
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
```shell
make -f Makefile.sync apply-patches
```
make apply-patches
```
### Updating Base Commit
**Pin to new base commit**
To change the base commit, update `FETCH_HEAD` in Makefile.sync.
To update to a newer base commit, select the upstream git tag or commit and update `llama/vendoring`
#### Applying patches
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```shell
make -f Makefile.sync apply-patches
```
make apply-patches
```
If there are conflicts, you will see an error message. Resolve the conflicts in `./vendor/`, and continue the patch series with `git am --continue` and rerun `make -f Makefile.sync apply-patches`. Repeat until all patches are successfully applied.
If you see an error message about a conflict, go into the `./vendor/` directory, and perform merge resolution using your preferred tool to the patch commit which failed. Save the file(s) and continue the patch series with `git am --continue` . If any additional patches fail, follow the same pattern until the full patch series is applied. Once finished, run a final `create-patches` and `sync` target to ensure everything is updated.
Once all patches are applied, commit the changes to the tracking repository.
```shell
make -f Makefile.sync format-patches sync
```
make create-patches sync
```
Build and test Ollama, and make any necessary changes to the Go code based on the new base commit. Submit your PR to the Ollama repo.
### Generating Patches
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```shell
make -f Makefile.sync clean apply-patches
```
make apply-patches
```
Now edit the upstream native code in the `./vendor/` directory. You do not need to commit every change in order to build, a dirty working tree in the tracking repo is OK while developing. Simply save in your editor, and run the following to refresh the vendored code with your changes, build the backend(s) and build ollama:
```
make sync
make -j 8
go build .
```
> [!IMPORTANT]
> Do **NOT** run `apply-patches` while you're iterating as that will reset the tracking repo. It will detect a dirty tree and abort, but if your tree is clean and you accidentally ran this target, use `git reflog` to recover your commit(s).
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```shell
make -f Makefile.sync format-patches
```
make create-patches
```
> [!IMPORTANT]
> Once you have completed this step, it is safe to run `apply-patches` since your change is preserved in the patches.
In your `./vendor/` directory, create a branch, and cherry-pick the new commit to that branch, then submit a PR upstream to llama.cpp.

View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "46e3556e01b824e52395fb050b29804b6cff2a7c";
char const *LLAMA_COMMIT = "ba1cb19cdd0d92e012e0f6e009e0620f854b6afd";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1,4 +0,0 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "@FETCH_HEAD@";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1235,15 +1235,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG_ERR("%s: failed to initialize backend\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
#ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0);
LOG_INF("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
LOG_INF("%s: CLIP using Metal backend\n", __func__);
#endif
#ifdef GGML_USE_CANN
new_clip->backend = ggml_backend_cann_init(0);
LOG_INF("%s: CLIP using CANN backend\n", __func__);
#endif
#ifdef GGML_USE_VULKAN
new_clip->backend = ggml_backend_vk_init(0);
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
#endif
#ifdef GGML_USE_SYCL
new_clip->backend = ggml_backend_sycl_init(0);
LOG_INF("%s: CLIP using SYCL backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_clip->backend = backend;
// model size and capabilities
{

View File

@@ -199,25 +199,21 @@ func (c *Context) KvCacheDefrag() {
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if e == nil {
embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if embeddings == nil {
return nil
}
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if e == nil {
embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if embeddings == nil {
return nil
}
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}
type ModelParams struct {

31
llama/mllama.cpp vendored
View File

@@ -558,15 +558,30 @@ struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1)
mllama_ctx *new_mllama = new mllama_ctx{};
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG("%s: failed to initialize backend\n", __func__);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
#ifdef GGML_USE_CUDA
new_mllama->backend = ggml_backend_cuda_init(0);
LOG("vision using CUDA backend");
#endif
#ifdef GGML_USE_METAL
new_mllama->backend = ggml_backend_metal_init();
LOG("vision using Metal backend");
#endif
#ifdef GGML_USE_CANN
new_mllama->backend = ggml_backend_cann_init(0);
LOG("vision using CANN backend");
#endif
#ifdef GGML_USE_VULKAN
new_mllama->backend = ggml_backend_vk_init(0);
LOG("vision using Vulkan backend");
#endif
if (!new_mllama->backend) {
new_mllama->backend = ggml_backend_cpu_init();
LOG("vision using CPU backend");
}
LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_mllama->backend = backend;
// load tensors
{

View File

@@ -1,14 +1,14 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sat, 4 Jan 2025 22:52:48 -0800
Subject: [PATCH] use dynamic backend loading for clip
Subject: [PATCH] re-enable gpu for clip
---
examples/llava/clip.cpp | 74 +++++++++++++++--------------------------
1 file changed, 27 insertions(+), 47 deletions(-)
examples/llava/clip.cpp | 86 ++++++++++++++++++++---------------------
1 file changed, 43 insertions(+), 43 deletions(-)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index b3c1829f..86b91d5c 100644
index b3c1829f..718052e1 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -8,25 +8,25 @@
@@ -56,7 +56,7 @@ index b3c1829f..86b91d5c 100644
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
@@ -1235,30 +1235,30 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
@@ -84,19 +84,30 @@ index b3c1829f..86b91d5c 100644
-// new_clip->backend = ggml_backend_sycl_init(0);
-// LOG_INF("%s: CLIP using SYCL backend\n", __func__);
-//#endif
-
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
+ ggml_backend_t backend = ggml_backend_init_best();
+ if (backend == nullptr) {
+ LOG_ERR("%s: failed to initialize backend\n", __func__);
+ clip_free(new_clip);
+ gguf_free(ctx);
+ return nullptr;
}
+ LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
+ new_clip->backend = backend;
+#ifdef GGML_USE_CUDA
+ new_clip->backend = ggml_backend_cuda_init(0);
+ LOG_INF("%s: CLIP using CUDA backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_METAL
+ new_clip->backend = ggml_backend_metal_init();
+ LOG_INF("%s: CLIP using Metal backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_CANN
+ new_clip->backend = ggml_backend_cann_init(0);
+ LOG_INF("%s: CLIP using CANN backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_VULKAN
+ new_clip->backend = ggml_backend_vk_init(0);
+ LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_SYCL
+ new_clip->backend = ggml_backend_sycl_init(0);
+ LOG_INF("%s: CLIP using SYCL backend\n", __func__);
+#endif
// model size and capabilities
{
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();

View File

@@ -8,7 +8,7 @@ Subject: [PATCH] sort devices by score
1 file changed, 13 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 899d16f2..135f7df0 100644
index 899d16f2..ac5cda07 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -150,7 +150,7 @@ struct ggml_backend_reg_entry {
@@ -29,7 +29,7 @@ index 899d16f2..135f7df0 100644
if (!reg) {
return;
}
@@ -206,15 +206,20 @@ struct ggml_backend_registry {
@@ -206,15 +206,15 @@ struct ggml_backend_registry {
#endif
backends.push_back({ reg, std::move(handle) });
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
@@ -45,15 +45,10 @@ index 899d16f2..135f7df0 100644
#endif
- devices.push_back(device);
+ devices.push_back({device, score});
+ std::stable_sort(devices.begin(), devices.end(),
+ [](const auto & a, const auto & b) {
+ return a.second > b.second;
+ }
+ );
}
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
@@ -257,7 +262,7 @@ struct ggml_backend_registry {
@@ -257,7 +257,7 @@ struct ggml_backend_registry {
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
@@ -62,7 +57,7 @@ index 899d16f2..135f7df0 100644
return reg;
}
@@ -280,7 +285,7 @@ struct ggml_backend_registry {
@@ -280,7 +280,7 @@ struct ggml_backend_registry {
// remove devices
devices.erase(
std::remove_if(devices.begin(), devices.end(),
@@ -71,12 +66,17 @@ index 899d16f2..135f7df0 100644
devices.end());
// remove backend
@@ -338,7 +343,7 @@ size_t ggml_backend_dev_count() {
@@ -338,7 +338,12 @@ size_t ggml_backend_dev_count() {
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
- return get_reg().devices[index];
+ return get_reg().devices[index].first;
+ auto devices = get_reg().devices;
+ if (!std::is_heap(devices.begin(), devices.end())) {
+ std::make_heap(devices.begin(), devices.end(), [](const auto & a, const auto & b) { return a.second < b.second; });
+ }
+
+ return devices[index].first;
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {

