Compare commits

..

4 Commits

Author SHA1 Message Date
Bruce MacDonald
fa74ae7214 use range 2025-01-31 14:55:09 -08:00
Bruce MacDonald
aff6d84e17 model: benchmark bpe text processing 2025-01-31 14:44:20 -08:00
Michael Yang
b21482e4a9 fix linter 2025-01-29 15:08:37 -08:00
Michael Yang
6a4120143f next 2025-01-29 15:05:24 -08:00
107 changed files with 1993 additions and 476519 deletions

4
.gitattributes vendored
View File

@@ -15,10 +15,6 @@ ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
* text=auto
*.go text eol=lf

View File

@@ -9,14 +9,6 @@ body:
description: What happened? What did you expect to happen?
validations:
required: true
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false
- type: dropdown
id: os
attributes:

View File

@@ -5,10 +5,6 @@ on:
tags:
- 'v*'
env:
CGO_CFLAGS: '-O3'
CGO_CXXFLAGS: '-O3'
jobs:
setup-environment:
runs-on: ubuntu-latest
@@ -81,7 +77,7 @@ jobs:
path: dist/darwin-arm64
- run: |
export VERSION=${GITHUB_REF_NAME#v}
./scripts/build_darwin.sh sign macapp
./scripts/build_darwin.sh macapp sign
env:
APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }}
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
@@ -197,38 +193,33 @@ jobs:
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- name: Install AMD64 system dependencies
if: matrix.arch == 'amd64'
- name: Install system dependencies
run: |
$ErrorActionPreference = "Stop"
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install ARM64 system dependencies
if: matrix.arch == 'arm64'
run: |
$ErrorActionPreference = "Stop"
Set-ExecutionPolicy Bypass -Scope Process -Force
[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
if ("${{ matrix.arch }}" -eq 'amd64') {
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
} elseif ("${{ matrix.arch }}" -eq 'arm64') {
Set-ExecutionPolicy Bypass -Scope Process -Force
[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072
iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
echo "C:\ProgramData\chocolatey\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
}
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
- run: |
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
- if: matrix.arch == 'arm64'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe"
- run: |
$env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1'
& .\scripts\build_windows.ps1 buildApp
@@ -242,7 +233,7 @@ jobs:
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
windows-sign:
runs-on: windows-2022
runs-on: windows
environment: release
needs: [windows-depends, windows-build]
steps:
@@ -263,18 +254,16 @@ jobs:
echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt
- uses: actions/download-artifact@v4
with:
pattern: build-windows-*
name: build-windows-*
path: dist\
merge-multiple: true
- uses: actions/download-artifact@v4
with:
pattern: depends-windows-amd64-*
name: depends-windows-amd64-*
path: dist\windows-amd64\
merge-multiple: true
- run: |
& .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
- uses: actions/upload-artifact@v4
with:
name: dist-windows
@@ -288,13 +277,10 @@ jobs:
include:
- os: linux
arch: amd64
target: archive
- os: linux
arch: amd64
target: rocm
targets: 'archive rocm'
- os: linux
arch: arm64
target: archive
targets: archive
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
@@ -303,106 +289,38 @@ jobs:
steps:
- uses: actions/checkout@v4
- uses: docker/setup-buildx-action@v3
- uses: docker/build-push-action@v6
with:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
target: ${{ matrix.target }}
build-args: |
GOFLAGS=${{ env.GOFLAGS }}
CGO_CFLAGS=${{ env.CGO_CFLAGS }}
CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }}
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
cache-from: type=registry,ref=ollama/ollama:latest
cache-to: type=inline
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
esac
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
done
apt-get update && apt-get install pigz
for TARGET in ${{ matrix.targets }}; do docker buildx build --platform $PLATFORM --target $TARGET --output type=local,dest=dist/$PLATFORM .; done
tar c -C dist/$PLATFORM . | pigz -9cv >dist/ollama-${PLATFORM//\//-}.tgz
env:
PLATFORM: ${{ matrix.os }}/${{ matrix.arch }}
- uses: actions/upload-artifact@v4
with:
name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }}
name: dist-${{ matrix.os }}-${{ matrix.arch }}
path: |
*.tgz
dist/ollama-${{ matrix.os }}-${{ matrix.arch }}.tgz
# Build each Docker variant (OS, arch, and flavor) separately. Using QEMU is unreliable and slower.
docker-build-push:
docker-build:
strategy:
matrix:
include:
- os: linux
arch: arm64
- flavor: 'latest=false'
platforms: linux/amd64,linux/arm64
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
- os: linux
arch: amd64
GOFLAGS=${{ needs.setup-environment.outputs.GOFLAGS }}
- flavor: 'latest=false,suffix=rocm'
platforms: linux/amd64
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
- os: linux
arch: amd64
suffix: '-rocm'
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
GOFLAGS=${{ needs.setup-environment.outputs.GOFLAGS }}
FLAVOR=rocm
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- uses: actions/checkout@v4
- uses: docker/setup-buildx-action@v3
- uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- id: build-push
uses: docker/build-push-action@v6
with:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
build-args: ${{ matrix.build-args }}
outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=ollama/ollama:latest
cache-to: type=inline
- run: |
mkdir -p ${{ matrix.os }}-${{ matrix.arch }}
echo "${{ steps.build-push.outputs.digest }}" >${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt
working-directory: ${{ runner.temp }}
- uses: actions/upload-artifact@v4
with:
name: digest-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}
path: |
${{ runner.temp }}/${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.suffix }}.txt
# Merge Docker images for the same flavor into a single multi-arch manifest
docker-merge-push:
strategy:
matrix:
suffix: ['', '-rocm']
runs-on: linux
environment: release
needs: [docker-build-push]
needs: setup-environment
steps:
- uses: actions/checkout@v4
- uses: docker/setup-qemu-action@v2
- uses: docker/setup-buildx-action@v2
- uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
@@ -410,23 +328,22 @@ jobs:
- id: metadata
uses: docker/metadata-action@v4
with:
flavor: |
latest=false
suffix=${{ matrix.suffix }}
flavor: ${{ matrix.flavor }}
images: |
ollama/ollama
tags: |
type=ref,enable=true,priority=600,prefix=pr-,event=pr
type=semver,pattern={{version}}
- uses: actions/download-artifact@v4
- uses: docker/build-push-action@v6
with:
pattern: digest-*
path: ${{ runner.temp }}
merge-multiple: true
- run: |
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ')
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
working-directory: ${{ runner.temp }}
context: .
push: true
platforms: ${{ matrix.platforms }}
build-args: ${{ matrix.build-args }}
tags: ${{ steps.metadata.outputs.tags }}
labels: ${{ steps.metadata.outputs.labels }}
cache-from: type=registry,ref=ollama/ollama:latest
cache-to: type=inline
provenance: false
# Aggregate all the assets and ship a release
release:
@@ -439,24 +356,33 @@ jobs:
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
- name: Set Version
shell: bash
run: |
- uses: actions/download-artifact@v4
with:
name: dist-darwin
path: dist
pattern: dist-darwin
- uses: actions/download-artifact@v4
with:
name: dist-windows
path: dist
pattern: dist-windows
- uses: actions/download-artifact@v4
with:
path: dist
pattern: dist-linux-*
- uses: actions/download-artifact@v4
with:
path: dist
merge-multiple: true
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
working-directory: dist
pattern: dist-windows
- run: |
ls -lh dist/
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
cat dist/sha256sum.txt
- name: Create or update Release
run: |
RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
echo "Looking for existing release for ${RELEASE_VERSION}"
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName")

View File

@@ -163,5 +163,5 @@ jobs:
- uses: actions/checkout@v4
- name: Verify patches apply cleanly and do not change files
run: |
make -f Makefile.sync clean sync
make -f Makefile.sync clean checkout sync
git diff --compact-summary --exit-code

View File

@@ -24,16 +24,11 @@ set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
if((NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
set(CMAKE_BUILD_RPATH "@loader_path")
set(CMAKE_INSTALL_RPATH "@loader_path")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
@@ -85,11 +80,6 @@ if(CMAKE_CUDA_COMPILER)
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
)
check_language(HIP)
if(CMAKE_HIP_COMPILER)
set(HIP_PLATFORM "amd")
@@ -97,22 +87,15 @@ if(CMAKE_HIP_COMPILER)
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()
if(AMDGPU_TARGETS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
endif()
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_INCLUDE_REGEXES amdhip64 hipblas rocblas amd_comgr hsa_runtime64 rocprofiler-register drm_amdgpu drm numa
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP

View File

@@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
}
}
],

View File

@@ -15,11 +15,7 @@ help:
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
.PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
.PHONY: llama/build-info.cpp
llama/build-info.cpp: llama/build-info.cpp.in
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
sync: llama/llama.cpp ml/backend/ggml/ggml apply-patches
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply-patches

View File

@@ -18,7 +18,7 @@ Get up and running with large language models.
### Linux
```shell
```
curl -fsSL https://ollama.com/install.sh | sh
```
@@ -42,7 +42,7 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
```shell
```
ollama run llama3.2
```
@@ -54,8 +54,6 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
@@ -94,13 +92,13 @@ Ollama supports importing GGUF models in the Modelfile:
2. Create the model in Ollama
```shell
```
ollama create example -f Modelfile
```
3. Run the model
```shell
```
ollama run example
```
@@ -112,7 +110,7 @@ See the [guide](docs/import.md) on importing models for more information.
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
```shell
```
ollama pull llama3.2
```
@@ -147,13 +145,13 @@ For more information on working with a Modelfile, see the [Modelfile](docs/model
`ollama create` is used to create a model from a Modelfile.
```shell
```
ollama create mymodel -f ./Modelfile
```
### Pull a model
```shell
```
ollama pull llama3.2
```
@@ -161,13 +159,13 @@ ollama pull llama3.2
### Remove a model
```shell
```
ollama rm llama3.2
```
### Copy a model
```shell
```
ollama cp llama3.2 my-model
```
@@ -186,39 +184,37 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.
```
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
### Pass the prompt as an argument
```shell
ollama run llama3.2 "Summarize this file: $(cat README.md)"
```
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```shell
```
ollama show llama3.2
```
### List models on your computer
```shell
```
ollama list
```
### List which models are currently loaded
```shell
```
ollama ps
```
### Stop a model which is currently running
```shell
```
ollama stop llama3.2
```
@@ -234,13 +230,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
Next, start the server:
```shell
```
./ollama serve
```
Finally, in a separate shell, run a model:
```shell
```
./ollama run llama3.2
```
@@ -250,7 +246,7 @@ Ollama has a REST API for running and managing models.
### Generate a response
```shell
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt":"Why is the sky blue?"
@@ -259,7 +255,7 @@ curl http://localhost:11434/api/generate -d '{
### Chat with a model
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -357,7 +353,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
@@ -374,14 +369,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
### Cloud
@@ -439,10 +427,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Homebrew](https://formulae.brew.sh/formula/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
@@ -496,8 +483,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
### Mobile
@@ -548,16 +533,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.

View File

@@ -126,8 +126,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
return err
}
}
return ctx.Err()
return nil
}
const maxBufferSize = 512 * format.KiloByte
@@ -190,7 +189,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
}
return ctx.Err()
return nil
}
// GenerateResponseFunc is a function that [Client.Generate] invokes every time

View File

@@ -2,10 +2,9 @@
Run the examples in this directory with:
```shell
```
go run example_name/main.go
```
## Chat - Chat with a model
- [chat/main.go](chat/main.go)

View File

@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
In the top directory of this repo, run the following powershell script
to build the ollama CLI, ollama app, and ollama installer.
```powershell
```
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
```

63
cache/cache.go vendored Normal file
View File

@@ -0,0 +1,63 @@
package cache
import (
"github.com/ollama/ollama/ml"
)
type Options struct {
Position int
}
type Cache interface {
Sub(i int) Cache
Put(ctx ml.Context, key, value ml.Tensor, opts Options) (ml.Tensor, ml.Tensor)
}
type Simple struct {
DType ml.DType
Capacity int
keys, values []ml.Tensor
}
func (c *Simple) Sub(i int) Cache {
if i >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, i-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, i-len(c.values)+1)...)
}
return &Simple{
keys: c.keys[i : i+1],
values: c.values[i : i+1],
Capacity: c.Capacity,
DType: c.DType,
}
}
func (c *Simple) Put(ctx ml.Context, key, value ml.Tensor, opts Options) (ml.Tensor, ml.Tensor) {
if c.keys[0] == nil || c.values[0] == nil {
c.keys[0] = ctx.Zeros(c.DType, int(key.Dim(0)*key.Dim(1))*c.Capacity)
c.values[0] = ctx.Zeros(c.DType, int(value.Dim(0)*value.Dim(1))*c.Capacity)
}
ctx.Forward(key.Copy(ctx, c.keys[0].View(ctx, int(key.Stride(2))*opts.Position, int(key.Dim(0)*key.Dim(1)*key.Dim(2)))))
ctx.Forward(value.Copy(ctx, c.values[0].View(ctx, int(value.Stride(2))*opts.Position, int(value.Dim(0)*value.Dim(1)*value.Dim(2)))))
n := min(c.Capacity, int(key.Dim(2))+opts.Position)
key = c.keys[0].View(ctx, 0,
int(key.Dim(0)), int(key.Stride(1)),
int(key.Dim(1)), int(key.Stride(2)),
n,
)
value = c.values[0].View(ctx, 0,
int(value.Dim(0)), int(value.Stride(1)),
int(value.Dim(1)), int(value.Stride(2)),
n,
)
// TODO shift context if necessary
return key, value
}

View File

@@ -15,11 +15,13 @@ import (
"net"
"net/http"
"os"
"os/signal"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync/atomic"
"syscall"
"time"
"github.com/containerd/console"
@@ -33,9 +35,9 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
@@ -328,7 +330,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if err := PullHandler(cmd, []string{name}); err != nil {
return nil, err
}
return client.Show(cmd.Context(), &api.ShowRequest{Name: name})
}
return info, err
@@ -337,10 +338,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
// TODO(jessegross): We should either find another way to know if this is
// a vision model or remove the logic. Also consider that other modalities will
// need different behavior anyways.
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
opts.MultiModal = len(info.ProjectorInfo) != 0
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -857,6 +855,17 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
spinner := progress.NewSpinner("")
p.Add("", spinner)
cancelCtx, cancel := context.WithCancel(cmd.Context())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
go func() {
<-sigChan
cancel()
}()
var state *displayResponseState = &displayResponseState{}
var latest api.ChatResponse
var fullResponse strings.Builder
@@ -891,7 +900,10 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
req.KeepAlive = opts.KeepAlive
}
if err := client.Chat(cmd.Context(), req, fn); err != nil {
if err := client.Chat(cancelCtx, req, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil, nil
}
return nil, err
}
@@ -931,6 +943,17 @@ func generate(cmd *cobra.Command, opts runOptions) error {
generateContext = []int{}
}
ctx, cancel := context.WithCancel(cmd.Context())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT)
go func() {
<-sigChan
cancel()
}()
var state *displayResponseState = &displayResponseState{}
fn := func(response api.GenerateResponse) error {
@@ -966,7 +989,10 @@ func generate(cmd *cobra.Command, opts runOptions) error {
KeepAlive: opts.KeepAlive,
}
if err := client.Generate(cmd.Context(), &request, fn); err != nil {
if err := client.Generate(ctx, &request, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil
}
return err
}
@@ -988,7 +1014,8 @@ func generate(cmd *cobra.Command, opts runOptions) error {
latest.Summary()
}
cmd.SetContext(context.WithValue(cmd.Context(), generateContextKey("context"), latest.Context))
ctx = context.WithValue(cmd.Context(), generateContextKey("context"), latest.Context)
cmd.SetContext(ctx)
return nil
}

View File

@@ -4,7 +4,7 @@ import (
"fmt"
"os"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/llama/runner"
)
func main() {

View File

@@ -19,18 +19,17 @@ var LibOllamaPath string = func() string {
return ""
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
exe, err = filepath.EvalSymlinks(exe)
if err != nil {
return ""
}
var libPath string
libPath := filepath.Dir(exe)
switch runtime.GOOS {
case "windows":
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
case "linux":
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
case "darwin":
libPath = filepath.Dir(exe)
}
cwd, err := os.Getwd()
@@ -38,19 +37,17 @@ var LibOllamaPath string = func() string {
return ""
}
paths := []string{
libPath,
// build paths for development
// build paths for development
buildPaths := []string{
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
filepath.Join(cwd, "build", "lib", "ollama"),
}
for _, p := range paths {
for _, p := range buildPaths {
if _, err := os.Stat(p); err == nil {
return p
}
}
return filepath.Dir(exe)
return libPath
}()

View File

@@ -31,7 +31,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
## Generate a completion
```
```shell
POST /api/generate
```
@@ -306,7 +306,7 @@ curl http://localhost:11434/api/generate -d '{
#### Response
```json
```
{
"model": "llava",
"created_at": "2023-11-03T15:36:02.583064Z",
@@ -485,7 +485,7 @@ A single JSON object is returned:
## Generate a chat completion
```
```shell
POST /api/chat
```
@@ -495,14 +495,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
- `tool_calls` (optional): a list of tools the model wants to use
Advanced parameters (optional):
@@ -795,7 +795,7 @@ curl http://localhost:11434/api/chat -d '{
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
@@ -870,7 +870,7 @@ If the messages array is empty, the model will be loaded into memory.
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": []
@@ -878,7 +878,6 @@ curl http://localhost:11434/api/chat -d '{
```
##### Response
```json
{
"model": "llama3.2",
@@ -898,7 +897,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
##### Request
```shell
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [],
@@ -925,7 +924,7 @@ A single JSON object is returned:
## Create a Model
```
```shell
POST /api/create
```
@@ -1021,7 +1020,7 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
```
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
@@ -1052,7 +1051,7 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
```
{"status":"parsing GGUF"}
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
{"status":"writing manifest"}
@@ -1119,7 +1118,7 @@ Return 200 OK if the blob exists, 404 Not Found if it does not.
## Push a Blob
```
```shell
POST /api/blobs/:digest
```
@@ -1143,7 +1142,7 @@ Return 201 Created if the blob was successfully created, 400 Bad Request if the
## List Local Models
```
```shell
GET /api/tags
```
@@ -1196,7 +1195,7 @@ A single JSON object will be returned.
## Show Model Information
```
```shell
POST /api/show
```
@@ -1262,7 +1261,7 @@ curl http://localhost:11434/api/show -d '{
## Copy a Model
```
```shell
POST /api/copy
```
@@ -1285,7 +1284,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
## Delete a Model
```
```shell
DELETE /api/delete
```
@@ -1311,7 +1310,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
## Pull a Model
```
```shell
POST /api/pull
```
@@ -1383,7 +1382,7 @@ if `stream` is set to false, then the response is a single JSON object:
## Push a Model
```
```shell
POST /api/push
```
@@ -1448,7 +1447,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings
```
```shell
POST /api/embed
```
@@ -1516,7 +1515,7 @@ curl http://localhost:11434/api/embed -d '{
```
## List Running Models
```
```shell
GET /api/ps
```
@@ -1563,7 +1562,7 @@ A single JSON object will be returned.
> Note: this endpoint has been superseded by `/api/embed`
```
```shell
POST /api/embeddings
```
@@ -1603,7 +1602,7 @@ curl http://localhost:11434/api/embeddings -d '{
## Version
```
```shell
GET /api/version
```

View File

@@ -3,11 +3,11 @@
Install prerequisites:
- [Go](https://go.dev/doc/install)
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://jmeubank.github.io/tdm-gcc/download/) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
Then build and run Ollama from the root directory of the repository:
```shell
```
go run . serve
```
@@ -23,14 +23,14 @@ Install prerequisites:
Then, configure and build the project:
```shell
```
cmake -B build
cmake --build build
```
Lastly, run Ollama:
```shell
```
go run . serve
```
@@ -57,14 +57,14 @@ Install prerequisites:
Then, configure and build the project:
```shell
```
cmake -B build
cmake --build build --config Release
```
Lastly, run Ollama:
```shell
```
go run . serve
```
@@ -88,26 +88,26 @@ Install prerequisites:
Then, configure and build the project:
```shell
```
cmake -B build
cmake --build build
```
Lastly, run Ollama:
```shell
```
go run . serve
```
## Docker
```shell
```
docker build .
```
### ROCm
```shell
```
docker build --build-arg FLAVOR=rocm .
```
@@ -115,17 +115,6 @@ docker build --build-arg FLAVOR=rocm .
To run tests, use `go test`:
```shell
```
go test ./...
```
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
* `./lib/ollama` (Windows)
* `../lib/ollama` (Linux)
* `.` (macOS)
* `build/lib/ollama` (for development)
If the libraries are not found, Ollama will not run with any acceleration libraries.

View File

@@ -2,7 +2,7 @@
### CPU only
```shell
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -11,46 +11,42 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
#### Install with Apt
1. Configure the repository
```shell
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```shell
sudo apt-get install -y nvidia-container-toolkit
```
```bash
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```shell
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```shell
sudo yum install -y nvidia-container-toolkit
```
```bash
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```shell
```
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```shell
```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
@@ -61,7 +57,7 @@ docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ol
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```shell
```
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
@@ -69,7 +65,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```shell
```
docker exec -it ollama ollama run llama3.2
```

View File

@@ -24,7 +24,7 @@ By default, Ollama uses a context window size of 2048 tokens.
To change this when using `ollama run`, use `/set parameter`:
```shell
```
/set parameter num_ctx 4096
```
@@ -46,15 +46,10 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
```shell
ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR UNTIL
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
> ```
The `Processor` column will show which memory the model was loaded in to:
* `100% GPU` means the model was loaded entirely into the GPU
* `100% CPU` means the model was loaded entirely in system memory
@@ -71,7 +66,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
launchctl setenv OLLAMA_HOST "0.0.0.0"
```
2. Restart Ollama application.
@@ -86,14 +81,14 @@ If Ollama is run as a systemd service, environment variables should be set using
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="OLLAMA_HOST=0.0.0.0"
```
3. Save and exit.
4. Reload `systemd` and restart Ollama:
```shell
```bash
systemctl daemon-reload
systemctl restart ollama
```
@@ -226,19 +221,16 @@ properties.
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
To preload the mistral model using the generate endpoint, use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
```
To use the chat completions endpoint, use:
```shell
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
```
To preload a model using the CLI, use the command:
```shell
ollama run llama3.2 ""
```
@@ -258,13 +250,11 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
* '0' which will unload the model immediately after generating a response
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
```

View File

@@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 9.0 | NVIDIA | `H200` `H100` |
| 9.0 | NVIDIA | `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |

View File

@@ -20,13 +20,13 @@ Make sure that you use the same base model in the `FROM` command as you used to
Now run `ollama create` from the directory where the `Modelfile` was created:
```shell
```bash
ollama create my-model
```
Lastly, test the model:
```shell
```bash
ollama run my-model
```

View File

@@ -119,7 +119,7 @@ sudo systemctl status ollama
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
```shell
```
sudo systemctl edit ollama
```
@@ -152,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
```
## Viewing logs
@@ -186,9 +186,3 @@ sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama
```
Remove installed libraries:
```shell
sudo rm -rf /usr/local/lib/ollama
```

View File

@@ -28,7 +28,7 @@ A model file is the blueprint to create and share models with Ollama.
The format of the `Modelfile`:
```
```modelfile
# comment
INSTRUCTION arguments
```
@@ -49,7 +49,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```
```modelfile
FROM llama3.2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@@ -69,30 +69,24 @@ To use this:
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```shell
ollama show --modelfile llama3.2
```
```bash
> ollama show --modelfile llama3.2
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3.2:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
> **Output**:
>
> ```
> # Modelfile generated by "ollama show"
> # To build a new Modelfile based on this one, replace the FROM line with:
> # FROM llama3.2:latest
> FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
> TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
>
> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
>
> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
>
> {{ .Response }}<|eot_id|>"""
> PARAMETER stop "<|start_header_id|>"
> PARAMETER stop "<|end_header_id|>"
> PARAMETER stop "<|eot_id|>"
> PARAMETER stop "<|reserved_special_token"
> ```
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|reserved_special_token"
```
## Instructions
@@ -100,13 +94,13 @@ ollama show --modelfile llama3.2
The `FROM` instruction defines the base model to use when creating a model.
```
```modelfile
FROM <model name>:<tag>
```
#### Build from existing model
```
```modelfile
FROM llama3.2
```
@@ -117,7 +111,7 @@ Additional models can be found at:
#### Build from a Safetensors model
```
```modelfile
FROM <model directory>
```
@@ -131,7 +125,7 @@ Currently supported model architectures:
#### Build from a GGUF file
```
```modelfile
FROM ./ollama-model.gguf
```
@@ -142,7 +136,7 @@ The GGUF file location should be specified as an absolute path or relative to th
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
```
```modelfile
PARAMETER <parameter> <parametervalue>
```
@@ -189,7 +183,7 @@ TEMPLATE """{{ if .System }}<|im_start|>system
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```
```modelfile
SYSTEM """<system message>"""
```
@@ -199,7 +193,7 @@ The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply
#### Safetensor adapter
```
```modelfile
ADAPTER <path to safetensor adapter>
```
@@ -210,7 +204,7 @@ Currently supported Safetensor adapters:
#### GGUF adapter
```
```modelfile
ADAPTER ./ollama-lora.gguf
```
@@ -218,7 +212,7 @@ ADAPTER ./ollama-lora.gguf
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.
```
```modelfile
LICENSE """
<license text>
"""
@@ -228,7 +222,7 @@ LICENSE """
The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way.
```
```modelfile
MESSAGE <role> <message>
```
@@ -243,7 +237,7 @@ MESSAGE <role> <message>
#### Example conversation
```
```modelfile
MESSAGE user Is Toronto in Canada?
MESSAGE assistant yes
MESSAGE user Is Sacramento in Canada?