View File

@@ -1,55 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 9 Feb 2025 17:22:15 -0800
Subject: [PATCH] remove sgemm global variables
removes the 'iq4nlt' global variable in sgemm.cpp that causes
a runtime crash when calling dlopen on ggml-cpu libraries as
its initialization depends on AVX instructions the host machine
may not have
---
ggml/src/ggml-cpu/llamafile/sgemm.cpp | 17 +++++++++--------
1 file changed, 9 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
index 8fce576c..3f260ce5 100644
--- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp
+++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
@@ -279,14 +279,6 @@ template <> inline __m256bh load(const float *p) {
}
#endif
-////////////////////////////////////////////////////////////////////////////////////////////////////
-// CONSTANTS
-
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
-static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
-static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
-#endif
-
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
@@ -613,6 +605,14 @@ class tinyBLAS_Q0_AVX {
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
+ const int8_t kvalues_iq4nl[16] = {
+ -127, -104, -83, -65,
+ -49, -35, -22, -10,
+ 1, 13, 25, 38,
+ 53, 69, 89, 113
+ };
+
+ iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}
void matmul(int64_t m, int64_t n) {
@@ -1037,6 +1037,7 @@ class tinyBLAS_Q0_AVX {
const int64_t ldc;
const int ith;
const int nth;
+ __m128i iq4nlt;
};
#endif // __AVX__

View File

@@ -1,69 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 11 Feb 2025 14:06:36 -0800
Subject: [PATCH] try/catch backend load
---
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
1 file changed, 23 insertions(+), 22 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 135f7df0..84b21dd8 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
- if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- if (handle) {
+ try {
+ if (entry.is_regular_file()) {
+ std::wstring filename = entry.path().filename().wstring();
+ std::wstring ext = entry.path().extension().wstring();
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path().wstring();
}
}
}
+ } catch (const std::exception & e) {
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -116,7 +116,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
opts.NumCtx = max(opts.NumCtx, 2048)
}
layers := f.Tensors().GroupLayers()
layers := f.Tensors().Layers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
@@ -410,7 +410,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
return 0, 0
}
for _, layer := range ggml.Tensors().GroupLayers() {
for _, layer := range ggml.Tensors().Layers() {
weights += layer.Size()
}
@@ -431,7 +431,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
numPatches++
}

View File

@@ -101,8 +101,12 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
gpus = discover.GetCPUInfo()
}
estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
var estimate MemoryEstimate
if len(gpus) == 1 && gpus[0].Library == "cpu" {
estimate = EstimateGPULayers(gpus, f, projectors, opts)
} else {
estimate = EstimateGPULayers(gpus, f, projectors, opts)
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this
@@ -229,207 +233,152 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
params = append(params, "--multiuser-cache")
}
libs := make(map[string]string)
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
for _, entry := range entries {
libs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
}
exe, err := os.Executable()
if err != nil {
return nil, err
}
lib := gpus[0].RunnerName()
requested := envconfig.LLMLibrary()
if libs[requested] != "" {
slog.Info("using requested gpu library", "requested", requested)
lib = requested
}
var compatible []string
for k := range libs {
// exact match first
if k == lib {
compatible = append([]string{k}, compatible...)
continue
}
// then match the family (e.g. 'cuda')
if strings.Split(k, "_")[0] == strings.Split(lib, "_")[0] {
compatible = append(compatible, k)
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
if port == 0 {
slog.Debug("ResolveTCPAddr failed ", "error", err)
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if envconfig.NewRunners() {
finalParams = append(finalParams, "--new-runner")
}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if envconfig.NewEngine() {
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// Start with the server directory for the LD_LIBRARY_PATH/PATH
libraryPaths := []string{filepath.Dir(exe)}
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// favor our bundled library dependencies over system libraries
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
var libraryPaths []string
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
if len(compatible) > 0 {
c := compatible[0]
if libpath, ok := libs[c]; ok {
slog.Debug("adding gpu library", "path", libpath)
libraryPaths = append(libraryPaths, libpath)
}
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
slog.Debug("adding gpu dependency paths", "paths", gpus[0].DependencyPath)
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") ||
strings.HasPrefix(ev, "DYLD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
if err = s.cmd.Start(); err != nil {
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
return nil, err
}
slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
compatible = compatible[1:]
continue
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Error("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
if err = s.cmd.Start(); err != nil {
// Detect permission denied and augment the message about noexec
if errors.Is(err, os.ErrPermission) {
return nil, fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, exe)
}
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return nil, fmt.Errorf("error starting the external llama server: %v %s", err, msg)
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Debug("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
}
type ServerStatus int