View File

@@ -1,7 +1,6 @@
# OpenAI compatibility
> [!NOTE]
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
> **Note:** OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
@@ -60,10 +59,8 @@ embeddings = client.embeddings.create(
input=["why is the sky blue?", "why is the grass green?"],
)
```
#### Structured outputs
```python
```py
from pydantic import BaseModel
from openai import OpenAI
@@ -147,7 +144,7 @@ const embedding = await openai.embeddings.create({
### `curl`
```shell
``` shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
@@ -322,7 +319,7 @@ ollama pull llama3.2
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```shell
```
ollama cp llama3.2 gpt-3.5-turbo
```
@@ -346,7 +343,7 @@ curl http://localhost:11434/v1/chat/completions \
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```
```modelfile
FROM <some model>
PARAMETER num_ctx <context size>
```

View File

@@ -17,7 +17,6 @@ When you run Ollama in a **container**, the logs go to stdout/stderr in the cont
```shell
docker logs <container-name>
```
(Use `docker ps` to find the container name)
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
@@ -29,7 +28,6 @@ When you run Ollama on **Windows**, there are a few different locations. You can
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
```powershell
$env:OLLAMA_DEBUG="1"
& "ollama app.exe"
@@ -51,13 +49,12 @@ Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
```shell
```
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
```
You can see what features your CPU has with the following.
```shell
```
cat /proc/cpuinfo| grep flags | head -1
```
@@ -65,8 +62,8 @@ cat /proc/cpuinfo| grep flags | head -1
If you run into problems on Linux and want to install an older version, or you'd like to try out a pre-release before it's officially released, you can tell the install script which version to install.
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
```
## Linux tmp noexec

View File

@@ -47,7 +47,6 @@ If Ollama is already running, Quit the tray application and relaunch it from the
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
@@ -55,7 +54,7 @@ Here's a quick example showing API access from `powershell`
## Troubleshooting
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<Ctrl>+R` and type in:
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains most resent logs from the GUI application
- *server.log* contains the most recent server logs

View File

@@ -165,8 +165,6 @@ var (
IntelGPU = Bool("OLLAMA_INTEL_GPU")
// MultiUserCache optimizes prompt caching for multi-user scenarios
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
// Enable the new Ollama engine
NewEngine = Bool("OLLAMA_NEW_ENGINE")
)
func String(s string) func() string {
@@ -252,7 +250,6 @@ func AsMap() map[string]EnvVar {
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

View File

@@ -40,6 +40,8 @@ func HumanBytes(b int64) string {
}
switch {
case value >= 100:
return fmt.Sprintf("%d %s", int(value), unit)
case value >= 10:
return fmt.Sprintf("%d %s", int(value), unit)
case value != math.Trunc(value):

View File

@@ -1,91 +0,0 @@
package format
import (
"testing"
)
func TestHumanBytes(t *testing.T) {
type testCase struct {
input int64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{999, "999 B"},
// Test kilobytes (KB)
{1000, "1 KB"},
{1500, "1.5 KB"},
{999999, "999 KB"},
// Test megabytes (MB)
{1000000, "1 MB"},
{1500000, "1.5 MB"},
{999999999, "999 MB"},
// Test gigabytes (GB)
{1000000000, "1 GB"},
{1500000000, "1.5 GB"},
{999999999999, "999 GB"},
// Test terabytes (TB)
{1000000000000, "1 TB"},
{1500000000000, "1.5 TB"},
{1999999999999, "2.0 TB"},
// Test fractional values
{1234, "1.2 KB"},
{1234567, "1.2 MB"},
{1234567890, "1.2 GB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}
func TestHumanBytes2(t *testing.T) {
type testCase struct {
input uint64
expected string
}
tests := []testCase{
// Test bytes (B)
{0, "0 B"},
{1, "1 B"},
{1023, "1023 B"},
// Test kibibytes (KiB)
{1024, "1.0 KiB"},
{1536, "1.5 KiB"},
{1048575, "1024.0 KiB"},
// Test mebibytes (MiB)
{1048576, "1.0 MiB"},
{1572864, "1.5 MiB"},
{1073741823, "1024.0 MiB"},
// Test gibibytes (GiB)
{1073741824, "1.0 GiB"},
{1610612736, "1.5 GiB"},
{2147483648, "2.0 GiB"},
}
for _, tc := range tests {
t.Run(tc.expected, func(t *testing.T) {
result := HumanBytes2(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}

View File

@@ -12,9 +12,6 @@ func TestHumanNumber(t *testing.T) {
testCases := []testCase{
{0, "0"},
{999, "999"},
{1000, "1K"},
{1001, "1K"},
{1000000, "1M"},
{125000000, "125M"},
{500500000, "500.50M"},

View File

@@ -153,17 +153,19 @@ func (s Tensors) Items(prefix ...string) []*Tensor {
return items
}
func (ts Tensors) GroupLayers() map[string]Layer {
func (ts Tensors) Layers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.items {
parts := strings.Split(t.Name, ".")
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
if i := slices.Index(parts, "blk"); i > 0 {
parts = append([]string{
strings.Join(parts[:i], "."),
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
} else if i == 0 {
parts = append([]string{
strings.Join(parts[i:i+2], "."),
}, parts[i+2:]...)
}
if _, ok := layers[parts[0]]; !ok {
@@ -375,22 +377,22 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
layers := f.Tensors().GroupLayers()
layers := llm.Tensors().Layers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
kv = uint64(float64(context*llm.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch f.KV().Architecture() {
switch llm.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
@@ -405,7 +407,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
// mixtral 8x22b
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
@@ -422,11 +424,11 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
@@ -441,7 +443,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
)
var ropeFreqsCount uint64
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
@@ -545,20 +547,20 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
}
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
func (llm GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
func (llm GGML) SupportsFlashAttention() bool {
_, isEmbedding := llm.KV()[fmt.Sprintf("%s.pooling_type", llm.KV().Architecture())]
if isEmbedding {
return false
}
// Check head counts match and are non-zero
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
headCountK := llm.KV().EmbeddingHeadCountK()
headCountV := llm.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}

View File

@@ -1,159 +0,0 @@
package ggml
import (
"maps"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTensorLayers(t *testing.T) {
tensors := make(map[string]*Tensor)
for _, name := range []string{
"token_embd.weight",
"blk.0.attn_k.weight",
"blk.0.attn_output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_v.weight",
"blk.0.attn_norm.weight",
"blk.0.ffn_down.weight",
"blk.0.ffn_gate.weight",
"blk.0.ffn_up.weight",
"blk.0.ffn_norm.weight",
"output_norm.weight",
"mm.0.bias",
"mm.0.weight",
"v.blk.0.attn_k.weight",
"v.blk.0.attn_output.weight",
"v.blk.0.attn_q.weight",
"v.blk.0.attn_v.weight",
"v.blk.0.attn_norm.weight",
"v.blk.0.ffn_down.weight",
"v.blk.0.ffn_gate.weight",
"v.blk.0.ffn_up.weight",
"v.blk.0.ffn_norm.weight",
"v.patch_embd.weight",
"v.position_embd.gate",
"v.position_embd.weight",
} {
tensors[name] = &Tensor{Name: name}
}
cases := []struct {
name string
items []*Tensor
want map[string]Layer
}{
{
name: "text",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
},
},
{
name: "vision",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
{
name: "vision and text",
items: slices.Collect(maps.Values(tensors)),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got := Tensors{items: tt.items}.GroupLayers()
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("unexpected layers (-got +want):\n%s", diff)
}
})
}
}

View File

@@ -32,10 +32,9 @@ const (
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ2_M
fileTypeIQ1_M
fileTypeBF16
@@ -94,14 +93,12 @@ func ParseFileType(s string) (fileType, error) {
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
case "BF16":
@@ -163,8 +160,6 @@ func (t fileType) String() string {
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:

View File

@@ -1,54 +0,0 @@
package kvcache
import (
"errors"
"github.com/ollama/ollama/ml"
)
var (
ErrKvCacheFull = errors.New("could not find a kv cache slot")
ErrNotSupported = errors.New("model does not support operation")
)
type Cache interface {
// ** used by model implementations **
// SetLayer sets the active layer of the cache
SetLayer(layer int)
// Get returns the history of key and value tensors plus a mask
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Put stores a batch of key and value in the cache
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// ** cache management **
// Init sets up runtime parameters
Init(backend ml.Backend, dtype ml.DType, capacity int32)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//
// If an error occurs, the entire context for the sequence should be
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}

View File

@@ -1,455 +0,0 @@
package kvcache
import (
"errors"
"fmt"
"log/slog"
"math"
"slices"
"github.com/ollama/ollama/ml"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
//
// The tensors are of shape embed dim, kv heads, batch size
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
Capacity int32
windowSize int32
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// starting location for data storage for this batch
curLoc int
// size of the current batch
curBatchSize int
// mask of the cache as used by this batch
curMask ml.Tensor
// locations in the cache that are needed for this batch
curCellRange cellRange
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
// that reference the data there
cells []cacheCell
// maps from sequence to the range of locations where it is stored in the cache
cellRanges map[int]cellRange
// ** cache data storage **
shiftFn shiftFn
backend ml.Backend
cacheCtx ml.Context
keys, values []ml.Tensor
}
type cacheCell struct {
pos int32
sequences []int
}
type cellRange struct {
min int
max int
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{windowSize: windowSize, shiftFn: shift}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.DType = dtype
c.Capacity = capacity
c.cells = make([]cacheCell, capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *Causal) Close() {
c.cacheCtx.Close()
}
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx, positions, seqs)
return err
}
func newRange() cellRange {
return cellRange{
min: math.MaxInt,
max: 0,
}
}
// Find the first contiguous block of at least curBatchSize
func (c *Causal) findStartLoc() (int, error) {
var start, count int
for i := range c.cells {
if len(c.cells[i].sequences) == 0 {
count++
if count >= c.curBatchSize {
return start, nil
}
} else {
start = i + 1
count = 0
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
// TODO(jessegross): This does not do padding, which is required for flash attention
len := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, c.curBatchSize*len)
for i := range c.curBatchSize {
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
c.cells[j].pos < positions[i]-c.windowSize {
mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
}
return ctx.FromFloatSlice(mask, len, c.curBatchSize)
}
func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) {
for _, obj := range objs {
if obj == nil {
continue
}
srcView := obj.View(ctx, obj.Stride(2)*src, obj.Dim(0)*obj.Dim(1)*len)
dstView := obj.View(ctx, obj.Stride(2)*dst, obj.Dim(0)*obj.Dim(1)*len)
ctx.Forward(srcView.Copy(ctx, dstView))
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see that the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v).
layers := 0
for _, key := range c.keys {
if key == nil {
continue
}
layers++
}
maxMoves := ctx.MaxTensors() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
src := len(c.cells) - 1
for dst := 0; dst < src; dst++ {
if len(c.cells[dst].sequences) == 0 {
for ; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute()
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen)
moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute()
}
ctx.Close()
// Reset range metadata
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if slices.Contains(cell.sequences, seq) {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
}
func (c *Causal) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
key = key.View(ctx, key.Stride(2)*c.curCellRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
c.curMask.Dim(0),
)
value = value.View(ctx, key.Stride(2)*c.curCellRange.min,
value.Dim(0), value.Stride(1),
value.Dim(1), value.Stride(2),
c.curMask.Dim(0),
)
return key, value, c.curMask
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
if c.curBatchSize != key.Dim(2) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, key.Dim(2)))
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int(c.Capacity))
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int(c.Capacity))
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, c.keys[c.curLayer].Stride(2)*c.curLoc, key.Dim(0)*key.Dim(1)*key.Dim(2))))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, c.values[c.curLayer].Stride(2)*c.curLoc, value.Dim(0)*value.Dim(1)*value.Dim(2))))
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
seqRange := newRange()
for i := range c.cells {
// Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
if slices.Contains(c.cells[i].sequences, dstSeq) {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
}
if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
if c.shiftFn == nil {
return ErrNotSupported
}
ctx := c.backend.NewContext()
defer ctx.Close()
seqRange := c.cellRanges[seq]
size := seqRange.max - seqRange.min + 1
offsets := make([]int32, size)
for i := range offsets {
cell := c.cells[seqRange.min+i]
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
offsets[i] = offset
}
}
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys {
if key == nil {
continue
}
key = key.View(ctx, key.Stride(2)*seqRange.min,
key.Dim(0), key.Stride(1),
key.Dim(1), key.Stride(2),
size,
)
roped, err := c.shiftFn(ctx, i, key, kShift)
if err != nil {
return err
}
ctx.Forward(roped.Copy(ctx, key))
}
ctx.Compute()
return nil
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
}
seqRange := newRange()
for i := range c.cells {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
if c.cells[i].pos >= endIndex {
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// TODO(jessegross): Need to be careful about data shared between sequences
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
}
c.cells[i].pos += offset
}
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
}
if seqRange == newRange() {
delete(c.cellRanges, seq)
return nil
}
c.cellRanges[seq] = seqRange
if endIndex != math.MaxInt32 {
err := c.shift(seq, endIndex+offset, offset)
if err != nil {
return err
}
}
return nil
}

View File

@@ -1,510 +0,0 @@
package kvcache
import (
"math"
"slices"
"testing"
"github.com/ollama/ollama/ml"
)
type testCase struct {
name string
in []float32
inShape []int
seqs []int
pos []int32
expected []float32
expectedShape []int
expectedMask []float32
}
func TestStore(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
inShape: []int{2, 3, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
expectedShape: []int{2, 3, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
{
name: "SecondBatch",
in: []float32{115, 215, 125, 225, 135, 235},
inShape: []int{2, 3, 1},
seqs: []int{0},
pos: []int32{4},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
expectedShape: []int{2, 3, 5},
expectedMask: []float32{0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSWA(t *testing.T) {
backend := &testBackend{}
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF32, 16)
tests := []testCase{
{
name: "SlidingWindow",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSequences(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{2, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestRemove(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 1, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveEnd",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{1, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
err = cache.Remove(0, 0, 1)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveMiddle",
in: []float32{7, 8},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{1, 2},
expected: []float32{7, 8, 3, 4, 4},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestDefrag(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
inShape: []int{1, 1, 16},
seqs: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
pos: []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 2, 4)
if err != nil {
panic(err)
}
err = cache.Remove(0, 13, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "Defrag",
in: []float32{17, 18, 19},
inShape: []int{1, 1, 3},
seqs: []int{0, 0, 0},
pos: []int32{16, 17, 18},
expected: []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
expectedShape: []int{1, 1, 16},
expectedMask: []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestCopy(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
cache.CopyPrefix(0, 1, 2)
tests = []testCase{
{
name: "Copy",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{3, 4},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, test.pos, test.seqs)
if err != nil {
panic(err)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
context.Forward(out)
context.Forward(mask)
context.Compute(out, mask)
if !slices.Equal(out.Floats(), test.expected) || !slices.Equal(out.Shape(), test.expectedShape) || !slices.Equal(mask.Floats(), test.expectedMask) {
t.Errorf("TestCache: have %v (shape %v); want %v (shape %v); mask: have %v (shape %v) want %v", out.Floats(), out.Shape(), test.expected, test.expectedShape, mask.Floats(), mask.Shape(), test.expectedMask)
}
})
}
}
type testBackend struct{}
func (b *testBackend) Config() ml.Config {
panic("not implemented")
}
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
if len(shape) > 0 {
total = 1
for _, s := range shape {
total *= s
}
}
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
t := c.Zeros(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out, _ := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
}
func (c *testContext) Forward(ml.Tensor) {}
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxTensors() int {
return 10
}
func (c *testContext) Close() {}
type testTensor struct {
dtype ml.DType
elementSize int
data []float32
shape []int
}
func (t *testTensor) Dim(n int) int {
return t.shape[n]
}
func (t *testTensor) Stride(n int) int {
stride := t.elementSize
for i := range n {
stride *= t.shape[i]
}
return stride
}
func (t *testTensor) Shape() []int {
return t.shape
}
func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Zeros(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
}
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
var s []int
switch len(shape) {
case 1:
s = []int{shape[0]}
case 5:
s = []int{shape[0], shape[2], shape[4]}
default:
panic("unsupported number of dimensions")
}
context := &testContext{}
view := context.Zeros(t.dtype, s...).(*testTensor)
view.data = t.data[offset : offset+len(view.data)]
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil
}

View File

@@ -1,97 +0,0 @@
package kvcache
import (
"github.com/ollama/ollama/ml"
)
// Encoder cache stores K and V tensors that are position independent
//
// The tensors can be of any shape and will be returned as they were stored
// The mask is currently always nil
//
// Not currently safe for multiple sequences
type EncoderCache struct {
// ** current forward pass **
// the active layer for Get and Put
curLayer int
// if something is stored during this pass, this
// will be the position (but there is no guarantee
// anything will be stored)
curPos int32
// ** cache metadata **
// was something stored in the cache?
encoderCached bool
// position of the cached data
encoderPos int32
// ** cache data storage **
cacheCtx ml.Context
keys, values []ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.cacheCtx = backend.NewContext()
}
func (c *EncoderCache) Close() {
c.cacheCtx.Close()
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *EncoderCache) EncoderCached() bool {
return c.encoderCached
}
func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.keys[c.curLayer], c.values[c.curLayer], nil
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.encoderPos = c.curPos
c.encoderCached = true
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Zeros(value.DType(), value.Shape()...)
}
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer]))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer]))
}
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("encoder cache does not support multiple sequences")
}
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
c.encoderCached = false
}
return nil
}

View File

@@ -1,93 +0,0 @@
package kvcache
import (
"math"
"github.com/ollama/ollama/ml"
)
// Wrapper cache is a container for multiple types of caches,
// such as for the encoding and decoding portions of a model.
type WrapperCache struct {
// caches we are wrapping
caches []Cache
// cache to be used for this layer
curType int
}
func NewWrapperCache(caches ...Cache) *WrapperCache {
return &WrapperCache{
caches: caches,
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
for _, cache := range c.caches {
cache.Init(backend, dtype, capacity)
}
}
func (c *WrapperCache) Close() {
for _, cache := range c.caches {
cache.Close()
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, positions, seqs)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
}
}
return err
}
}
c.curType = 0
return nil
}
func (c *WrapperCache) SetLayer(layer int) {
for _, cache := range c.caches {
cache.SetLayer(layer)
}
}
func (c *WrapperCache) SetLayerType(layerType int) {
c.curType = layerType
}
func (c *WrapperCache) UnderlyingCache() Cache {
return c.caches[c.curType]
}
func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.caches[c.curType].Get(ctx)
}
func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.caches[c.curType].Put(ctx, key, value)
}
func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
for _, cache := range c.caches {
cache.CopyPrefix(srcSeq, dstSeq, len)
}
}
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
for _, cache := range c.caches {
err := cache.Remove(seq, beginIndex, endIndex)
if err != nil {
return err
}
}
return nil
}

View File

@@ -8,7 +8,7 @@ Ollama vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](h
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
```shell
```
make -f Makefile.sync apply-patches
```
@@ -22,7 +22,7 @@ When updating to a newer base commit, the existing patches may not apply cleanly
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```shell
```
make -f Makefile.sync apply-patches
```
@@ -30,7 +30,7 @@ If there are conflicts, you will see an error message. Resolve the conflicts in
Once all patches are applied, commit the changes to the tracking repository.
```shell
```
make -f Makefile.sync format-patches sync
```
@@ -38,13 +38,13 @@ make -f Makefile.sync format-patches sync
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```shell
```
make -f Makefile.sync clean apply-patches
```
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```shell
```
make -f Makefile.sync format-patches
```

View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "46e3556e01b824e52395fb050b29804b6cff2a7c";
char const *LLAMA_COMMIT = "ba1cb19cdd0d92e012e0f6e009e0620f854b6afd";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1,4 +0,0 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "@FETCH_HEAD@";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1235,15 +1235,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG_ERR("%s: failed to initialize backend\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
#ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0);
LOG_INF("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
LOG_INF("%s: CLIP using Metal backend\n", __func__);
#endif
#ifdef GGML_USE_CANN
new_clip->backend = ggml_backend_cann_init(0);
LOG_INF("%s: CLIP using CANN backend\n", __func__);
#endif
#ifdef GGML_USE_VULKAN
new_clip->backend = ggml_backend_vk_init(0);
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
#endif
#ifdef GGML_USE_SYCL
new_clip->backend = ggml_backend_sycl_init(0);
LOG_INF("%s: CLIP using SYCL backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_clip->backend = backend;
// model size and capabilities
{

View File

@@ -199,25 +199,21 @@ func (c *Context) KvCacheDefrag() {
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if e == nil {
embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
if embeddings == nil {
return nil
}
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}
func (c *Context) GetEmbeddingsIth(i int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if e == nil {
embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
if embeddings == nil {
return nil
}
embeddings := make([]float32, c.Model().NEmbd())
_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
return embeddings
return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}
type ModelParams struct {

31
llama/mllama.cpp vendored
View File

@@ -558,15 +558,30 @@ struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1)
mllama_ctx *new_mllama = new mllama_ctx{};
ggml_backend_t backend = ggml_backend_init_best();
if (backend == nullptr) {
LOG("%s: failed to initialize backend\n", __func__);
mllama_free(new_mllama);
gguf_free(ctx);
return nullptr;
#ifdef GGML_USE_CUDA
new_mllama->backend = ggml_backend_cuda_init(0);
LOG("vision using CUDA backend");
#endif
#ifdef GGML_USE_METAL
new_mllama->backend = ggml_backend_metal_init();
LOG("vision using Metal backend");
#endif
#ifdef GGML_USE_CANN
new_mllama->backend = ggml_backend_cann_init(0);
LOG("vision using CANN backend");
#endif
#ifdef GGML_USE_VULKAN
new_mllama->backend = ggml_backend_vk_init(0);
LOG("vision using Vulkan backend");
#endif
if (!new_mllama->backend) {
new_mllama->backend = ggml_backend_cpu_init();
LOG("vision using CPU backend");
}
LOG("%s: using %s backend\n", __func__, ggml_backend_name(backend));
new_mllama->backend = backend;
// load tensors
{

View File

@@ -1,14 +1,14 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sat, 4 Jan 2025 22:52:48 -0800
Subject: [PATCH] use dynamic backend loading for clip
Subject: [PATCH] re-enable gpu for clip
---
examples/llava/clip.cpp | 74 +++++++++++++++--------------------------
1 file changed, 27 insertions(+), 47 deletions(-)
examples/llava/clip.cpp | 86 ++++++++++++++++++++---------------------
1 file changed, 43 insertions(+), 43 deletions(-)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index b3c1829f..86b91d5c 100644
index b3c1829f..718052e1 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -8,25 +8,25 @@
@@ -56,7 +56,7 @@ index b3c1829f..86b91d5c 100644
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
@@ -1235,35 +1235,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
@@ -1235,30 +1235,30 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
@@ -84,19 +84,30 @@ index b3c1829f..86b91d5c 100644
-// new_clip->backend = ggml_backend_sycl_init(0);
-// LOG_INF("%s: CLIP using SYCL backend\n", __func__);
-//#endif
-
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
+ ggml_backend_t backend = ggml_backend_init_best();
+ if (backend == nullptr) {
+ LOG_ERR("%s: failed to initialize backend\n", __func__);
+ clip_free(new_clip);
+ gguf_free(ctx);
+ return nullptr;
}
+ LOG_INF("%s: using %s backend\n", __func__, ggml_backend_name(backend));
+ new_clip->backend = backend;
+#ifdef GGML_USE_CUDA
+ new_clip->backend = ggml_backend_cuda_init(0);
+ LOG_INF("%s: CLIP using CUDA backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_METAL
+ new_clip->backend = ggml_backend_metal_init();
+ LOG_INF("%s: CLIP using Metal backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_CANN
+ new_clip->backend = ggml_backend_cann_init(0);
+ LOG_INF("%s: CLIP using CANN backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_VULKAN
+ new_clip->backend = ggml_backend_vk_init(0);
+ LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_SYCL
+ new_clip->backend = ggml_backend_sycl_init(0);
+ LOG_INF("%s: CLIP using SYCL backend\n", __func__);
+#endif
// model size and capabilities
{
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();

View File

@@ -8,7 +8,7 @@ Subject: [PATCH] sort devices by score
1 file changed, 13 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 899d16f2..135f7df0 100644
index 899d16f2..ac5cda07 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -150,7 +150,7 @@ struct ggml_backend_reg_entry {
@@ -29,7 +29,7 @@ index 899d16f2..135f7df0 100644
if (!reg) {
return;
}
@@ -206,15 +206,20 @@ struct ggml_backend_registry {
@@ -206,15 +206,15 @@ struct ggml_backend_registry {
#endif
backends.push_back({ reg, std::move(handle) });
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
@@ -45,15 +45,10 @@ index 899d16f2..135f7df0 100644
#endif
- devices.push_back(device);
+ devices.push_back({device, score});
+ std::stable_sort(devices.begin(), devices.end(),
+ [](const auto & a, const auto & b) {
+ return a.second > b.second;
+ }
+ );
}
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
@@ -257,7 +262,7 @@ struct ggml_backend_registry {
@@ -257,7 +257,7 @@ struct ggml_backend_registry {
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
@@ -62,7 +57,7 @@ index 899d16f2..135f7df0 100644
return reg;
}
@@ -280,7 +285,7 @@ struct ggml_backend_registry {
@@ -280,7 +280,7 @@ struct ggml_backend_registry {
// remove devices
devices.erase(
std::remove_if(devices.begin(), devices.end(),
@@ -71,12 +66,17 @@ index 899d16f2..135f7df0 100644
devices.end());
// remove backend
@@ -338,7 +343,7 @@ size_t ggml_backend_dev_count() {
@@ -338,7 +338,12 @@ size_t ggml_backend_dev_count() {
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
- return get_reg().devices[index];
+ return get_reg().devices[index].first;
+ auto devices = get_reg().devices;
+ if (!std::is_heap(devices.begin(), devices.end())) {
+ std::make_heap(devices.begin(), devices.end(), [](const auto & a, const auto & b) { return a.second < b.second; });
+ }
+
+ return devices[index].first;
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {

View File

@@ -1,55 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 9 Feb 2025 17:22:15 -0800
Subject: [PATCH] remove sgemm global variables
removes the 'iq4nlt' global variable in sgemm.cpp that causes
a runtime crash when calling dlopen on ggml-cpu libraries as
its initialization depends on AVX instructions the host machine
may not have
---
ggml/src/ggml-cpu/llamafile/sgemm.cpp | 17 +++++++++--------
1 file changed, 9 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
index 8fce576c..3f260ce5 100644
--- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp
+++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
@@ -279,14 +279,6 @@ template <> inline __m256bh load(const float *p) {
}
#endif
-////////////////////////////////////////////////////////////////////////////////////////////////////
-// CONSTANTS
-
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
-static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
-static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
-#endif
-
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
@@ -613,6 +605,14 @@ class tinyBLAS_Q0_AVX {
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
+ const int8_t kvalues_iq4nl[16] = {
+ -127, -104, -83, -65,
+ -49, -35, -22, -10,
+ 1, 13, 25, 38,
+ 53, 69, 89, 113
+ };
+
+ iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}
void matmul(int64_t m, int64_t n) {
@@ -1037,6 +1037,7 @@ class tinyBLAS_Q0_AVX {
const int64_t ldc;
const int ith;
const int nth;
+ __m128i iq4nlt;
};
#endif // __AVX__

View File

@@ -1,69 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 11 Feb 2025 14:06:36 -0800
Subject: [PATCH] try/catch backend load
---
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
1 file changed, 23 insertions(+), 22 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 135f7df0..84b21dd8 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
- if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- if (handle) {
+ try {
+ if (entry.is_regular_file()) {
+ std::wstring filename = entry.path().filename().wstring();
+ std::wstring ext = entry.path().extension().wstring();
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path().wstring();
}
}
}
+ } catch (const std::exception & e) {
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -4,18 +4,18 @@
A minimial runner for loading a model and running inference via a http web server.
```shell
```
./runner -model <model binary>
```
### Completion
```shell
```
curl -X POST -H "Content-Type: application/json" -d '{"prompt": "hi"}' http://localhost:8080/completion
```
### Embeddings
```shell
```
curl -X POST -H "Content-Type: application/json" -d '{"prompt": "turn me into an embedding"}' http://localhost:8080/embedding
```

View File

@@ -1,4 +1,4 @@
package llamarunner
package runner
import (
"errors"

View File

@@ -1,4 +1,4 @@
package llamarunner
package runner
import (
"testing"

View File

@@ -1,4 +1,4 @@
package llamarunner
package runner
import (
"errors"

View File

@@ -1,4 +1,4 @@
package llamarunner
package runner
import (
"reflect"

View File

@@ -1,4 +1,4 @@
package llamarunner
package runner
import (
"context"
@@ -24,7 +24,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/runner/common"
)
// input is an element of the prompt to process, either
@@ -499,12 +498,12 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
if ok, stop := common.FindStop(sequence, seq.stop); ok {
if ok, stop := findStop(sequence, seq.stop); ok {
slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)
var tokenTruncated bool
origLen := len(seq.pendingResponses)
seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
seq.pendingResponses, tokenTruncated = truncateStop(seq.pendingResponses, stop)
newLen := len(seq.pendingResponses)
// Update the cache based on the tokens that will be returned:
@@ -525,11 +524,11 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
continue
}
if common.ContainsStopSuffix(sequence, seq.stop) {
if containsStopSuffix(sequence, seq.stop) {
continue
}
if common.IncompleteUnicode(sequence) {
if incompleteUnicode(sequence) {
continue
}
@@ -845,6 +844,8 @@ func (s *Server) loadModel(
threads int,
multiUserCache bool,
) {
llama.BackendInit()
var err error
s.model, err = llama.LoadModelFromFile(mpath, params)
if err != nil {
@@ -884,6 +885,9 @@ func (s *Server) loadModel(
}
func Execute(args []string) error {
if args[0] == "runner" {
args = args[1:]
}
fs := flag.NewFlagSet("runner", flag.ExitOnError)
mpath := fs.String("model", "", "Path to model binary file")
ppath := fs.String("mmproj", "", "Path to projector binary file")
@@ -930,8 +934,6 @@ func Execute(args []string) error {
})
slog.SetDefault(slog.New(handler))
slog.Info("starting go runner")
llama.BackendInit()
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
server := &Server{

View File

@@ -1,10 +1,10 @@
package common
package runner
import (
"strings"
)
func FindStop(sequence string, stops []string) (bool, string) {
func findStop(sequence string, stops []string) (bool, string) {
for _, stop := range stops {
if strings.Contains(sequence, stop) {
return true, stop
@@ -14,7 +14,7 @@ func FindStop(sequence string, stops []string) (bool, string) {
return false, ""
}
func ContainsStopSuffix(sequence string, stops []string) bool {
func containsStopSuffix(sequence string, stops []string) bool {
for _, stop := range stops {
for i := 1; i <= len(stop); i++ {
if strings.HasSuffix(sequence, stop[:i]) {
@@ -29,7 +29,7 @@ func ContainsStopSuffix(sequence string, stops []string) bool {
// truncateStop removes the provided stop string from pieces,
// returning the partial pieces with stop removed, including truncating
// the last piece if required (and signalling if this was the case)
func TruncateStop(pieces []string, stop string) ([]string, bool) {
func truncateStop(pieces []string, stop string) ([]string, bool) {
joined := strings.Join(pieces, "")
index := strings.Index(joined, stop)
@@ -65,7 +65,7 @@ func TruncateStop(pieces []string, stop string) ([]string, bool) {
return result, tokenTruncated
}
func IncompleteUnicode(token string) bool {
func incompleteUnicode(token string) bool {
incomplete := false
// check if there is incomplete UTF-8 character at the end

View File

@@ -1,4 +1,4 @@
package common
package runner
import (
"reflect"
@@ -52,7 +52,7 @@ func TestTruncateStop(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, resultTrunc := TruncateStop(tt.pieces, tt.stop)
result, resultTrunc := truncateStop(tt.pieces, tt.stop)
if !reflect.DeepEqual(result, tt.expected) || resultTrunc != tt.expectedTrunc {
t.Errorf("truncateStop(%v, %s): have %v (%v); want %v (%v)", tt.pieces, tt.stop, result, resultTrunc, tt.expected, tt.expectedTrunc)
}
@@ -120,7 +120,7 @@ func TestIncompleteUnicode(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := IncompleteUnicode(tt.input)
result := incompleteUnicode(tt.input)
if result != tt.expected {
t.Errorf("incompleteUnicode(%s): have %v; want %v", tt.input, result, tt.expected)
}

View File

@@ -116,7 +116,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
opts.NumCtx = max(opts.NumCtx, 2048)
}
layers := f.Tensors().GroupLayers()
layers := f.Tensors().Layers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
@@ -410,7 +410,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
return 0, 0
}
for _, layer := range ggml.Tensors().GroupLayers() {
for _, layer := range ggml.Tensors().Layers() {
weights += layer.Size()
}
@@ -431,7 +431,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
numPatches++
}

View File

@@ -90,6 +90,8 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
var err error
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
@@ -229,9 +231,19 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
params = append(params, "--multiuser-cache")
}
// get available libraries
if err != nil {
return nil, fmt.Errorf("could not get libollama dir: %w", err)
}
entries, err := os.ReadDir(discover.LibOllamaPath)
if err != nil {
return nil, fmt.Errorf("could not read libollama dir: %w", err)
}
libs := make(map[string]string)
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
for _, entry := range entries {
for _, entry := range entries {
if entry.IsDir() {
libs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
}
}
@@ -271,24 +283,16 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
slog.Debug("ResolveTCPAddr failed ", "error", err)
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if envconfig.NewEngine() {
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
var libraryPaths []string
@@ -320,8 +324,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
exe, err = filepath.EvalSymlinks(exe)
if err != nil {
return nil, fmt.Errorf("unable to evaluate symlinks for executable path: %w", err)
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
@@ -389,8 +394,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapt
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") ||
strings.HasPrefix(ev, "DYLD_LIBRARY_PATH=") {
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}