View File

@@ -6,14 +6,14 @@ This app builds upon Ollama to provide a desktop experience for running models.
First, build the `ollama` binary:
```shell
```
cd ..
go build .
```
Then run the desktop app with `npm start`:
```shell
```
cd macapp
npm install
npm start

View File

@@ -18,8 +18,8 @@ const config: ForgeConfig = {
asar: true,
icon: './assets/icon.icns',
extraResource: [
path.join(__dirname, '../dist/darwin/ollama'),
...fs.readdirSync(path.join(__dirname, '../dist/darwin-amd64/lib/ollama')).map(f => path.join(__dirname, '../dist/darwin-amd64/lib/ollama', f)),
'../dist/ollama',
'../dist/darwin-amd64/lib',
path.join(__dirname, './assets/iconTemplate.png'),
path.join(__dirname, './assets/iconTemplate@2x.png'),
path.join(__dirname, './assets/iconUpdateTemplate.png'),
@@ -43,7 +43,7 @@ const config: ForgeConfig = {
}
: {}),
osxUniversal: {
x64ArchFiles: '*',
x64ArchFiles: '**/ollama*',
},
},
rebuildConfig: {},

14
main.go
View File

@@ -2,8 +2,6 @@ package main
import (
"context"
"os"
"os/signal"
"github.com/spf13/cobra"
@@ -11,15 +9,5 @@ import (
)
func main() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, os.Interrupt)
go func() {
<-sigChan
cancel()
}()
cobra.CheckErr(cmd.NewCLI().ExecuteContext(ctx))
cobra.CheckErr(cmd.NewCLI().ExecuteContext(context.Background()))
}

View File

@@ -5,7 +5,6 @@ import (
"encoding/binary"
"fmt"
"os"
"strconv"
"strings"
)
@@ -23,7 +22,6 @@ type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
SystemInfo() string
}
var backends = make(map[string]func(*os.File) (Backend, error))
@@ -45,21 +43,21 @@ func NewBackend(f *os.File) (Backend, error) {
}
type Context interface {
Zeros(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int64) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Compute(...Tensor)
Compute(Tensor) Tensor
MaxTensors() int
Close()
Close() error
}
type Tensor interface {
Dim(n int) int
Stride(n int) int
Dim(n int) int64
Stride(n int) int64
Shape() []int
Shape() []int64
DType() DType
Bytes() []byte
@@ -68,7 +66,6 @@ type Tensor interface {
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
@@ -82,13 +79,13 @@ type Tensor interface {
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Reshape(ctx Context, shape ...int) Tensor
Reshape(ctx Context, shape ...int64) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Pad(ctx Context, shape ...int) Tensor
Unpad(ctx Context, shape ...int) Tensor
Pad(ctx Context, shape ...int64) Tensor
Unpad(ctx Context, shape ...int64) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
@@ -114,13 +111,13 @@ func mul[T number](s ...T) T {
type DumpOptions struct {
// Items is the number of elements to print at the beginning and end of each dimension.
Items int
Items int64
// Precision is the number of decimal places to print. Applies to float32 and float64.
Precision int
}
func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
func Dump(t Tensor, opts ...DumpOptions) string {
if len(opts) < 1 {
opts = append(opts, DumpOptions{
Items: 3,
@@ -130,28 +127,18 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
switch t.DType() {
case DTypeF32:
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16:
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
return dump[[]float32](t, opts[0])
case DTypeI32:
return dump[[]int32](ctx, t, opts[0].Items, func(i int32) string {
return strconv.FormatInt(int64(i), 10)
})
return dump[[]int32](t, opts[0])
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
if t.Bytes() == nil {
ctx.Forward(t)
ctx.Compute(t)
func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
bts := t.Bytes()
if bts == nil {
return "<nil>"
}
s := make(S, mul(t.Shape()...))
@@ -162,16 +149,16 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
shape := t.Shape()
var sb strings.Builder
var f func([]int, int)
f = func(dims []int, stride int) {
var f func([]int64, int64)
f = func(dims []int64, stride int64) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
for i := int64(0); i < dims[0]; i++ {
if i >= opts.Items && i < dims[0]-opts.Items {
fmt.Fprint(&sb, "..., ")
// skip to next printable element
skip := dims[0] - 2*items
skip := dims[0] - 2*opts.Items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
@@ -184,7 +171,7 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, fn(s[stride+i]))
fmt.Fprint(&sb, s[stride+i])
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
}
@@ -199,8 +186,7 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
type DType int
const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeF32 DType = iota
DTypeI32
DTypeOther
)

View File

@@ -1,30 +1,16 @@
package ggml
/*
#cgo CPPFLAGS: -I${SRCDIR}/ggml/include
#include <stdlib.h>
#include <stdint.h>
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"log/slog"
@@ -256,38 +242,24 @@ func (c *Context) Forward(t ml.Tensor) {
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
}
func (c *Context) Compute(tensors ...ml.Tensor) {
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.sched)
needSync = false
}
if t != nil && C.ggml_nbytes(t.(*Tensor).t) != 0 {
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
return t
}
func (c *Context) MaxTensors() int {
return c.nodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = (C.int64_t)(s)
}
return &sh[0]
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
func (c Context) Zeros(dtype ml.DType, shape ...int64) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -301,11 +273,9 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
default:
panic("unsupported dtype")
}
@@ -320,8 +290,8 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
n := len(s)
if n == 0 {
var shape C.int64_t = 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
shape := 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, (*C.int64_t)(unsafe.Pointer(&shape)))
return &Tensor{t: t}, nil
}
@@ -333,7 +303,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
@@ -348,16 +318,15 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() {
if c != nil {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
}
func (c *Context) Close() error {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
return nil
}
type Tensor struct {
t *C.struct_ggml_tensor
sync func()
data []byte
}
func (t *Tensor) LogValue() slog.Value {
@@ -368,16 +337,16 @@ func (t *Tensor) LogValue() slog.Value {
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
func (t *Tensor) Dim(n int) int64 {
return int64(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
func (t *Tensor) Stride(n int) int64 {
return int64(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
func (t *Tensor) Shape() []int64 {
shape := make([]int64, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
@@ -385,23 +354,18 @@ func (t *Tensor) Shape() []int {
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
func (t *Tensor) Bytes() []byte {
if bts := C.ggml_get_data(t.t); bts != nil {
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
}
return
return nil
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
func (t *Tensor) Floats() (f32s []float32) {
if t.data != nil {
f32s = make([]float32, C.ggml_nelements(t.t))
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
}
return
@@ -411,8 +375,6 @@ func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
@@ -458,15 +420,6 @@ func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
t: mul,
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
@@ -480,7 +433,7 @@ func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
@@ -512,7 +465,7 @@ func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
@@ -553,7 +506,7 @@ func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
@@ -604,14 +557,9 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
ropeFactors = &Tensor{}
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
@@ -642,34 +590,3 @@ func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (b *Backend) SystemInfo() string {
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
var s string
for i := range C.ggml_backend_reg_count() {
reg := C.ggml_backend_reg_get(i)
fName := C.CString("ggml_backend_get_features")
defer C.free(unsafe.Pointer(fName))
get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
if get_features_fn != nil {
s += C.GoString(C.ggml_backend_reg_name(reg))
s += " : "
for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