View File

@@ -6,14 +6,14 @@ This app builds upon Ollama to provide a desktop experience for running models.
First, build the `ollama` binary:
```shell
```
cd ..
go build .
```
Then run the desktop app with `npm start`:
```shell
```
cd macapp
npm install
npm start

View File

@@ -19,7 +19,7 @@ const config: ForgeConfig = {
icon: './assets/icon.icns',
extraResource: [
path.join(__dirname, '../dist/darwin/ollama'),
...fs.readdirSync(path.join(__dirname, '../dist/darwin-amd64/lib/ollama')).map(f => path.join(__dirname, '../dist/darwin-amd64/lib/ollama', f)),
...fs.readdirSync(path.join(__dirname, '../dist/darwin/amd64')).map(f => path.join(__dirname, '../dist/darwin/amd64', f)),
path.join(__dirname, './assets/iconTemplate.png'),
path.join(__dirname, './assets/iconTemplate@2x.png'),
path.join(__dirname, './assets/iconUpdateTemplate.png'),

14
main.go
View File

@@ -2,8 +2,6 @@ package main
import (
"context"
"os"
"os/signal"
"github.com/spf13/cobra"
@@ -11,15 +9,5 @@ import (
)
func main() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, os.Interrupt)
go func() {
<-sigChan
cancel()
}()
cobra.CheckErr(cmd.NewCLI().ExecuteContext(ctx))
cobra.CheckErr(cmd.NewCLI().ExecuteContext(context.Background()))
}

View File

@@ -5,7 +5,6 @@ import (
"encoding/binary"
"fmt"
"os"
"strconv"
"strings"
)
@@ -23,7 +22,6 @@ type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
SystemInfo() string
}
var backends = make(map[string]func(*os.File) (Backend, error))
@@ -50,16 +48,15 @@ type Context interface {
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Compute(...Tensor)
MaxTensors() int
Close()
Compute(Tensor) Tensor
Close() error
}
type Tensor interface {
Dim(n int) int
Stride(n int) int
Dim(n int) int64
Stride(n int) int64
Shape() []int
Shape() []int64
DType() DType
Bytes() []byte
@@ -68,7 +65,6 @@ type Tensor interface {
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
@@ -82,13 +78,13 @@ type Tensor interface {
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Reshape(ctx Context, shape ...int) Tensor
Reshape(ctx Context, shape ...int64) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Pad(ctx Context, shape ...int) Tensor
Unpad(ctx Context, shape ...int) Tensor
Pad(ctx Context, shape ...int64) Tensor
Unpad(ctx Context, shape ...int64) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
@@ -114,13 +110,13 @@ func mul[T number](s ...T) T {
type DumpOptions struct {
// Items is the number of elements to print at the beginning and end of each dimension.
Items int
Items int64
// Precision is the number of decimal places to print. Applies to float32 and float64.
Precision int
}
func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
func Dump(t Tensor, opts ...DumpOptions) string {
if len(opts) < 1 {
opts = append(opts, DumpOptions{
Items: 3,
@@ -130,28 +126,18 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
switch t.DType() {
case DTypeF32:
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16:
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
return dump[[]float32](t, opts[0])
case DTypeI32:
return dump[[]int32](ctx, t, opts[0].Items, func(i int32) string {
return strconv.FormatInt(int64(i), 10)
})
return dump[[]int32](t, opts[0])
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
if t.Bytes() == nil {
ctx.Forward(t)
ctx.Compute(t)
func dump[S ~[]E, E number](t Tensor, opts DumpOptions) string {
bts := t.Bytes()
if bts == nil {
return "<nil>"
}
s := make(S, mul(t.Shape()...))
@@ -162,16 +148,16 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
shape := t.Shape()
var sb strings.Builder
var f func([]int, int)
f = func(dims []int, stride int) {
var f func([]int64, int64)
f = func(dims []int64, stride int64) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
for i := int64(0); i < dims[0]; i++ {
if i >= opts.Items && i < dims[0]-opts.Items {
fmt.Fprint(&sb, "..., ")
// skip to next printable element
skip := dims[0] - 2*items
skip := dims[0] - 2*opts.Items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
@@ -184,7 +170,7 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, fn(s[stride+i]))
fmt.Fprint(&sb, s[stride+i])
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
}
@@ -199,8 +185,7 @@ func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string)
type DType int
const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeF32 DType = iota
DTypeI32
DTypeOther
)

View File

@@ -1,30 +1,16 @@
package ggml
/*
#cgo CPPFLAGS: -I${SRCDIR}/ggml/include
#include <stdlib.h>
#include <stdint.h>
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"log/slog"
@@ -37,7 +23,7 @@ import (
"github.com/ollama/ollama/ml"
"golang.org/x/sync/errgroup"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
type device struct {
@@ -212,9 +198,10 @@ func (b *Backend) Get(name string) ml.Tensor {
func (b *Backend) NewContext() ml.Context {
nodes := max(8192, len(b.meta.Tensors().Items())*5)
bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
c := C.ggml_init(C.struct_ggml_init_params{
mem_buffer: nil,
mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
mem_buffer: unsafe.Pointer(&bts[0]),
mem_size: C.size_t(len(bts)),
no_alloc: true,
})
@@ -256,35 +243,15 @@ func (c *Context) Forward(t ml.Tensor) {
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
}
func (c *Context) Compute(tensors ...ml.Tensor) {
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
c.Forward(t)
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.sched)
needSync = false
}
}
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) MaxTensors() int {
return c.nodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = (C.int64_t)(s)
}
return &sh[0]
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
@@ -301,11 +268,9 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
default:
panic("unsupported dtype")
}
@@ -318,13 +283,6 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
n := len(s)
if n == 0 {
var shape C.int64_t = 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
return &Tensor{t: t}, nil
}
for _, v := range shape {
n /= v
}
@@ -333,7 +291,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
@@ -348,16 +306,15 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() {
if c != nil {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
}
func (c *Context) Close() error {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
return nil
}
type Tensor struct {
t *C.struct_ggml_tensor
sync func()
data []byte
}
func (t *Tensor) LogValue() slog.Value {
@@ -368,16 +325,16 @@ func (t *Tensor) LogValue() slog.Value {
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
func (t *Tensor) Dim(n int) int64 {
return int64(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
func (t *Tensor) Stride(n int) int64 {
return int64(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
func (t *Tensor) Shape() []int64 {
shape := make([]int64, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
@@ -385,23 +342,18 @@ func (t *Tensor) Shape() []int {
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
func (t *Tensor) Bytes() []byte {
if bts := C.ggml_get_data(t.t); bts != nil {
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
}
return
return nil
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
func (t *Tensor) Floats() (f32s []float32) {
if t.data != nil {
f32s = make([]float32, C.ggml_nelements(t.t))
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
}
return
@@ -411,8 +363,6 @@ func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
@@ -458,15 +408,6 @@ func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
t: mul,
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
@@ -480,7 +421,7 @@ func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
@@ -512,7 +453,7 @@ func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
@@ -553,7 +494,7 @@ func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
@@ -604,14 +545,9 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
ropeFactors = &Tensor{}
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
@@ -642,34 +578,3 @@ func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (b *Backend) SystemInfo() string {
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
var s string
for i := range C.ggml_backend_reg_count() {
reg := C.ggml_backend_reg_get(i)
fName := C.CString("ggml_backend_get_features")
defer C.free(unsafe.Pointer(fName))
get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
if get_features_fn != nil {
s += C.GoString(C.ggml_backend_reg_name(reg))
s += " : "
for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
s += C.GoString(features.name)
s += " = "
s += C.GoString(features.value)
s += " | "
}
}
}
return s + compiler
}

View File

@@ -215,11 +215,6 @@ struct ggml_backend_registry {
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
#endif
devices.push_back({device, score});
std::stable_sort(devices.begin(), devices.end(),
[](const auto & a, const auto & b) {
return a.second > b.second;
}
);
}
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
@@ -343,7 +338,12 @@ size_t ggml_backend_dev_count() {
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
return get_reg().devices[index].first;
auto devices = get_reg().devices;
if (!std::is_heap(devices.begin(), devices.end())) {
std::make_heap(devices.begin(), devices.end(), [](const auto & a, const auto & b) { return a.second < b.second; });
}
return devices[index].first;
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
@@ -512,33 +512,32 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
try {
if (entry.is_regular_file()) {
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
continue;
}
if (entry.is_regular_file()) {
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
}
if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
continue;
}
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path().wstring();
if (score_fn) {
int s = score_fn();
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
#endif
if (s > best_score) {
best_score = s;
best_path = entry.path().wstring();
}
} else {
if (!silent) {
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
}
}
}
}
} catch (const std::exception & e) {
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -1,6 +1,6 @@
package cpu
// #cgo CFLAGS: -O3 -Wno-implicit-function-declaration
// #cgo CFLAGS: -Wno-implicit-function-declaration
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/amx -I${SRCDIR}/llamafile -I${SRCDIR}/.. -I${SRCDIR}/../../include
// #cgo CPPFLAGS: -DGGML_USE_LLAMAFILE

View File

@@ -279,6 +279,14 @@ template <> inline __m256bh load(const float *p) {
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// CONSTANTS
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
@@ -605,14 +613,6 @@ class tinyBLAS_Q0_AVX {
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
const int8_t kvalues_iq4nl[16] = {
-127, -104, -83, -65,
-49, -35, -22, -10,
1, 13, 25, 38,
53, 69, 89, 113
};
iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}
void matmul(int64_t m, int64_t n) {
@@ -1037,7 +1037,6 @@ class tinyBLAS_Q0_AVX {
const int64_t ldc;
const int ith;
const int nth;
__m128i iq4nlt;
};
#endif // __AVX__

View File

@@ -0,0 +1,77 @@
#!/usr/bin/env python3
from glob import glob
import os
TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"]
SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f{vkq_size}.cuh"
DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
"""
SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-wmma-f16.cuh"
"""
SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
TYPES_MMQ = [
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
"GGML_TYPE_Q2_K", "GGML_TYPE_Q3_K", "GGML_TYPE_Q4_K", "GGML_TYPE_Q5_K", "GGML_TYPE_Q6_K",
"GGML_TYPE_IQ2_XXS", "GGML_TYPE_IQ2_XS", "GGML_TYPE_IQ2_S", "GGML_TYPE_IQ3_XXS", "GGML_TYPE_IQ3_S",
"GGML_TYPE_IQ1_S", "GGML_TYPE_IQ4_NL", "GGML_TYPE_IQ4_XS"
]
SOURCE_MMQ = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE({type});
"""
def get_short_name(long_quant_name):
return long_quant_name.replace("GGML_TYPE_", "").lower()
def get_head_sizes(type_k, type_v):
if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16":
return [64, 128, 256]
if type_k == "GGML_TYPE_F16":
return [64, 128]
return [128]
for filename in glob("*.cu"):
os.remove(filename)
for vkq_size in [16, 32]:
for type_k in TYPES_KV:
for type_v in TYPES_KV:
for head_size in get_head_sizes(type_k, type_v):
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
for kq_acc_t in ["half", "float"]:
for cols_per_block in [8, 16, 32]:
if kq_acc_t == "float" and cols_per_block == 8:
continue
with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
f.write(SOURCE_FATTN_WMMA_START)
for head_size in [64, 80, 96, 112, 128, 256]:
if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
continue
if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
continue
f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
for type in TYPES_MMQ:
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:
f.write(SOURCE_MMQ.format(type=type))

View File

@@ -41,53 +41,36 @@ func sink(level C.int, text *C.char, _ unsafe.Pointer) {
}
var OnceLoad = sync.OnceFunc(func() {
exe, err := os.Executable()
if err != nil {
slog.Warn("failed to get executable path", "error", err)
exe = "."
}
// PATH, LD_LIBRARY_PATH, and DYLD_LIBRARY_PATH are often
// set by the parent process, however, use a default value
// if the environment variable is not set.
var name, value string
var lib struct{ name, defaultValue string }
switch runtime.GOOS {
case "darwin":
// On macOS, DYLD_LIBRARY_PATH is often not set, so
// we use the directory of the executable as the default.
name = "DYLD_LIBRARY_PATH"
value = filepath.Dir(exe)
case "darwin", "linux":
lib.name = "LD_LIBRARY_PATH"
lib.defaultValue = "/usr/local/lib:/usr/lib"
case "windows":
name = "PATH"
value = filepath.Join(filepath.Dir(exe), "lib", "ollama")
lib.name = "PATH"
lib.defaultValue = "."
default:
name = "LD_LIBRARY_PATH"
value = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
return
}
paths, ok := os.LookupEnv(name)
paths, ok := os.LookupEnv(lib.name)
if !ok {
paths = value
paths = lib.defaultValue
}
if runtime.GOOS == "darwin" {
if _, ok := os.LookupEnv("DYLD_LIBRARY_PATH"); !ok {
os.Setenv("DYLD_LIBRARY_PATH", paths)
}
}
split := filepath.SplitList(paths)
visited := make(map[string]struct{}, len(split))
for _, path := range split {
abspath, err := filepath.Abs(path)
if err != nil {
slog.Error("failed to get absolute path", "error", err)
continue
}
if abspath != filepath.Dir(exe) && !strings.Contains(abspath, filepath.FromSlash("lib/ollama")) {
slog.Debug("skipping path which is not part of ollama", "path", abspath)
continue
}
abspath, _ := filepath.Abs(path)
if _, ok := visited[abspath]; !ok {
func() {
slog.Debug("ggml backend load all from path", "path", abspath)
cpath := C.CString(abspath)
cpath := C.CString(path)
defer C.free(unsafe.Pointer(cpath))
C.ggml_backend_load_all_from_path(cpath)
}()

View File

@@ -0,0 +1,6 @@
//go:build debug
package ggml
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
import "C"

160
model/cmd/main.go Normal file
View File

@@ -0,0 +1,160 @@
package main
import (
"errors"
"flag"
"fmt"
"image"
"io"
"log/slog"
"os"
"path/filepath"
"strings"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
_ "github.com/ollama/ollama/model/llama"
_ "github.com/ollama/ollama/model/mllama"
"github.com/ollama/ollama/sample"
)
var args struct {
n int
debug bool
image string
cache bool
}
func temp() error {
flag.IntVar(&args.n, "n", 10, "number of samples")
flag.BoolVar(&args.debug, "debug", false, "enable debug logging")
flag.StringVar(&args.image, "image", "", "path to image file")
flag.BoolVar(&args.cache, "cache", false, "enable KV cache")
flag.Parse()
var prompt string
if n := len(flag.Args()); n == 1 {
bts, err := io.ReadAll(os.Stdin)
if err != nil {
return err
}
prompt = string(bts)
} else if n > 1 {
prompt = strings.Join(flag.Args()[1:], " ")