s += C.GoString(features.name)
s += " = "
s += C.GoString(features.value)
s += " | "
}
}
}
return s + compiler
}

View File

@@ -1,9 +1,7 @@
protect *.go
protect *-embed.*
protect **/*.go
protect **/*-embed.*
include include/
include src/
include src/CMakeLists.txt
include src/**/CMakeLists.txt
include src/ggml-blas/
include src/ggml-cpu/
include src/ggml-cpu/amx/
@@ -12,11 +10,12 @@ include src/ggml-cuda/
include src/ggml-cuda/template-instances/
include src/ggml-hip/
include src/ggml-metal/
include *.c
include *.h
include *.cpp
include *.cu
include *.cuh
include *.m
include *.metal
include **/CMakeLists.txt
include **/*.c
include **/*.h
include **/*.cpp
include **/*.cu
include **/*.cuh
include **/*.m
include **/*.metal
exclude *

View File

@@ -0,0 +1,262 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX)
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(GGML_STANDALONE ON)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
# configure project version
# TODO
else()
set(GGML_STANDALONE OFF)
endif()
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(GGML_WASM_SINGLE_FILE "ggml: embed WASM inside the generated ggml.js" ON)
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
else()
set(BUILD_SHARED_LIBS_DEFAULT ON)
endif()
endif()
# remove the lib prefix on win32 mingw
if (WIN32)
set(CMAKE_STATIC_LIBRARY_PREFIX "")
set(CMAKE_SHARED_LIBRARY_PREFIX "")
set(CMAKE_SHARED_MODULE_PREFIX "")
endif()
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
#
# option list
#
# TODO: mark all options as advanced when not GGML_STANDALONE
if (APPLE)
set(GGML_METAL_DEFAULT ON)
set(GGML_BLAS_DEFAULT ON)
set(GGML_BLAS_VENDOR_DEFAULT "Apple")
else()
set(GGML_METAL_DEFAULT OFF)
set(GGML_BLAS_DEFAULT OFF)
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
if (CMAKE_CROSSCOMPILING)
set(GGML_NATIVE_DEFAULT OFF)
else()
set(GGML_NATIVE_DEFAULT ON)
endif()
# defaults
if (NOT GGML_LLAMAFILE_DEFAULT)
set(GGML_LLAMAFILE_DEFAULT OFF)
endif()
if (NOT GGML_CUDA_GRAPHS_DEFAULT)
set(GGML_CUDA_GRAPHS_DEFAULT OFF)
endif()
# general
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: optimize the build for the current system" ${GGML_NATIVE_DEFAULT})
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
# debug
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
option(GGML_GPROF "ggml: enable gprof" OFF)
# build
option(GGML_FATAL_WARNINGS "ggml: enable -Werror flag" OFF)
# sanitizers
option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
# instruction set specific
if (GGML_NATIVE OR NOT GGML_NATIVE_DEFAULT)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
if (NOT MSVC)
# in MSVC F16C and FMA is implied with AVX2/AVX512
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
option(GGML_F16C "ggml: enable F16C" ${INS_ENB})
# MSVC does not seem to support AMX
option(GGML_AMX_TILE "ggml: enable AMX-TILE" OFF)
option(GGML_AMX_INT8 "ggml: enable AMX-INT8" OFF)
option(GGML_AMX_BF16 "ggml: enable AMX-BF16" OFF)
endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
if (WIN32)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
"ggml: BLAS library vendor")
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" ${GGML_LLAMAFILE_DEFAULT})
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_MUSA "ggml: use MUSA" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"ggml: metal minimum macOS version")
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
option(GGML_OPENMP "ggml: use OpenMP" ON)
option(GGML_RPC "ggml: use RPC" OFF)
option(GGML_SYCL "ggml: use SYCL" OFF)
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
"ggml: sycl target device")
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
"ggml: sycl device architecture")
option(GGML_OPENCL "ggml: use OpenCL" OFF)
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
#
# dependencies
#
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
#
# build the library
#
add_subdirectory(src)
#
# tests and examples
#
if (GGML_BUILD_TESTS)
enable_testing()
add_subdirectory(tests)
endif ()
if (GGML_BUILD_EXAMPLES)
add_subdirectory(examples)
endif ()
#
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# all public headers
set(GGML_PUBLIC_HEADERS
include/ggml.h
include/ggml-cpu.h
include/ggml-alloc.h
include/ggml-backend.h
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cuda.h
include/ggml-kompute.h
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
# set_target_properties(ggml PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/src/ggml-metal.metal")
#endif()
install(TARGETS ggml LIBRARY PUBLIC_HEADER)
install(TARGETS ggml-base LIBRARY)
if (GGML_STANDALONE)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/ggml.pc.in
${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
@ONLY)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
DESTINATION share/pkgconfig)
endif()

View File

@@ -215,11 +215,6 @@ struct ggml_backend_registry {
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
#endif
devices.push_back({device, score});
std::stable_sort(devices.begin(), devices.end(),
[](const auto & a, const auto & b) {
return a.second > b.second;
}
);
}
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
@@ -343,7 +338,12 @@ size_t ggml_backend_dev_count() {
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
return get_reg().devices[index].first;
auto devices = get_reg().devices;
if (!std::is_heap(devices.begin(), devices.end())) {
std::make_heap(devices.begin(), devices.end(), [](const auto & a, const auto & b) { return a.second < b.second; });
}
return devices[index].first;
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
@@ -512,33 +512,32 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
try {
if (entry.is_regular_file()) {
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
continue;
}
if (entry.is_regular_file()) {
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
}
if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
continue;
}
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path().wstring();
if (score_fn) {
int s = score_fn();
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
#endif
if (s > best_score) {
best_score = s;
best_path = entry.path().wstring();
}
} else {
if (!silent) {
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
}
}
}
}
} catch (const std::exception & e) {
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -1,6 +1,5 @@
package cpu
// #cgo CFLAGS: -O3 -Wno-implicit-function-declaration
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/amx -I${SRCDIR}/llamafile -I${SRCDIR}/.. -I${SRCDIR}/../../include
// #cgo CPPFLAGS: -DGGML_USE_LLAMAFILE

View File

@@ -279,6 +279,14 @@ template <> inline __m256bh load(const float *p) {
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// CONSTANTS
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
@@ -605,14 +613,6 @@ class tinyBLAS_Q0_AVX {
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
const int8_t kvalues_iq4nl[16] = {
-127, -104, -83, -65,
-49, -35, -22, -10,
1, 13, 25, 38,
53, 69, 89, 113
};
iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}
void matmul(int64_t m, int64_t n) {
@@ -1037,7 +1037,6 @@ class tinyBLAS_Q0_AVX {
const int64_t ldc;
const int ith;
const int nth;
__m128i iq4nlt;
};
#endif // __AVX__

View File

@@ -0,0 +1,77 @@
#!/usr/bin/env python3
from glob import glob
import os
TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"]
SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f{vkq_size}.cuh"
DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
"""
SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-wmma-f16.cuh"
"""
SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
TYPES_MMQ = [
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
"GGML_TYPE_Q2_K", "GGML_TYPE_Q3_K", "GGML_TYPE_Q4_K", "GGML_TYPE_Q5_K", "GGML_TYPE_Q6_K",
"GGML_TYPE_IQ2_XXS", "GGML_TYPE_IQ2_XS", "GGML_TYPE_IQ2_S", "GGML_TYPE_IQ3_XXS", "GGML_TYPE_IQ3_S",
"GGML_TYPE_IQ1_S", "GGML_TYPE_IQ4_NL", "GGML_TYPE_IQ4_XS"
]
SOURCE_MMQ = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE({type});
"""
def get_short_name(long_quant_name):
return long_quant_name.replace("GGML_TYPE_", "").lower()
def get_head_sizes(type_k, type_v):
if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16":
return [64, 128, 256]
if type_k == "GGML_TYPE_F16":
return [64, 128]
return [128]
for filename in glob("*.cu"):
os.remove(filename)