} else {
return fmt.Errorf("usage: %s path/to/file <prompt\n", filepath.Base(os.Args[0]))
}
level := slog.LevelInfo
if args.debug {
level = slog.LevelDebug
}
slog.SetDefault(slog.New(slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})))
m, err := model.New(flag.Arg(0))
if err != nil {
return err
}
inputIDs, err := m.(model.TextProcessor).Encode(prompt)
if err != nil {
return err
}
var opts []model.OptionsFunc
if args.cache {
opts = append(opts, model.WithCache(&cache.Simple{
Capacity: 2048,
DType: ml.DTypeF32,
}))
}
if args.image != "" {
if err := func() error {
f, err := os.Open(args.image)
if err != nil {
return err
}
defer f.Close()
img, _, err := image.Decode(f)
if err != nil {
return err
}
opts = append(opts, model.WithImage(img))
return nil
}(); err != nil {
return err
}
}
var offset int
for range args.n {
logit, err := model.Forward(m, append(opts, model.WithInputIDs(inputIDs), model.WithOffset(offset))...)
if err != nil {
return err
}
f32s := logit.Floats()
f64s := make([]float64, len(f32s))
for i, f32 := range f32s {
f64s[i] = float64(f32)
}
// do sampling
f64s, err = sample.Sample(f64s, sample.Greedy())
if err != nil {
return err
}
var outputIDs []int32
for _, f64 := range f64s {
if !m.(model.TextProcessor).Is(uint32(f64), model.SpecialEOS) {
outputIDs = append(outputIDs, int32(f64))
}
}
if len(outputIDs) == 0 {
break
}
s, err := m.(model.TextProcessor).Decode(outputIDs)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
return err
}
fmt.Print(s)
inputIDs = append(inputIDs, outputIDs...)
if args.cache {
offset = len(inputIDs) - 1
}
}
return nil
}
func main() {
if err := temp(); err != nil {
fmt.Println("err", err)
os.Exit(1)
}
}

View File

@@ -3,7 +3,6 @@ package llama
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
@@ -11,7 +10,7 @@ import (
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
}
@@ -29,32 +28,28 @@ type Model struct {
}
func New(c ml.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
return &Model{
BytePairEncoding: model.BytePairEncoding{
Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Vocabulary: &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
},
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}, nil
}
type SelfAttention struct {
@@ -64,7 +59,7 @@ type SelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
@@ -79,16 +74,14 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
cache.Put(ctx, k, v)
k, v, mask := cache.Get(ctx)
k, v = cache.Put(ctx, k, v, cache.Options)
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.MulmatFullPrec(ctx, q)
kq := k.Mulmat(ctx, q)
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
kq = kq.Add(ctx, mask)
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
@@ -98,10 +91,6 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
@@ -120,7 +109,7 @@ type Layer struct {
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -134,12 +123,12 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cach
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
@@ -147,14 +136,13 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
if err != nil {
return nil, err
}

View File

@@ -1,7 +1,6 @@
package mllama
import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
@@ -9,7 +8,6 @@ import (
type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*TextModel
@@ -17,33 +15,16 @@ type Model struct {
Projector *nn.Linear `gguf:"mm.0"`
ImageProcessor
TextProcessor
}
const (
crossAttentionLayer = iota
selfAttentionLayer
)
func New(c ml.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
return &Model{
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextProcessor: newTextProcessor(c),
TextModel: newTextModel(c),
}
m.Cache = kvcache.NewWrapperCache(kvcache.NewEncoderCache(), kvcache.NewCausalCache(m.TextModel.Shift))
return &m, nil
}, nil
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
@@ -83,20 +64,20 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
}
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache))
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, opts.Cache)
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
if err != nil {
return nil, err
}

View File

@@ -4,9 +4,9 @@ import (
"math"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type TextSelfAttention struct {
@@ -16,7 +16,7 @@ type TextSelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, mask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
@@ -31,16 +31,19 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
cache.Put(ctx, key, value)
key, value, mask := cache.Get(ctx)
key, value = cache.Put(ctx, key, value, cache.Options)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.MulmatFullPrec(ctx, query)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Add(ctx, mask)
if mask != nil {
scores = scores.Add(ctx, mask)
}
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
@@ -50,11 +53,6 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
return sa.Output.Forward(ctx, attention)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type TextMLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
@@ -74,7 +72,7 @@ type TextSelfAttentionDecoderLayer struct {
MLP *TextMLP
}
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -96,29 +94,23 @@ type TextCrossAttention struct {
Output *nn.Linear `gguf:"cross_attn_o_proj"`
}
func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
query := ca.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = ca.QueryNorm.Forward(ctx, query, opts.eps)
var key, value ml.Tensor
if crossAttentionStates != nil {
numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
key := ca.Key.Forward(ctx, crossAttentionStates)
key = key.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
key = ca.KeyNorm.Forward(ctx, key, opts.eps)
key = ca.Key.Forward(ctx, crossAttentionStates)
key = key.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
key = ca.KeyNorm.Forward(ctx, key, opts.eps)
value := ca.Value.Forward(ctx, crossAttentionStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
value = ca.Value.Forward(ctx, crossAttentionStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
cache.Put(ctx, key, value)
} else {
key, value, _ = cache.Get(ctx)
}
// TODO cache key, value
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
@@ -145,7 +137,7 @@ type TextCrossAttentionDecoderLayer struct {
MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
}
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -161,25 +153,17 @@ func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _,
}
type TextDecoderLayer interface {
Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor
}
type TextDecoder struct {
Layers []TextDecoderLayer
}
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
for i, layer := range d.Layers {
layerType := selfAttentionLayer
if slices.Contains(opts.crossAttentionLayers, uint32(i)) {
layerType = crossAttentionLayer
}
cache.SetLayer(i)
cache.SetLayerType(layerType)
if layerType == selfAttentionLayer || crossAttentionStates != nil || cache.UnderlyingCache().(*kvcache.EncoderCache).EncoderCached() {
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
if !slices.Contains(opts.crossAttentionLayers, uint32(i)) || crossAttentionStates != nil {
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache.Sub(i), opts)
}
}
@@ -189,7 +173,7 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, cr
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
@@ -205,7 +189,7 @@ type TextModel struct {
*TextModelOptions
}
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
@@ -228,9 +212,9 @@ func newTextModel(c ml.Config) *TextModel {
return &TextModel{
Transformer: &TextDecoder{Layers: decoderLayers},
TextModelOptions: &TextModelOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),

View File

@@ -8,7 +8,7 @@ import (
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
var batchSize int64 = 1
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
@@ -99,7 +99,7 @@ func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermedi
var intermediateHiddenStates []ml.Tensor
for i, layer := range e.Layers {
if slices.Contains(intermediateLayersIndices, uint32(i)) {
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int{1}, hiddenState.Shape()...)...))
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int64{1}, hiddenState.Shape()...)...))
}
hiddenState = layer.Forward(ctx, hiddenState, opts)
@@ -131,7 +131,7 @@ type PrecomputedPositionEmbedding struct {
TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
}
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int64, opts *VisionModelOptions) ml.Tensor {
positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
if e.PositionEmbeddingGate != nil {
positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
@@ -149,7 +149,7 @@ func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, posi
}
type VisionModelOptions struct {
hiddenSize, numHeads, numTiles int
hiddenSize, numHeads, numTiles int64
imageSize, patchSize int
eps float32
@@ -174,7 +174,7 @@ type VisionModel struct {
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
numPatches := int64((m.imageSize / m.patchSize) * (m.imageSize / m.patchSize))
numPositions := numPatches
if m.ClassEmbedding != nil {
numPositions++
@@ -185,7 +185,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, int(m.numTiles)-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
@@ -205,7 +205,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Reshape(ctx, int64(len(intermediateHiddenStates))*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
@@ -219,9 +219,9 @@ func newVisionModel(c ml.Config) *VisionModel {
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
numTiles: int(c.Uint("vision.max_num_tiles")),
hiddenSize: int64(c.Uint("vision.embedding_length")),
numHeads: int64(c.Uint("vision.attention.head_count")),
numTiles: int64(c.Uint("vision.max_num_tiles")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),

View File

@@ -0,0 +1,25 @@
package mllama
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
)
type TextProcessor struct {
model.BytePairEncoding
}
func newTextProcessor(c ml.Config) TextProcessor {
return TextProcessor{
BytePairEncoding: model.BytePairEncoding{
Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Vocabulary: &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
},
}
}

View File

@@ -0,0 +1,87 @@
package mllama
import (
"encoding/json"
"errors"
"os"
"path/filepath"
"strconv"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/model"
)
func TestProcessText(t *testing.T) {
ours, err := model.New(filepath.Join("testdata", "model.bin"))
if errors.Is(err, os.ErrNotExist) {
t.Skip("no model.bin")
} else if err != nil {
t.Fatal(err)
}
t.Run("decode", func(t *testing.T) {
f, err := os.Open(filepath.Join("testdata", "theirs.json"))
if errors.Is(err, os.ErrNotExist) {
t.Skip("no theirs.json")
} else if err != nil {
t.Fatal(err)
}
defer f.Close()
var theirs [][]byte
if err := json.NewDecoder(f).Decode(&theirs); err != nil {
t.Fatal(err)
}
for id := range theirs {
ids := []int32{int32(id)}
s, err := ours.(model.TextProcessor).Decode(ids)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(string(theirs[id]), s); diff != "" {
t.Errorf("%d no match (-theirs +ours):\n%s", id, diff)
}
}
})
t.Run("encode", func(t *testing.T) {
f, err := os.Open(filepath.Join("..", "testdata", "inputs.json"))
if errors.Is(err, os.ErrNotExist) {
t.Skip("no inputs.json")
} else if err != nil {
t.Fatal(err)
}
defer f.Close()
var inputs []struct {
Values []byte `json:"base64"`
IDs []int32 `json:"ids"`
}
if err := json.NewDecoder(f).Decode(&inputs); err != nil {
t.Fatal(err)
}
for i, input := range inputs {
if i == 45 {
t.Skip("skip 45")
}
t.Run(strconv.Itoa(i), func(t *testing.T) {
ids, err := ours.(model.TextProcessor).Encode(string(input.Values))
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(input.IDs, ids, cmpopts.EquateEmpty()); diff != "" {
t.Errorf("%s: no match (-theirs +ours):\n%s", input.Values, diff)
}
})
}
})
}

1
model/mllama/testdata/model.bin vendored Symbolic link
View File

@@ -0,0 +1 @@
/Users/michaelyang/git/ollama/library/nltpt/Llama-3.2-11B-Vision-Instruct/merged.gguf

1
model/mllama/testdata/theirs.json vendored Normal file
View File

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,6 @@
package model
import (
"errors"
"fmt"
"image"
_ "image/jpeg"
@@ -16,51 +15,106 @@ import (
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
)
// Options contains the inputs for a model forward pass
type Cache struct {
cache.Cache
cache.Options
}
func (c Cache) Sub(i int) Cache {
if c.Cache != nil {
return Cache{
Cache: c.Cache.Sub(i),
Options: c.Options,
}
}
return c
}
func (c Cache) Put(ctx ml.Context, key, value ml.Tensor, opts cache.Options) (ml.Tensor, ml.Tensor) {
if c.Cache != nil {
return c.Cache.Put(ctx, key, value, opts)
}
return key, value
}
type Options struct {
Inputs []int32
Positions []int32
Sequences []int
Outputs []int32
inputs []int32
Offset int
Images []image.Image
Cache
}
type config struct {
Cache kvcache.Cache
func (opts Options) Inputs() []int32 {
return opts.inputs[opts.Offset:]
}
func (opts Options) Positions() []int32 {
positions := make([]int32, len(opts.inputs)-opts.Offset)
for i := range positions {
positions[i] = int32(opts.Offset + i)
}
return positions
}
type OptionsFunc func(Model, *Options)
func WithInputIDs(ids []int32) OptionsFunc {
return func(m Model, opts *Options) {
opts.inputs = ids
}
}
func WithOffset(offset int) OptionsFunc {
return func(m Model, opts *Options) {
opts.Offset = offset
opts.Cache.Position = offset
}
}
func WithImage(img image.Image) OptionsFunc {
return func(m Model, opts *Options) {
opts.Images = append(opts.Images, img)
}
}
func WithCache(c cache.Cache) OptionsFunc {
return func(m Model, opts *Options) {
opts.Cache = Cache{
Cache: c,
Options: cache.Options{
Position: opts.Offset,
},
}
}
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
}
var models = make(map[string]func(ml.Config) (Model, error))
// Register registers a model constructor for the given architecture
func Register(name string, f func(ml.Config) (Model, error)) {
if _, ok := models[name]; ok {
panic("model: model already registered")
@@ -69,9 +123,8 @@ func Register(name string, f func(ml.Config) (Model, error)) {
models[name] = f
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(modelPath string) (Model, error) {
r, err := os.Open(modelPath)
func New(s string) (Model, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
}
@@ -93,15 +146,16 @@ func New(modelPath string) (Model, error) {
return nil, err
}
base := Base{b: b, config: m.Config()}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(base, v.Elem()))
v.Elem().Set(populateFields(b, v))
return m, nil
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
func populateFields(b ml.Backend, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
if t.Kind() == reflect.Pointer {
t, v = t.Elem(), v.Elem()
}
if t.Kind() == reflect.Struct {
allNil := true
@@ -119,7 +173,7 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
}
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
vv.Set(reflect.ValueOf(base))
vv.Set(reflect.ValueOf(Base{b: b}))
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
var fn func([]Tag) [][]string
fn = func(tags []Tag) (values [][]string) {
@@ -145,22 +199,24 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
names := fn(tagsCopy)
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
if tensor := b.Get(strings.Join(name, ".")); tensor != nil {
slog.Debug("found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
}
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
setPointer(base, vv, tagsCopy)
} else if tt.Kind() == reflect.Pointer {
vvv := vv.Elem()
if vv.IsNil() {
vvv = reflect.New(tt.Elem())
}
if f := populateFields(b, vvv, tagsCopy...); f.CanAddr() {
vv.Set(f.Addr())
}
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
for i := range vv.Len() {
vvv := vv.Index(i)
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
} else {
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
vv.Index(i).Set(populateFields(b, vv.Index(i), append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
}
@@ -177,26 +233,6 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
return v
}
func setPointer(base Base, v reflect.Value, tags []Tag) {
vv := v
if v.Kind() == reflect.Interface {
if v.IsNil() {
return
}
vv = vv.Elem()
}
vv = vv.Elem()
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}
if f := populateFields(base, vv, tags...); f.CanAddr() {
v.Set(f.Addr())
}
}
type Tag struct {
Name string
Alternate []string
@@ -226,30 +262,18 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
if len(opts.Positions) < 1 {
return nil, errors.New("batch size cannot be less than 1")
}
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
if err != nil {
return nil, err
}
func Forward(m Model, optsFuncs ...OptionsFunc) (ml.Tensor, error) {
var opts Options
for _, optsFunc := range optsFuncs {
optsFunc(m, &opts)
}
ctx := m.Backend().NewContext()
t, err := m.Forward(ctx, opts)
if err != nil {
return nil, err
}
defer ctx.Close()
ctx.Forward(t)
ctx.Compute(t)
return t, nil
return ctx.Compute(t), nil
}

View File

@@ -78,7 +78,7 @@ func TestPopulateFields(t *testing.T) {
var m fakeModel
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
v.Elem().Set(populateFields(&fakeBackend{
names: []string{
"input.weight",
"blk.0.attn_q.weight",
@@ -90,7 +90,7 @@ func TestPopulateFields(t *testing.T) {
"output_norm.weight",
"output.weight",
},
}}, v.Elem()))
}, v))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
@@ -121,11 +121,11 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
m := fakeModel{}
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
v.Elem().Set(populateFields(&fakeBackend{
names: []string{
"input.weight",
},
}}, v.Elem()))
}, v))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},

View File

@@ -1,6 +0,0 @@
package models
import (
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -2,7 +2,6 @@ package model
import (
"cmp"
"iter"
"log/slog"
"strings"
"sync"
@@ -21,7 +20,7 @@ const (
type TextProcessor interface {
Encode(string) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Is(uint32, Special) bool
}
type Vocabulary struct {
@@ -30,7 +29,7 @@ type Vocabulary struct {
Scores []uint32
Merges []string
BOS, EOS int32
BOS, EOS uint32
specialOnce sync.Once
special []string
@@ -42,7 +41,7 @@ type Vocabulary struct {
merge map[string]int32
}
func (v *Vocabulary) Is(id int32, special Special) bool {
func (v *Vocabulary) Is(id uint32, special Special) bool {
switch special {
case SpecialBOS:
return id == v.BOS
@@ -100,29 +99,23 @@ func (v *Vocabulary) Merge(left, right string) int {
}
type BytePairEncoding struct {
pre *regexp2.Regexp
vocab *Vocabulary
Pretokenizer string
*Vocabulary
}
func NewBytePairEncoding(pre string, vocab *Vocabulary) BytePairEncoding {
return BytePairEncoding{
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
func (bpe BytePairEncoding) split(s string) ([]string, error) {
re, err := regexp2.Compile(bpe.Pretokenizer, regexp2.Unicode|regexp2.RE2)
if err != nil {
return nil, err
}
}
func (bpe BytePairEncoding) Is(id int32, special Special) bool {
return bpe.vocab.Is(id, special)
}
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := bpe.pre.FindStringMatch(s); m != nil; m, _ = bpe.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
var matches []string
for m, _ := re.FindStringMatch(s); m != nil; m, _ = re.FindNextMatch(m) {
matches = append(matches, m.String())
}
return matches, nil
}
// fragment is a string fragment and their corresponding token IDs
@@ -145,9 +138,9 @@ type merge struct {
func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
for _, special := range bpe.Vocabulary.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := bpe.vocab.Encode(special)
id := bpe.Vocabulary.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
@@ -180,7 +173,13 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
continue
}
for split := range bpe.split(frag.value) {
// split fragment using pretokenizer
splits, err := bpe.split(frag.value)
if err != nil {
return nil, err
}
for _, split := range splits {
// TODO: process splits concurrently
var sb strings.Builder
for _, b := range []byte(split) {
@@ -198,7 +197,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
}
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
if id := bpe.Vocabulary.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
continue
@@ -220,7 +219,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
}
left, right := string(merges[a].runes), string(merges[b].runes)
rank := bpe.vocab.Merge(left, right)
rank := bpe.Vocabulary.Merge(left, right)
if rank < 0 {
return nil
}
@@ -272,7 +271,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
for _, merge := range merges {
if len(merge.runes) > 0 {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
if id := bpe.Vocabulary.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
}
@@ -287,7 +286,7 @@ func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
for _, r := range bpe.vocab.Decode(id) {
for _, r := range bpe.Vocabulary.Decode(id) {
switch {
case r == 0x0100:
// this produces 0x00 aka NULL

View File

@@ -0,0 +1,160 @@
package model
import (
"testing"
)
// BenchmarkVocabulary is a reusable test vocabulary for benchmarks
var BenchmarkVocabulary = &Vocabulary{
Values: []string{
"Hello",
"World",
"!",
"How",
"are",
"you",
"t",
"o",
"d",
"a",
"y",
"to",
"tod",
"toda",
"today",
" ",
"<s>",
"</s>",
"<pad>",
"'s",
"'t",
"'re",
"'ve",
"'m",
"'ll",
"'d",
},
Types: []uint32{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1}, // 3 for special tokens
Merges: []string{
"to",
"tod",
"toda",
"today",
},
BOS: 16, // <s>
EOS: 17, // </s>
}
func BenchmarkBytePairEncoding(b *testing.B) {
bpe := BytePairEncoding{
Pretokenizer: `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
Vocabulary: BenchmarkVocabulary,
}
benchmarks := []struct {
name string
input string
}{
{
name: "simple_hello_world",
input: "Hello World!",
},
{
name: "with_special_tokens",
input: "<s>Hello World!</s>",
},
{
name: "with_merges",
input: "today is today and today",
},
{
name: "with_contractions",
input: "I'm don't won't can't they're we've you'll he'd",
},
{
name: "long_text",
input: "Hello World! How are you today? I'm doing great! This is a longer text to test the performance of the encoding and decoding process with multiple sentences and various tokens including special ones like <s> and </s> and contractions like don't and won't.",
},
}
for _, bm := range benchmarks {
// Benchmark Encoding
b.Run("Encode_"+bm.name, func(b *testing.B) {
b.ReportAllocs()
for range b.N {
tokens, err := bpe.Encode(bm.input)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(len(tokens) * 4)) // Each token is 4 bytes (int32)
}
})
// First encode the input to get tokens for decode benchmark
tokens, err := bpe.Encode(bm.input)
if err != nil {
b.Fatal(err)
}
// Benchmark Decoding
b.Run("Decode_"+bm.name, func(b *testing.B) {
b.ReportAllocs()
for range b.N {
decoded, err := bpe.Decode(tokens)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(len(decoded)))
}
})
}
}
func BenchmarkBytePairEncodingSplit(b *testing.B) {
bpe := BytePairEncoding{
Pretokenizer: `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
}
benchmarks := []struct {
name string
input string
}{
{
name: "simple_text",
input: "Hello World!",
},
{
name: "with_contractions",
input: "I'm don't won't",
},
{
name: "with_numbers",
input: "In 2024 there are 365 days",
},
{
name: "with_special_chars",
input: "Hello!! ...world",
},
{
name: "with_spaces",
input: "Hello World",
},
{
name: "with_newlines",
input: "Hello\nWorld\nHow\nAre\nYou",
},
}
for _, bm := range benchmarks {
b.Run("Split_"+bm.name, func(b *testing.B) {
b.ReportAllocs()
for range b.N {
splits, err := bpe.split(bm.input)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(len(splits)))
}
})
}
}

View File

@@ -1,254 +0,0 @@
package model
import (
"bufio"
"encoding/json"
"math"
"os"
"path/filepath"
"slices"
"strconv"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func llama(t testing.TB) BytePairEncoding {
t.Helper()
f, err := os.Open(filepath.Join("testdata", "llama3.2", "encoder.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
vocab := make(map[string]int32)
if err := json.NewDecoder(f).Decode(&vocab); err != nil {
t.Fatal(err)
}
types := make([]uint32, len(vocab))
tokens := make([]string, len(vocab))
for token, id := range vocab {
tokens[id] = token
types[id] = 1
}
for _, token := range []string{"<|begin_of_text|>", "<|end_of_text|>"} {
if _, ok := vocab[token]; !ok {
tokens = append(tokens, token) //nolint:makezero
types = append(types, 3) //nolint:makezero
vocab[token] = int32(len(vocab))
}
}
f, err = os.Open(filepath.Join("testdata", "llama3.2", "vocab.bpe"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
merges := make([]string, 0, 50000)
scanner := bufio.NewScanner(f)
for scanner.Scan() {
if !strings.HasPrefix(scanner.Text(), "#") {
merges = append(merges, scanner.Text())
}
}
return NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&Vocabulary{
Values: tokens,
Types: types,
Merges: merges,
},
)
}
func TestLlama(t *testing.T) {
tokenizer := llama(t)
t.Run("simple", func(t *testing.T) {
t.Parallel()
ids, err := tokenizer.Encode("hello world")
if err != nil {
t.Error(err)
}
if diff := cmp.Diff([]int32{15339, 1917}, ids); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
s, err := tokenizer.Decode([]int32{15339, 1917})
if err != nil {
t.Fatal(err)
}
if s != "hello world" {
t.Errorf("got %q, want hello world", s)
}
ids, err = tokenizer.Encode("hello <|end_of_text|>")
if err != nil {
t.Error(err)
}
if diff := cmp.Diff([]int32{15339, 220, 128001}, ids); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
})
t.Run("simple repeated", func(t *testing.T) {
t.Parallel()
cases := map[string][]int32{
strings.Repeat("0", 1): {15},
strings.Repeat("0", 2): {410},
strings.Repeat("0", 3): {931},
strings.Repeat("0", 4): {931, 15},
strings.Repeat("0", 5): {931, 410},
strings.Repeat("0", 6): {931, 931},
strings.Repeat("0", 7): {931, 931, 15},
strings.Repeat("0", 8): {931, 931, 410},
strings.Repeat("0", 9): {931, 931, 931},
strings.Repeat("0", 10): {931, 931, 931, 15},
strings.Repeat("0", 11): {931, 931, 931, 410},
strings.Repeat("0", 12): {931, 931, 931, 931},
strings.Repeat("0", 13): {931, 931, 931, 931, 15},
strings.Repeat("0", 14): {931, 931, 931, 931, 410},
strings.Repeat("0", 15): {931, 931, 931, 931, 931},
strings.Repeat("0", 16): {931, 931, 931, 931, 931, 15},
strings.Repeat("0", 17): {931, 931, 931, 931, 931, 410},
}
for s, want := range cases {
ids, err := tokenizer.Encode(s)
if err != nil {
t.Error(err)
}
if diff := cmp.Diff(want, ids); diff != "" {
t.Errorf("%q no match (-theirs +ours):\n%s", s, diff)
}
}
})
t.Run("basic roundtrip", func(t *testing.T) {
t.Parallel()
cases := []string{
"hello",
"hello ",
"hello ",
" hello",
" hello ",
" hello ",
"hello world",
"请考试我的软件12345",
}
for _, want := range cases {
ids, err := tokenizer.Encode(want)
if err != nil {
t.Error(err)
}
if got, err := tokenizer.Decode(ids); err != nil {
t.Fatal(err)
} else if got != want {
t.Errorf("got %q, want %q", got, want)
}
}
})
t.Run("special", func(t *testing.T) {
t.Parallel()
cases := map[string][]int32{
"<|begin_of_text|>A B!": {128000, 32, 426, 0},
"<|begin_of_text|>A<|end_of_text|>B!": {128000, 32, 128001, 33, 0},
"<|begin_of_text|>A<|end_of_text|>B<|begin_of_text|>!": {128000, 32, 128001, 33, 128000, 0},
"<|begin_of_text|>A<|end_of_text|>B<|begin_of_text|>!<|end_of_text|>": {128000, 32, 128001, 33, 128000, 0, 128001},
}
for s, want := range cases {
ids, err := tokenizer.Encode(s)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want, ids); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
}
})
t.Run("split", func(t *testing.T) {
t.Parallel()
cases := map[string][]string{
"Hello World!": {"Hello", " World", "!"},
"I'm don't won't": {"I", "'m", " don", "'t", " won", "'t"},
"In 2024 there are 366 days": {"In", " ", "202", "4", " there", " are", " ", "366", " days"},
"Hello!! ...world": {"Hello", "!!", " ...", "world"},
"Hello World": {"Hello", " ", " World"},
"Hello\nWorld": {"Hello", "\n", "World"},
"Hello, WORLD!! How's it going?": {"Hello", ",", " WORLD", "!!", " How", "'s", " it", " going", "?"},
}
for s, want := range cases {
got := slices.Collect(tokenizer.split(s))
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("no match (-theirs +ours):\n%s", diff)
}
}
})
}
func BenchmarkBytePairEncoding(b *testing.B) {
tokenizer := llama(b)
bts, err := os.ReadFile(filepath.Join("testdata", "war-and-peace.txt"))
if err != nil {
b.Fatal(err)
}
for i := range 8 {
n := min(int(math.Pow10(i)), len(bts))
bts := bts[:n]
b.Run("encode"+strconv.Itoa(n), func(b *testing.B) {
b.ResetTimer()
for range b.N {
_, err := tokenizer.Encode(string(bts))
if err != nil {
b.Fatal(err)
}
}
})
b.Run("decode"+strconv.Itoa(n), func(b *testing.B) {
ids, err := tokenizer.Encode(string(bts))
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for range b.N {
_, err := tokenizer.Decode(ids)
if err != nil {
b.Fatal(err)
}
}
})
b.Run("split"+strconv.Itoa(n), func(b *testing.B) {
b.ResetTimer()
for range b.N {
slices.Collect(tokenizer.split(string(bts)))
}
})
}
}

586
model/testdata/inputs.json vendored Normal file
View File

@@ -0,0 +1,586 @@
[
{
"base64": "aWVkIDQgwr0gbW9udGhz",
"ids": [
1142,
220,
19,
220,
27154,
4038
]
},
{
"base64": "RsO8aHJlcg==",
"ids": [
37,
51853,
261
]
},
{
"base64": "",
"ids": []
},
{
"base64": "IA==",
"ids": [
220
]
},
{
"base64": "ICA=",
"ids": [
256
]
},
{
"base64": "ICAg",
"ids": [
262
]
},
{
"base64": "CQ==",
"ids": [
197
]
},
{
"base64": "Cg==",
"ids": [
198
]
},
{
"base64": "Cgo=",
"ids": [
271
]
},
{
"base64": "CgoK",
"ids": [
1432
]
},
{
"base64": "CQo=",
"ids": [
1602
]
},
{
"base64": "SGVsbG8gd29ybGQ=",
"ids": [
9906,
1917
]
},
{
"base64": "IEhlbGxvIHdvcmxk",
"ids": [
22691,
1917
]
},
{
"base64": "SGVsbG8gV29ybGQ=",
"ids": [
9906,
4435
]
},
{
"base64": "IEhlbGxvIFdvcmxk",
"ids": [
22691,
4435
]
},
{
"base64": "IEhlbGxvIFdvcmxkIQ==",
"ids": [
22691,
4435,
0
]
},
{
"base64": "SGVsbG8sIHdvcmxkIQ==",
"ids": [
9906,
11,
1917,
0
]
},
{
"base64": "IEhlbGxvLCB3b3JsZCE=",
"ids": [
22691,
11,
1917,
0
]
},
{
"base64": "IHRoaXMgaXMg8J+mmS5jcHA=",
"ids": [
420,
374,
11410,
99,
247,
13,
11055
]
},
{
"base64": "dzA0OCA3dHVpamsgZHNkZmh1",
"ids": [
86,
23904,
220,
22,
83,
2005,
42908,
11729,
3013,
17156
]
},
{
"base64": "0L3QtdGJ0L4g0L3QsCDQkdGK0LvQs9Cw0YDRgdC60Lg=",
"ids": [
79862,
102118,
13373,
64571,
34694,
3114,
112203,
80112
]
},
{
"base64": "4Z6A4Z624Z6T4Z+L4Z6P4Z+C4Z6W4Z634Z6f4Z+B4Z6f4Z6i4Z624Z6F4Z6B4Z6b4Z6F4Z+B4Z6J",
"ids": [
21549,
222,
98629,
241,
45358,
233,
21549,
237,
45358,
224,
21549,
244,
21549,
115,
21549,
253,
45358,
223,
21549,
253,
21549,
95,
98629,
227,
21549,
223,
21549,
249,
21549,
227,
45358,
223,
21549,
231
]
},
{
"base64": "8J+agCAobm9ybWFsKSDwn5i24oCN8J+Mq++4jyAobXVsdGlwbGUgZW1vamlzIGNvbmNhdGVuYXRlZCkg4pyFIChvbmx5IGVtb2ppIHRoYXQgaGFzIGl0cyBvd24gdG9rZW4p",
"ids": [
9468,
248,
222,
320,
8416,
8,
27623,
114,
102470,
9468,
234,
104,
31643,
320,
36773,
100166,
98634,
8,
26602,
227,
320,
3323,
43465,
430,
706,
1202,
1866,
4037,
8
]
},
{
"base64": "SGVsbG8=",
"ids": [
9906
]
},
{
"base64": "IEhlbGxv",
"ids": [
22691
]
},
{
"base64": "ICBIZWxsbw==",
"ids": [
220,
22691
]
},
{
"base64": "ICAgSGVsbG8=",
"ids": [
256,
22691
]
},
{
"base64": "ICAgIEhlbGxv",
"ids": [
262,
22691
]
},
{
"base64": "ICAgIEhlbGxvCiAgICBIZWxsbw==",
"ids": [
262,
22691,
198,
262,
22691
]
},
{
"base64": "ICg=",
"ids": [
320
]
},
{
"base64": "CiA9",
"ids": [
198,
284
]
},
{
"base64": "JyBlcmE=",
"ids": [
6,
11639
]
},
{
"base64": "SGVsbG8sIHknYWxsISBIb3cgYXJlIHlvdSDwn5iBID/miJHmg7PlnKhhcHBsZeW3peS9nDEzMTQxNTHlpKnvvZ4=",