for vkq_size in [16, 32]:
for type_k in TYPES_KV:
for type_v in TYPES_KV:
for head_size in get_head_sizes(type_k, type_v):
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
for kq_acc_t in ["half", "float"]:
for cols_per_block in [8, 16, 32]:
if kq_acc_t == "float" and cols_per_block == 8:
continue
with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
f.write(SOURCE_FATTN_WMMA_START)
for head_size in [64, 80, 96, 112, 128, 256]:
if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
continue
if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
continue
f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
for type in TYPES_MMQ:
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:
f.write(SOURCE_MMQ.format(type=type))

View File

@@ -41,58 +41,28 @@ func sink(level C.int, text *C.char, _ unsafe.Pointer) {
}
var OnceLoad = sync.OnceFunc(func() {
exe, err := os.Executable()
if err != nil {
slog.Warn("failed to get executable path", "error", err)
exe = "."
}
// PATH, LD_LIBRARY_PATH, and DYLD_LIBRARY_PATH are often
// set by the parent process, however, use a default value
// if the environment variable is not set.
var name, value string
var lib struct{ name, defaultValue string }
switch runtime.GOOS {
case "darwin":
// On macOS, DYLD_LIBRARY_PATH is often not set, so
// we use the directory of the executable as the default.
name = "DYLD_LIBRARY_PATH"
value = filepath.Dir(exe)
case "darwin", "linux":
lib.name = "LD_LIBRARY_PATH"
lib.defaultValue = "/usr/local/lib:/usr/lib"
case "windows":
name = "PATH"
value = filepath.Join(filepath.Dir(exe), "lib", "ollama")
lib.name = "PATH"
lib.defaultValue = "."
default:
name = "LD_LIBRARY_PATH"
value = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
return
}
paths, ok := os.LookupEnv(name)
paths, ok := os.LookupEnv(lib.name)
if !ok {
paths = value
paths = lib.defaultValue
}
split := filepath.SplitList(paths)
visited := make(map[string]struct{}, len(split))
for _, path := range split {
abspath, err := filepath.Abs(path)
if err != nil {
slog.Error("failed to get absolute path", "error", err)
continue
}
if abspath != filepath.Dir(exe) && !strings.Contains(abspath, filepath.FromSlash("lib/ollama")) {
slog.Debug("skipping path which is not part of ollama", "path", abspath)
continue
}
if _, ok := visited[abspath]; !ok {
func() {
slog.Debug("ggml backend load all from path", "path", abspath)
cpath := C.CString(abspath)
defer C.free(unsafe.Pointer(cpath))
C.ggml_backend_load_all_from_path(cpath)
}()
visited[abspath] = struct{}{}
}
for _, path := range filepath.SplitList(paths) {
func() {
cpath := C.CString(path)
defer C.free(unsafe.Pointer(cpath))
C.ggml_backend_load_all_from_path(cpath)
}()
}
})

View File

@@ -0,0 +1,6 @@
//go:build debug
package ggml
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
import "C"

View File

@@ -3,7 +3,7 @@ package llama
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
@@ -11,7 +11,7 @@ import (
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
}
@@ -29,32 +29,28 @@ type Model struct {
}
func New(c ml.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
return &Model{
BytePairEncoding: model.BytePairEncoding{
Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Vocabulary: &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
},
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}, nil
}
type SelfAttention struct {
@@ -64,7 +60,7 @@ type SelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache cache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
@@ -86,7 +82,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.MulmatFullPrec(ctx, q)
kq := k.Mulmat(ctx, q)
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
kq = kq.Add(ctx, mask)
kq = kq.Softmax(ctx)
@@ -98,10 +94,6 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
@@ -120,7 +112,7 @@ type Layer struct {
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache cache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -134,12 +126,12 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cach
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
@@ -147,14 +139,13 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.FromIntSlice(opts.Outputs(), len(opts.Outputs()))
if err != nil {
return nil, err
}

View File

@@ -1,7 +1,9 @@
package mllama
import (
"github.com/ollama/ollama/kvcache"
"sync"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
@@ -9,7 +11,6 @@ import (
type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*TextModel
@@ -17,36 +18,26 @@ type Model struct {
Projector *nn.Linear `gguf:"mm.0"`
ImageProcessor
TextProcessor
start sync.Once
tCache *cache.TensorCache
}
const (
crossAttentionLayer = iota
selfAttentionLayer
)
func New(c ml.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
return &Model{
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextProcessor: newTextProcessor(c),
TextModel: newTextModel(c),
}
m.Cache = kvcache.NewWrapperCache(kvcache.NewEncoderCache(), kvcache.NewCausalCache(m.TextModel.Shift))
return &m, nil
}, nil
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
m.start.Do(func() {
m.tCache = cache.NewTensorCache(m.Backend())
})
var crossAttentionStates ml.Tensor
if opts.Images != nil {
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
@@ -83,20 +74,20 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
}
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache))
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, opts.Cache, m.tCache)
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.FromIntSlice(opts.Outputs(), len(opts.Outputs()))
if err != nil {
return nil, err
}

View File

@@ -4,7 +4,7 @@ import (
"math"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
@@ -16,7 +16,7 @@ type TextSelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache cache.Cache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
@@ -38,7 +38,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.MulmatFullPrec(ctx, query)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Add(ctx, mask)
scores = scores.Softmax(ctx)
@@ -50,11 +50,6 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
return sa.Output.Forward(ctx, attention)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type TextMLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
@@ -74,7 +69,7 @@ type TextSelfAttentionDecoderLayer struct {
MLP *TextMLP
}
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache cache.Cache, _ *cache.TensorCache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -87,6 +82,10 @@ func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, pos
return hiddenState.Add(ctx, residual)
}
func (d *TextSelfAttentionDecoderLayer) Run() bool {
return true
}
type TextCrossAttention struct {
QueryNorm *nn.RMSNorm `gguf:"cross_attn_q_norm"`
Query *nn.Linear `gguf:"cross_attn_q_proj"`
@@ -96,7 +95,7 @@ type TextCrossAttention struct {
Output *nn.Linear `gguf:"cross_attn_o_proj"`
}
func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, _ cache.Cache, tCache *cache.TensorCache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
@@ -115,9 +114,9 @@ func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentio
value = ca.Value.Forward(ctx, crossAttentionStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
cache.Put(ctx, key, value)
tCache.Put(ctx, key, value)
} else {
key, value, _ = cache.Get(ctx)
key, value, _ = tCache.Get(ctx)
}
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
@@ -143,13 +142,17 @@ type TextCrossAttentionDecoderLayer struct {
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
run bool
}
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache cache.Cache, tCache *cache.TensorCache, opts *TextModelOptions) ml.Tensor {
d.run = true
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = d.CrossAttention.Forward(ctx, hiddenState, crossAttentionStates, cache, opts)
hiddenState = d.CrossAttention.Forward(ctx, hiddenState, crossAttentionStates, cache, tCache, opts)
hiddenState = hiddenState.Mul(ctx, d.AttentionGate.Tanh(ctx))
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
@@ -160,26 +163,23 @@ func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _,
return hiddenState.Add(ctx, residual)
}
func (d *TextCrossAttentionDecoderLayer) Run() bool {
return d.run
}
type TextDecoderLayer interface {
Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache cache.Cache, tCache *cache.TensorCache, opts *TextModelOptions) ml.Tensor
Run() bool
}
type TextDecoder struct {
Layers []TextDecoderLayer
}
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache cache.Cache, tCache *cache.TensorCache, opts *TextModelOptions) ml.Tensor {
for i, layer := range d.Layers {
layerType := selfAttentionLayer
if slices.Contains(opts.crossAttentionLayers, uint32(i)) {
layerType = crossAttentionLayer
}
cache.SetLayer(i)
cache.SetLayerType(layerType)
if layerType == selfAttentionLayer || crossAttentionStates != nil || cache.UnderlyingCache().(*kvcache.EncoderCache).EncoderCached() {
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
if layer.Run() || crossAttentionStates != nil {
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache.Sub(i), tCache.Sub(i), opts)
}
}
@@ -189,7 +189,7 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, cr
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
@@ -205,9 +205,9 @@ type TextModel struct {
*TextModelOptions
}
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache cache.Cache, tCache *cache.TensorCache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, tCache, m.TextModelOptions)
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
}
@@ -228,9 +228,9 @@ func newTextModel(c ml.Config) *TextModel {
return &TextModel{
Transformer: &TextDecoder{Layers: decoderLayers},
TextModelOptions: &TextModelOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),

View File

@@ -8,7 +8,7 @@ import (
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
var batchSize int64 = 1
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
@@ -99,7 +99,7 @@ func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermedi
var intermediateHiddenStates []ml.Tensor
for i, layer := range e.Layers {
if slices.Contains(intermediateLayersIndices, uint32(i)) {
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int{1}, hiddenState.Shape()...)...))
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int64{1}, hiddenState.Shape()...)...))
}
hiddenState = layer.Forward(ctx, hiddenState, opts)
@@ -131,7 +131,7 @@ type PrecomputedPositionEmbedding struct {
TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
}
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int64, opts *VisionModelOptions) ml.Tensor {
positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
if e.PositionEmbeddingGate != nil {
positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
@@ -149,7 +149,7 @@ func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, posi
}
type VisionModelOptions struct {
hiddenSize, numHeads, numTiles int
hiddenSize, numHeads, numTiles int64
imageSize, patchSize int
eps float32
@@ -174,7 +174,7 @@ type VisionModel struct {
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
numPatches := int64((m.imageSize / m.patchSize) * (m.imageSize / m.patchSize))
numPositions := numPatches
if m.ClassEmbedding != nil {
numPositions++
@@ -185,7 +185,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, int(m.numTiles)-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
@@ -205,7 +205,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Reshape(ctx, int64(len(intermediateHiddenStates))*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
@@ -219,9 +219,9 @@ func newVisionModel(c ml.Config) *VisionModel {
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
numTiles: int(c.Uint("vision.max_num_tiles")),
hiddenSize: int64(c.Uint("vision.embedding_length")),
numHeads: int64(c.Uint("vision.attention.head_count")),
numTiles: int64(c.Uint("vision.max_num_tiles")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),

View File

@@ -0,0 +1,25 @@
package mllama
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
)
type TextProcessor struct {
model.BytePairEncoding
}
func newTextProcessor(c ml.Config) TextProcessor {
return TextProcessor{
BytePairEncoding: model.BytePairEncoding{
Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Vocabulary: &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
},
}
}

View File

@@ -0,0 +1,87 @@
package mllama
import (
"encoding/json"
"errors"
"os"
"path/filepath"
"strconv"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/model"
)
func TestProcessText(t *testing.T) {
ours, err := model.New(filepath.Join("testdata", "model.bin"))
if errors.Is(err, os.ErrNotExist) {
t.Skip("no model.bin")
} else if err != nil {
t.Fatal(err)
}
t.Run("decode", func(t *testing.T) {
f, err := os.Open(filepath.Join("testdata", "theirs.json"))
if errors.Is(err, os.ErrNotExist) {
t.Skip("no theirs.json")
} else if err != nil {
t.Fatal(err)
}
defer f.Close()
var theirs [][]byte
if err := json.NewDecoder(f).Decode(&theirs); err != nil {
t.Fatal(err)
}
for id := range theirs {
ids := []int32{int32(id)}
s, err := ours.(model.TextProcessor).Decode(ids)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(string(theirs[id]), s); diff != "" {
t.Errorf("%d no match (-theirs +ours):\n%s", id, diff)
}
}
})
t.Run("encode", func(t *testing.T) {
f, err := os.Open(filepath.Join("..", "testdata", "inputs.json"))
if errors.Is(err, os.ErrNotExist) {
t.Skip("no inputs.json")
} else if err != nil {
t.Fatal(err)
}
defer f.Close()
var inputs []struct {
Values []byte `json:"base64"`
IDs []int32 `json:"ids"`
}
if err := json.NewDecoder(f).Decode(&inputs); err != nil {
t.Fatal(err)
}
for i, input := range inputs {
if i == 45 {
t.Skip("skip 45")
}
t.Run(strconv.Itoa(i), func(t *testing.T) {
ids, err := ours.(model.TextProcessor).Encode(string(input.Values))
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(input.IDs, ids, cmpopts.EquateEmpty()); diff != "" {
t.Errorf("%s: no match (-theirs +ours):\n%s", input.Values, diff)
}
})
}
})
}

1
model/mllama/testdata/model.bin vendored Symbolic link
View File

@@ -0,0 +1 @@
/Users/michaelyang/git/ollama/library/nltpt/Llama-3.2-11B-Vision-Instruct/merged.gguf

1
model/mllama/testdata/theirs.json vendored Normal file
View File

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,6 @@
package model
import (
"errors"
"fmt"
"image"
_ "image/jpeg"
@@ -16,51 +15,89 @@ import (
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
)
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Positions []int32
Sequences []int
Outputs []int32
inputs []int32
positions []int32
outputs []int32
sequences []int
Images []image.Image
cache.Cache
}
type config struct {
Cache kvcache.Cache
func (opts Options) Inputs() []int32 {
return opts.inputs
}
func (opts Options) Positions() []int32 {
return opts.positions
}
func (opts Options) Outputs() []int32 {
return opts.outputs
}
type OptionsFunc func(Model, *Options)
func WithInputIDs(ids []int32) OptionsFunc {
return func(m Model, opts *Options) {
opts.inputs = ids
}
}
func WithPositions(pos []int32) OptionsFunc {
return func(m Model, opts *Options) {
opts.positions = pos
}
}
func WithOutputs(outputs []int32) OptionsFunc {
return func(m Model, opts *Options) {
opts.outputs = outputs
}
}
func WithSequences(seqs []int) OptionsFunc {
return func(m Model, opts *Options) {
opts.sequences = seqs
}
}
func WithImage(img image.Image) OptionsFunc {
return func(m Model, opts *Options) {
opts.Images = append(opts.Images, img)
}
}
func WithCache(c cache.Cache) OptionsFunc {
return func(m Model, opts *Options) {
opts.Cache = c
}
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
}
var models = make(map[string]func(ml.Config) (Model, error))
// Register registers a model constructor for the given architecture
func Register(name string, f func(ml.Config) (Model, error)) {
if _, ok := models[name]; ok {
panic("model: model already registered")
@@ -69,9 +106,8 @@ func Register(name string, f func(ml.Config) (Model, error)) {
models[name] = f
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(modelPath string) (Model, error) {
r, err := os.Open(modelPath)
func New(s string) (Model, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
}
@@ -93,15 +129,22 @@ func New(modelPath string) (Model, error) {
return nil, err
}
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
v.Elem().Set(populateFields(b, v))
return m, nil
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
func populateFields(b ml.Backend, v reflect.Value, tags ...Tag) reflect.Value {
var iface bool
if v.Kind() == reflect.Interface {
iface = true
v = v.Elem()
}
t := v.Type()
if t.Kind() == reflect.Pointer {
t, v = t.Elem(), v.Elem()
}
if t.Kind() == reflect.Struct {
allNil := true
@@ -119,7 +162,7 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
}
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
vv.Set(reflect.ValueOf(base))
vv.Set(reflect.ValueOf(Base{b: b}))
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
var fn func([]Tag) [][]string
fn = func(tags []Tag) (values [][]string) {
@@ -145,22 +188,24 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
names := fn(tagsCopy)
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
if tensor := b.Get(strings.Join(name, ".")); tensor != nil {
slog.Debug("found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
}
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
setPointer(base, vv, tagsCopy)
} else if tt.Kind() == reflect.Pointer {
vvv := vv.Elem()
if vv.IsNil() {
vvv = reflect.New(tt.Elem())
}
if f := populateFields(b, vvv, tagsCopy...); f.CanAddr() {
vv.Set(f.Addr())
}
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
for i := range vv.Len() {
vvv := vv.Index(i)
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
} else {
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
vv.Index(i).Set(populateFields(b, vv.Index(i), append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
}
@@ -174,29 +219,13 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
}
}
if iface {
return v.Addr()
}
return v
}
func setPointer(base Base, v reflect.Value, tags []Tag) {
vv := v
if v.Kind() == reflect.Interface {
if v.IsNil() {
return
}
vv = vv.Elem()
}
vv = vv.Elem()
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}
if f := populateFields(base, vv, tags...); f.CanAddr() {
v.Set(f.Addr())
}
}
type Tag struct {
Name string
Alternate []string
@@ -226,21 +255,15 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
func Forward(ctx ml.Context, m Model, optsFuncs ...OptionsFunc) (ml.Tensor, error) {
var opts Options
for _, optsFunc := range optsFuncs {
optsFunc(m, &opts)
}
if len(opts.Positions) < 1 {
return nil, errors.New("batch size cannot be less than 1")
}
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
if err != nil {
return nil, err
}
err := opts.Cache.StartForward(ctx, opts.positions, opts.sequences)
if err != nil {
return nil, err
}
t, err := m.Forward(ctx, opts)
@@ -249,7 +272,5 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
}
ctx.Forward(t)
ctx.Compute(t)
return t, nil
return ctx.Compute(t), nil
}

View File

@@ -78,7 +78,7 @@ func TestPopulateFields(t *testing.T) {
var m fakeModel
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
v.Elem().Set(populateFields(&fakeBackend{
names: []string{
"input.weight",
"blk.0.attn_q.weight",
@@ -90,7 +90,7 @@ func TestPopulateFields(t *testing.T) {
"output_norm.weight",
"output.weight",
},
}}, v.Elem()))
}, v))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
@@ -121,11 +121,11 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
m := fakeModel{}
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
v.Elem().Set(populateFields(&fakeBackend{
names: []string{
"input.weight",
},
}}, v.Elem()))
}, v))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},

View File

@@ -1,6 +0,0 @@
package models
import (
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -2,7 +2,6 @@ package model
import (
"cmp"
"iter"
"log/slog"
"strings"
"sync"
@@ -21,7 +20,7 @@ const (
type TextProcessor interface {
Encode(string) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Is(uint32, Special) bool
}
type Vocabulary struct {
@@ -30,7 +29,7 @@ type Vocabulary struct {
Scores []uint32
Merges []string
BOS, EOS int32
BOS, EOS uint32
specialOnce sync.Once
special []string
@@ -42,7 +41,7 @@ type Vocabulary struct {
merge map[string]int32
}
func (v *Vocabulary) Is(id int32, special Special) bool {
func (v *Vocabulary) Is(id uint32, special Special) bool {
switch special {
case SpecialBOS:
return id == v.BOS
@@ -100,29 +99,23 @@ func (v *Vocabulary) Merge(left, right string) int {
}
type BytePairEncoding struct {
pre *regexp2.Regexp
vocab *Vocabulary
Pretokenizer string
*Vocabulary
}
func NewBytePairEncoding(pre string, vocab *Vocabulary) BytePairEncoding {
return BytePairEncoding{
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
func (bpe BytePairEncoding) split(s string) ([]string, error) {
re, err := regexp2.Compile(bpe.Pretokenizer, regexp2.Unicode|regexp2.RE2)
if err != nil {
return nil, err
}
}
func (bpe BytePairEncoding) Is(id int32, special Special) bool {
return bpe.vocab.Is(id, special)
}
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := bpe.pre.FindStringMatch(s); m != nil; m, _ = bpe.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
var matches []string
for m, _ := re.FindStringMatch(s); m != nil; m, _ = re.FindNextMatch(m) {
matches = append(matches, m.String())
}
return matches, nil
}
// fragment is a string fragment and their corresponding token IDs
@@ -145,9 +138,9 @@ type merge struct {
func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
for _, special := range bpe.Vocabulary.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := bpe.vocab.Encode(special)
id := bpe.Vocabulary.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
@@ -180,7 +173,13 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
continue
}
for split := range bpe.split(frag.value) {
// split fragment using pretokenizer
splits, err := bpe.split(frag.value)
if err != nil {
return nil, err
}
for _, split := range splits {
// TODO: process splits concurrently
var sb strings.Builder
for _, b := range []byte(split) {
@@ -198,7 +197,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
}
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
if id := bpe.Vocabulary.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
continue
@@ -220,7 +219,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
}
left, right := string(merges[a].runes), string(merges[b].runes)
rank := bpe.vocab.Merge(left, right)
rank := bpe.Vocabulary.Merge(left, right)
if rank < 0 {
return nil
}
@@ -272,7 +271,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
for _, merge := range merges {
if len(merge.runes) > 0 {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
if id := bpe.Vocabulary.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
}
@@ -287,7 +286,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
for _, r := range bpe.vocab.Decode(id) {
for _, r := range bpe.Vocabulary.Decode(id) {
switch {
case r == 0x0100:
// this produces 0x00 aka NULL

View File

@@ -1,254 +0,0 @@
package model
import (
"bufio"
"encoding/json"
"math"
"os"
"path/filepath"
"slices"
"strconv"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func llama(t testing.TB) BytePairEncoding {
t.Helper()
f, err := os.Open(filepath.Join("testdata", "llama3.2", "encoder.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
vocab := make(map[string]int32)
if err := json.NewDecoder(f).Decode(&vocab); err != nil {
t.Fatal(err)
}
types := make([]uint32, len(vocab))
tokens := make([]string, len(vocab))
for token, id := range vocab {
tokens[id] = token
types[id] = 1
}
for _, token := range []string{"<|begin_of_text|>", "<|end_of_text|>"} {
if _, ok := vocab[token]; !ok {
tokens = append(tokens, token) //nolint:makezero
types = append(types, 3) //nolint:makezero
vocab[token] = int32(len(vocab))
}
}
f, err = os.Open(filepath.Join("testdata", "llama3.2", "vocab.bpe"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
merges := make([]string, 0, 50000)
scanner := bufio.NewScanner(f)
for scanner.Scan() {
if !strings.HasPrefix(scanner.Text(), "#") {
merges = append(merges, scanner.Text())
}
}
return NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&Vocabulary{
Values: tokens,
Types: types,
Merges: merges,
},
)
}
func TestLlama(t *testing.T) {
tokenizer := llama(t)
t.Run("simple", func(t *testing.T) {
t.Parallel()
ids, err := tokenizer.Encode("hello world")
if err != nil {
t.Error(err)
}
if diff := cmp.Diff([]int32{15339, 1917}, ids); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
s, err := tokenizer.Decode([]int32{15339, 1917})
if err != nil {
t.Fatal(err)
}
if s != "hello world" {
t.Errorf("got %q, want hello world", s)
}
ids, err = tokenizer.Encode("hello <|end_of_text|>")
if err != nil {
t.Error(err)
}
if diff := cmp.Diff([]int32{15339, 220, 128001}, ids); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
})
t.Run("simple repeated", func(t *testing.T) {
t.Parallel()
cases := map[string][]int32{
strings.Repeat("0", 1): {15},
strings.Repeat("0", 2): {410},
strings.Repeat("0", 3): {931},
strings.Repeat("0", 4): {931, 15},
strings.Repeat("0", 5): {931, 410},
strings.Repeat("0", 6): {931, 931},
strings.Repeat("0", 7): {931, 931, 15},
strings.Repeat("0", 8): {931, 931, 410},
strings.Repeat("0", 9): {931, 931, 931},
strings.Repeat("0", 10): {931, 931, 931, 15},
strings.Repeat("0", 11): {931, 931, 931, 410},
strings.Repeat("0", 12): {931, 931, 931, 931},
strings.Repeat("0", 13): {931, 931, 931, 931, 15},
strings.Repeat("0", 14): {931, 931, 931, 931, 410},
strings.Repeat("0", 15): {931, 931, 931, 931, 931},
strings.Repeat("0", 16): {931, 931, 931, 931, 931, 15},
strings.Repeat("0", 17): {931, 931, 931, 931, 931, 410},
}
for s, want := range cases {
ids, err := tokenizer.Encode(s)
if err != nil {
t.Error(err)
}
if diff := cmp.Diff(want, ids); diff != "" {
t.Errorf("%q no match (-theirs +ours):\n%s", s, diff)
}
}
})
t.Run("basic roundtrip", func(t *testing.T) {
t.Parallel()
cases := []string{
"hello",
"hello ",
"hello ",
" hello",
" hello ",
" hello ",
"hello world",
"请考试我的软件12345",
}
for _, want := range cases {
ids, err := tokenizer.Encode(want)
if err != nil {
t.Error(err)
}
if got, err := tokenizer.Decode(ids); err != nil {
t.Fatal(err)
} else if got != want {
t.Errorf("got %q, want %q", got, want)
}
}
})
t.Run("special", func(t *testing.T) {
t.Parallel()
cases := map[string][]int32{
"<|begin_of_text|>A B!": {128000, 32, 426, 0},
"<|begin_of_text|>A<|end_of_text|>B!": {128000, 32, 128001, 33, 0},
"<|begin_of_text|>A<|end_of_text|>B<|begin_of_text|>!": {128000, 32, 128001, 33, 128000, 0},
"<|begin_of_text|>A<|end_of_text|>B<|begin_of_text|>!<|end_of_text|>": {128000, 32, 128001, 33, 128000, 0, 128001},
}
for s, want := range cases {
ids, err := tokenizer.Encode(s)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want, ids); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
}
})
t.Run("split", func(t *testing.T) {
t.Parallel()
cases := map[string][]string{
"Hello World!": {"Hello", " World", "!"},
"I'm don't won't": {"I", "'m", " don", "'t", " won", "'t"},
"In 2024 there are 366 days": {"In", " ", "202", "4", " there", " are", " ", "366", " days"},
"Hello!! ...world": {"Hello", "!!", " ...", "world"},
"Hello World": {"Hello", " ", " World"},
"Hello\nWorld": {"Hello", "\n", "World"},
"Hello, WORLD!! How's it going?": {"Hello", ",", " WORLD", "!!", " How", "'s", " it", " going", "?"},
}
for s, want := range cases {
got := slices.Collect(tokenizer.split(s))
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
}
})
}
func BenchmarkBytePairEncoding(b *testing.B) {
tokenizer := llama(b)
bts, err := os.ReadFile(filepath.Join("testdata", "war-and-peace.txt"))
if err != nil {
b.Fatal(err)
}
for i := range 8 {
n := min(int(math.Pow10(i)), len(bts))
bts := bts[:n]
b.Run("encode"+strconv.Itoa(n), func(b *testing.B) {
b.ResetTimer()
for range b.N {
_, err := tokenizer.Encode(string(bts))
if err != nil {
b.Fatal(err)
}
}
})
b.Run("decode"+strconv.Itoa(n), func(b *testing.B) {
ids, err := tokenizer.Encode(string(bts))
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for range b.N {
_, err := tokenizer.Decode(ids)
if err != nil {
b.Fatal(err)
}
}
})
b.Run("split"+strconv.Itoa(n), func(b *testing.B) {
b.ResetTimer()
for range b.N {
slices.Collect(tokenizer.split(string(bts)))
}
})
}
}

586
model/testdata/inputs.json vendored Normal file
View File

@@ -0,0 +1,586 @@
[
{
"base64": "aWVkIDQgwr0gbW9udGhz",
"ids": [
1142,
220,
19,
220,
27154,
4038
]
},
{
"base64": "RsO8aHJlcg==",
"ids": [
37,
51853,
261
]
},
{
"base64": "",
"ids": []
},
{
"base64": "IA==",
"ids": [
220
]
},
{
"base64": "ICA=",
"ids": [
256
]
},
{
"base64": "ICAg",
"ids": [
262
]
},
{
"base64": "CQ==",
"ids": [
197
]
},
{
"base64": "Cg==",
"ids": [
198
]
},
{
"base64": "Cgo=",
"ids": [
271
]
},
{
"base64": "CgoK",
"ids": [
1432
]
},
{
"base64": "CQo=",
"ids": [
1602
]
},
{
"base64": "SGVsbG8gd29ybGQ=",
"ids": [
9906,
1917
]
},
{
"base64": "IEhlbGxvIHdvcmxk",
"ids": [
22691,
1917
]
},
{
"base64": "SGVsbG8gV29ybGQ=",
"ids": [
9906,
4435
]
},
{
"base64": "IEhlbGxvIFdvcmxk",
"ids": [
22691,
4435
]
},
{
"base64": "IEhlbGxvIFdvcmxkIQ==",
"ids": [
22691,
4435,
0
]
},
{
"base64": "SGVsbG8sIHdvcmxkIQ==",
"ids": [
9906,
11,
1917,
0
]
},
{
"base64": "IEhlbGxvLCB3b3JsZCE=",
"ids": [
22691,
11,
1917,
0
]
},
{
"base64": "IHRoaXMgaXMg8J+mmS5jcHA=",
"ids": [
420,
374,
11410,
99,
247,
13,
11055
]
},
{
"base64": "dzA0OCA3dHVpamsgZHNkZmh1",
"ids": [
86,
23904,
220,
22,
83,
2005,
42908,
11729,
3013,
17156
]
},
{
"base64": "0L3QtdGJ0L4g0L3QsCDQkdGK0LvQs9Cw0YDRgdC60Lg=",
"ids": [
79862,
102118,
13373,
64571,
34694,
3114,
112203,
80112
]
},
{
"base64": "4Z6A4Z624Z6T4Z+L4Z6P4Z+C4Z6W4Z634Z6f4Z+B4Z6f4Z6i4Z624Z6F4Z6B4Z6b4Z6F4Z+B4Z6J",
"ids": [
21549,
222,
98629,
241,
45358,
233,
21549,
237,
45358,
224,
21549,
244,
21549,
115,
21549,
253,
45358,
223,
21549,
253,
21549,
95,
98629,
227,
21549,
223,
21549,
249,
21549,
227,
45358,
223,
21549,
231
]
},
{
"base64": "8J+agCAobm9ybWFsKSDwn5i24oCN8J+Mq++4jyAobXVsdGlwbGUgZW1vamlzIGNvbmNhdGVuYXRlZCkg4pyFIChvbmx5IGVtb2ppIHRoYXQgaGFzIGl0cyBvd24gdG9rZW4p",
"ids": [
9468,
248,
222,
320,
8416,
8,
27623,
114,
102470,
9468,
234,
104,
31643,
320,
36773,
100166,
98634,
8,
26602,
227,
320,
3323,
43465,
430,
706,
1202,
1866,
4037,
8
]
},
{
"base64": "SGVsbG8=",
"ids": [
9906
]
},
{
"base64": "IEhlbGxv",
"ids": [
22691
]
},
{
"base64": "ICBIZWxsbw==",
"ids": [
220,
22691
]
},
{
"base64": "ICAgSGVsbG8=",
"ids": [
256,
22691
]
},
{
"base64": "ICAgIEhlbGxv",
"ids": [
262,
22691
]
},
{
"base64": "ICAgIEhlbGxvCiAgICBIZWxsbw==",
"ids": [
262,
22691,
198,
262,
22691
]
},
{
"base64": "ICg=",
"ids": [
320
]
},
{
"base64": "CiA9",
"ids": [
198,
284
]
},
{
"base64": "JyBlcmE=",
"ids": [
6,
11639
]
},
{
"base64": "SGVsbG8sIHknYWxsISBIb3cgYXJlIHlvdSDwn5iBID/miJHmg7PlnKhhcHBsZeW3peS9nDEzMTQxNTHlpKnvvZ4=",
"ids": [
9906,
11,
379,
65948,
0,
2650,
527,
499,
27623,
223,
949,
37046,
101067,
19000,
23182,
102301,
9263,
18136,
16,
36827,
21909
]
},
{
"base64": "ISEhISEh",
"ids": [
17523,
3001
]
},
{
"base64": "Mw==",
"ids": [
18
]
},
{
"base64": "MzM=",
"ids": [
1644
]
},
{
"base64": "MzMz",
"ids": [
8765
]
},
{
"base64": "MzMzMw==",
"ids": [
8765,
18
]
},
{
"base64": "MzMzMzM=",
"ids": [
8765,
1644
]
},
{
"base64": "MzMzMzMz",
"ids": [
8765,
8765
]
},
{
"base64": "MzMzMzMzMw==",
"ids": [
8765,
8765,
18
]
},
{
"base64": "MzMzMzMzMzM=",
"ids": [
8765,
8765,
1644
]
},
{
"base64": "MzMzMzMzMzMz",
"ids": [
8765,
8765,
8765
]
},
{
"base64": "Q+G7rWEgVmnhu4d0",
"ids": [
34,
91163,
101798
]
},
{
"base64": "IGRpc2NhcmRz",
"ids": [
2624,
2402
]
},
{
"base64": "CiAKCiAKCgogCSAJCSAJCiAgCiAgIAogICAgCiAgICAgCvCfmoAgKG5vcm1hbCkg8J+YtuKAjfCfjKvvuI8gKG11bHRpcGxlIGVtb2ppcyBjb25jYXRlbmF0ZWQpIOKchSDwn6aZ8J+mmSAzIDMzIDMzMyAzMzMzIDMzMzMzIDMzMzMzMyAzMzMzMzMzIDMzMzMzMzMzIDMuMyAzLi4zIDMuLi4zIOGegOGetuGek+Gfi+Gej+GfguGeluGet+Gen+GfgeGen+GeouGetuGehfCfmIEgP+aIkeaDs+WcqGFwcGxl5bel5L2cMTMxNDE1MeWkqe+9niAtLS0tLS09PT09PT09INC90LXRidC+INC90LAg0JHRitC70LPQsNGA0YHQutC4ICcnJycnJ2BgYGBgYGAiIiIiLi4uLi4uISEhISEhPz8/Pz8/IEkndmUgYmVlbiAndG9sZCBoZSdzIHRoZXJlLCAnUkUgeW91IHN1cmU/ICdNIG5vdCBzdXJlIEknbGwgbWFrZSBpdCwgJ0QgeW91IGxpa2Ugc29tZSB0ZWE/IFdlJ1ZlIGEnbEw=",
"ids": [
198,
4815,
15073,
66597,
8004,
1602,
2355,
79772,
11187,
9468,
248,
222,
320,
8416,
8,
27623,
114,
102470,
9468,
234,
104,
31643,
320,
36773,
100166,
98634,
8,
26602,
227,
11410,
99,
247,
9468,
99,
247,
220,
18,
220,
1644,
220,
8765,
220,
8765,
18,
220,
8765,
1644,
220,
8765,
8765,
220,
8765,
8765,
18,
220,
8765,
8765,
1644,
220,
18,
13,
18,
220,
18,
497,
18,
220,
18,
1131,
18,
220,
21549,
222,
98629,
241,
45358,
233,
21549,
237,
45358,
224,
21549,
244,
21549,
115,
21549,
253,
45358,
223,
21549,
253,
21549,
95,
98629,
227,
76460,
223,
949,
37046,
101067,
19000,
23182,
102301,
9263,
18136,
16,
36827,
21909,
56560,
54337,
19175,
102118,
13373,
64571,
34694,
3114,
112203,
80112,
3436,
106451,
14196,
14196,
74694,
3089,
3089,
29249,
17523,
3001,
27708,
7801,
358,
3077,
1027,
364,
83,
820,
568,
596,
1070,
11,
364,
793,
499,
2771,
30,
364,
44,
539,
2771,
358,
3358,
1304,
433,
11,
364,
35,
499,
1093,
1063,
15600,
30,
1226,
6,
43712,
264,
64966,
43
]
}
]

View File

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More