"ids": [
9906,
11,
379,
65948,
0,
2650,
527,
499,
27623,
223,
949,
37046,
101067,
19000,
23182,
102301,
9263,
18136,
16,
36827,
21909
]
},
{
"base64": "ISEhISEh",
"ids": [
17523,
3001
]
},
{
"base64": "Mw==",
"ids": [
18
]
},
{
"base64": "MzM=",
"ids": [
1644
]
},
{
"base64": "MzMz",
"ids": [
8765
]
},
{
"base64": "MzMzMw==",
"ids": [
8765,
18
]
},
{
"base64": "MzMzMzM=",
"ids": [
8765,
1644
]
},
{
"base64": "MzMzMzMz",
"ids": [
8765,
8765
]
},
{
"base64": "MzMzMzMzMw==",
"ids": [
8765,
8765,
18
]
},
{
"base64": "MzMzMzMzMzM=",
"ids": [
8765,
8765,
1644
]
},
{
"base64": "MzMzMzMzMzMz",
"ids": [
8765,
8765,
8765
]
},
{
"base64": "Q+G7rWEgVmnhu4d0",
"ids": [
34,
91163,
101798
]
},
{
"base64": "IGRpc2NhcmRz",
"ids": [
2624,
2402
]
},
{
"base64": "CiAKCiAKCgogCSAJCSAJCiAgCiAgIAogICAgCiAgICAgCvCfmoAgKG5vcm1hbCkg8J+YtuKAjfCfjKvvuI8gKG11bHRpcGxlIGVtb2ppcyBjb25jYXRlbmF0ZWQpIOKchSDwn6aZ8J+mmSAzIDMzIDMzMyAzMzMzIDMzMzMzIDMzMzMzMyAzMzMzMzMzIDMzMzMzMzMzIDMuMyAzLi4zIDMuLi4zIOGegOGetuGek+Gfi+Gej+GfguGeluGet+Gen+GfgeGen+GeouGetuGehfCfmIEgP+aIkeaDs+WcqGFwcGxl5bel5L2cMTMxNDE1MeWkqe+9niAtLS0tLS09PT09PT09INC90LXRidC+INC90LAg0JHRitC70LPQsNGA0YHQutC4ICcnJycnJ2BgYGBgYGAiIiIiLi4uLi4uISEhISEhPz8/Pz8/IEkndmUgYmVlbiAndG9sZCBoZSdzIHRoZXJlLCAnUkUgeW91IHN1cmU/ICdNIG5vdCBzdXJlIEknbGwgbWFrZSBpdCwgJ0QgeW91IGxpa2Ugc29tZSB0ZWE/IFdlJ1ZlIGEnbEw=",
"ids": [
198,
4815,
15073,
66597,
8004,
1602,
2355,
79772,
11187,
9468,
248,
222,
320,
8416,
8,
27623,
114,
102470,
9468,
234,
104,
31643,
320,
36773,
100166,
98634,
8,
26602,
227,
11410,
99,
247,
9468,
99,
247,
220,
18,
220,
1644,
220,
8765,
220,
8765,
18,
220,
8765,
1644,
220,
8765,
8765,
220,
8765,
8765,
18,
220,
8765,
8765,
1644,
220,
18,
13,
18,
220,
18,
497,
18,
220,
18,
1131,
18,
220,
21549,
222,
98629,
241,
45358,
233,
21549,
237,
45358,
224,
21549,
244,
21549,
115,
21549,
253,
45358,
223,
21549,
253,
21549,
95,
98629,
227,
76460,
223,
949,
37046,
101067,
19000,
23182,
102301,
9263,
18136,
16,
36827,
21909,
56560,
54337,
19175,
102118,
13373,
64571,
34694,
3114,
112203,
80112,
3436,
106451,
14196,
14196,
74694,
3089,
3089,
29249,
17523,
3001,
27708,
7801,
358,
3077,
1027,
364,
83,
820,
568,
596,
1070,
11,
364,
793,
499,
2771,
30,
364,
44,
539,
2771,
358,
3358,
1304,
433,
11,
364,
35,
499,
1093,
1063,
15600,
30,
1226,
6,
43712,
264,
64966,
43
]
}
]

View File

File diff suppressed because it is too large Load Diff

View File

File diff suppressed because it is too large Load Diff

View File

File diff suppressed because it is too large Load Diff

View File

@@ -20,8 +20,6 @@ import (
"github.com/ollama/ollama/types/model"
)
var finishReasonToolCalls = "tool_calls"
type Error struct {
Message string `json:"message"`
Type string `json:"type"`
@@ -268,7 +266,7 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
}
}
func toChunk(id string, r api.ChatResponse, toolCallSent bool) ChatCompletionChunk {
func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
toolCalls := toToolCalls(r.Message.ToolCalls)
return ChatCompletionChunk{
Id: id,
@@ -281,9 +279,6 @@ func toChunk(id string, r api.ChatResponse, toolCallSent bool) ChatCompletionChu
Delta: Message{Role: "assistant", Content: r.Message.Content, ToolCalls: toolCalls},
FinishReason: func(reason string) *string {
if len(reason) > 0 {
if toolCallSent {
return &finishReasonToolCalls
}
return &reason
}
return nil
@@ -590,7 +585,6 @@ type ChatWriter struct {
stream bool
streamOptions *StreamOptions
id string
toolCallSent bool
BaseWriter
}
@@ -640,14 +634,11 @@ func (w *ChatWriter) writeResponse(data []byte) (int, error) {
// chat chunk
if w.stream {
c := toChunk(w.id, chatResponse, w.toolCallSent)
c := toChunk(w.id, chatResponse)
d, err := json.Marshal(c)
if err != nil {
return 0, err
}
if !w.toolCallSent && len(c.Choices) > 0 && len(c.Choices[0].Delta.ToolCalls) > 0 {
w.toolCallSent = true
}
w.ResponseWriter.Header().Set("Content-Type", "text/event-stream")
_, err = w.ResponseWriter.Write([]byte(fmt.Sprintf("data: %s\n\n", d)))

View File

@@ -1,7 +1,6 @@
package progress
import (
"bufio"
"fmt"
"io"
"sync"
@@ -14,8 +13,7 @@ type State interface {
type Progress struct {
mu sync.Mutex
// buffer output to minimize flickering on all terminals
w *bufio.Writer
w io.Writer
pos int
@@ -24,7 +22,7 @@ type Progress struct {
}
func NewProgress(w io.Writer) *Progress {
p := &Progress{w: bufio.NewWriter(w)}
p := &Progress{w: w}
go p.start()
return p
}
@@ -49,29 +47,26 @@ func (p *Progress) stop() bool {
func (p *Progress) Stop() bool {
stopped := p.stop()
if stopped {
fmt.Fprintln(p.w)
fmt.Fprint(p.w, "\n")
}
// show cursor
fmt.Fprint(p.w, "\033[?25h")
p.w.Flush()
return stopped
}
func (p *Progress) StopAndClear() bool {
fmt.Fprint(p.w, "\033[?25l")
defer fmt.Fprint(p.w, "\033[?25h")
stopped := p.stop()
if stopped {
// clear all progress lines
for range p.pos - 1 {
fmt.Fprint(p.w, "\033[A")
for i := range p.pos {
if i > 0 {
fmt.Fprint(p.w, "\033[A")
}
fmt.Fprint(p.w, "\033[2K\033[1G")
}
fmt.Fprint(p.w, "\033[2K", "\033[1G")
}
// show cursor
fmt.Fprint(p.w, "\033[?25h")
p.w.Flush()
return stopped
}
@@ -86,31 +81,30 @@ func (p *Progress) render() {
p.mu.Lock()
defer p.mu.Unlock()
fmt.Fprint(p.w, "\033[?2026h")
defer fmt.Fprint(p.w, "\033[?2026l")
fmt.Fprint(p.w, "\033[?25l")
defer fmt.Fprint(p.w, "\033[?25h")
for range p.pos - 1 {
fmt.Fprint(p.w, "\033[A")
// clear already rendered progress lines
for i := range p.pos {
if i > 0 {
fmt.Fprint(p.w, "\033[A")
}
fmt.Fprint(p.w, "\033[2K\033[1G")
}
fmt.Fprint(p.w, "\033[1G")
// render progress lines
for i, state := range p.states {
fmt.Fprint(p.w, state.String(), "\033[K")
fmt.Fprint(p.w, state.String())
if i < len(p.states)-1 {
fmt.Fprint(p.w, "\n")
}
}
p.pos = len(p.states)
p.w.Flush()
}
func (p *Progress) start() {
p.ticker = time.NewTicker(100 * time.Millisecond)
// hide cursor
fmt.Fprint(p.w, "\033[?25l")
for range p.ticker.C {
p.render()
}

View File

@@ -1,280 +0,0 @@
package ollamarunner
import (
"errors"
"fmt"
"log/slog"
"math"
"reflect"
"time"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
)
type InputCache struct {
// context window size (per slot)
numCtx int32
// does the cache store data or do we need to always send the full input?
// note that when enabled is false the underlying cache may either be nil
// or a non-nil dummy that doesn't actually store anything
enabled bool
// individual KV caches
slots []InputCacheSlot
// optimize cache eviction for multiple users
multiUserCache bool
cache kvcache.Cache
}
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/int32(numSlots) < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
for i := range slots {
slots[i] = InputCacheSlot{
Id: i,
Inputs: make([]input, 0),
}
}
cache := model.Config().Cache
if cache != nil {
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), kvSize)
}
return &InputCache{
numCtx: kvSize / int32(numSlots),
enabled: cache != nil,
slots: slots,
multiUserCache: multiUserCache,
cache: cache,
}, nil
}
func kvCacheTypeFromStr(s string) ml.DType {
switch s {
case "q8_0":
panic("kv cache quantization not yet implemented")
case "q4_0":
panic("kv cache quantization not yet implemented")
default:
return ml.DTypeF16
}
}
func (c *InputCache) Close() {
c.cache.Close()
}
// Locking: Operations on InputCacheSlot (including finding one
// through LoadCacheSlot) require a lock to be be held that serializes
// these operations with each other and processBatch
type InputCacheSlot struct {
// Index in the KV cache
Id int
// Inputs that are stored in the KV cache
Inputs []input
// is this cache actively being processed as part of a sequence?
InUse bool
// last time this cache was used (as of start of processing)
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
// In single-user scenarios, the longest cache slot works fine for getting good input
// cache hit rates and it keeps the footprint of the cache small, which improves throughput.
// For multiple users, the "best" cache slot produces better input cache hit rates
// at the cost of worse performance when we miss the input cache.
if !c.multiUserCache {
slot, numPast, err = c.findLongestCacheSlot(prompt)
} else {
slot, numPast, err = c.findBestCacheSlot(prompt)
}
if err != nil {
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()
if numPast == int32(len(prompt)) {
// Leave one input to sample so we can get a response
numPast--
}
if c.cache != nil {
err = c.cache.Remove(slot.Id, numPast, math.MaxInt32)
if err != nil {
// Some models don't support partial erasure
err = c.cache.Remove(slot.Id, 0, math.MaxInt32)
if err != nil {
return nil, nil, err
}
numPast = 0
}
}
slog.Debug("loading cache slot", "id", slot.Id, "cache", len(slot.Inputs), "prompt", len(prompt),
"used", numPast, "remaining", int32(len(prompt))-numPast)
prompt = prompt[numPast:]
slot.Inputs = slot.Inputs[:numPast]
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
for i, s := range c.slots {
if s.InUse {
continue
}
count := countCommonPrefix(s.Inputs, prompt)
if count > longest {
longest = count
longestSlot = &c.slots[i]
}
}
if longestSlot == nil {
return nil, 0, errors.New("no available cache slots")
}
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
longest := int32(-1)
var longestSlot *InputCacheSlot
for i, s := range c.slots {
count := countCommonPrefix(s.Inputs, prompt)
if count > longest {
longest = count
longestSlot = &c.slots[i]
}
if s.lastUsed.Compare(oldest) < 0 && !s.InUse {
oldest = s.lastUsed
oldestSlot = &c.slots[i]
}
}
if longest == int32(len(longestSlot.Inputs)) && !longestSlot.InUse {
return longestSlot, longest, nil
}
if oldestSlot.InUse {
return nil, 0, errors.New("no available cache slots")
}
if len(oldestSlot.Inputs) != 0 {
slog.Debug("evicting cache slot", "id", oldestSlot.Id, "inputs", len(oldestSlot.Inputs),
"used", oldestSlot.lastUsed)
}
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
}
}
return oldestSlot, longest, nil
}
func countCommonPrefix(a []input, b []input) int32 {
var count int32
for i := range a {
if i >= len(b) {
break
}
if !reflect.DeepEqual(a[i], b[i]) {
break
}
count++
}
return count
}
func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
currentFree := c.numCtx - inputLen
discard := targetFree - currentFree
if discard < 0 {
discard = 0
}
return discard
}
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int32) error {
if numKeep >= c.numCtx {
return fmt.Errorf("unable to shift context - keep exceeds context (keep: %v context: %v)", numKeep, c.numCtx)
}
inputLen := int32(len(slot.Inputs))
discard := c.ShiftDiscard(inputLen, numKeep)
if discard <= 0 {
return nil
}
slog.Debug("context limit hit - shifting", "id", slot.Id, "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
if c.cache != nil {
err := c.cache.Remove(slot.Id, numKeep, numKeep+discard)
if err != nil {
return fmt.Errorf("unable to remove old kv cache entries (id: %v, keep: %v discard: %v): %w", slot.Id, numKeep, discard, err)
}
}
for i := numKeep + discard; i < inputLen; i++ {
slot.Inputs[i-discard] = slot.Inputs[i]
}
slot.Inputs = slot.Inputs[:inputLen-discard]
return nil
}

View File

@@ -1,291 +0,0 @@
package ollamarunner
import (
"image"
"testing"
"time"
)
func TestCountCommon(t *testing.T) {
imgA := image.NewRGBA(image.Rect(0, 0, 100, 100))
imgB := image.NewRGBA(image.Rect(0, 0, 50, 50))
imgC := image.NewRGBA(image.Rect(50, 50, 100, 100))
tests := []struct {
name string
t1 []input
t2 []input
expected int32
}{
{
name: "Equal",
t1: []input{{token: 1}, {token: 2}, {token: 3}},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []input{{token: 1}},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []input{{image: imgA}},
t2: []input{{image: imgA}, {image: imgB}, {image: imgC}},
expected: 1,
},
{
name: "Mixed",
t1: []input{{token: 1}, {image: imgA}},
t2: []input{{token: 1}, {image: imgA}, {token: 5}},
expected: 2,
},
{
name: "Empty",
t1: []input{},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []input{},
t2: []input{},
expected: 0,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := countCommonPrefix(tt.t1, tt.t2)
if result != tt.expected {
t.Errorf("countCommonPrefix(%v, %v): have %v; want %v", tt.t1, tt.t2, result, tt.expected)
}
})
}
}
func TestFindCacheSlot(t *testing.T) {
type expected struct {
result int
len int32
}
tests := []struct {
name string
cache InputCache
prompt []input
longest expected
best expected
}{
{
name: "Empty",
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input{{token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
{
name: "Extend",
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input{{token: 1}, {token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
{
name: "New",
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input{{token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
{
name: "Fork",
cache: InputCache{
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []input{{token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
{
name: "Evict",
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input{{token: 2}, {token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
{
name: "In use",
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input{{token: 1}, {token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input{{token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input{{token: 1}, {token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},
}
for _, tt := range tests {
t.Run("Longest-"+tt.name, func(t *testing.T) {
result, resultLen, err := tt.cache.findLongestCacheSlot(tt.prompt)
if err != nil {
t.Errorf("findLongestCacheSlot: err %v", err)
} else if result.Id != tt.longest.result || resultLen != tt.longest.len {
t.Errorf("findLongestCacheSlot: slot have %v, want %v len have %v, want %v",
result.Id, tt.longest.result, resultLen, tt.longest.len)
}
})
}
for _, tt := range tests {
t.Run("Best-"+tt.name, func(t *testing.T) {
result, resultLen, err := tt.cache.findBestCacheSlot(tt.prompt)
if err != nil {
t.Errorf("findBestCacheSlot: err %v", err)
} else if result.Id != tt.best.result || resultLen != tt.best.len {
t.Errorf("findBestCacheSlot: slot have %v, want %v len have %v, want %v",
result.Id, tt.best.result, resultLen, tt.best.len)
}
})
}
}
func TestShiftDiscard(t *testing.T) {
tests := []struct {
name string
numCtx int32
numKeep int32
inputLen int32
expected int32
}{
{
name: "Shift",
numCtx: 2048,
numKeep: 5,
inputLen: 2048,
expected: 1021,
},
{
name: "Max Keep",
numCtx: 2048,
numKeep: 2047,
inputLen: 2048,
expected: 1,
},
{
name: "No Keep",
numCtx: 2048,
numKeep: 0,
inputLen: 2048,
expected: 1024,
},
{
name: "Truncate",
numCtx: 2048,
numKeep: 5,
inputLen: 5000,
expected: 3973,
},
{
name: "Truncate Keep",
numCtx: 2048,
numKeep: 2047,
inputLen: 5000,
expected: 2953,
},
{
name: "No Op",
numCtx: 2048,
numKeep: 5,
inputLen: 512,
expected: 0,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
c := InputCache{numCtx: tt.numCtx}
result := c.ShiftDiscard(tt.inputLen, tt.numKeep)
if result != tt.expected {
t.Errorf("shiftDiscard(ctx: %v, keep: %v input: %v): have %v; want %v", tt.numCtx, tt.numKeep, tt.inputLen, result, tt.expected)
}
})
}
}

View File

@@ -1,946 +0,0 @@
package ollamarunner
import (
"bytes"
"context"
"encoding/json"
"errors"
"flag"
"fmt"
"image"
"log"
"log/slog"
"net"
"net/http"
"os"
"path/filepath"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"time"
"unicode/utf8"
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
_ "github.com/ollama/ollama/model/models"
)
// input is an element of the prompt to process, either a token or an image
type input struct {
token int32
image image.Image
}
type Sequence struct {
// batch index
iBatch int
// prompt inputs left to evaluate
inputs []input
// inputs that have been added to a batch but not yet submitted to Forward
pendingInputs []input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
// input cache being used by this sequence
cache *InputCacheSlot
// channel to send responses over
responses chan string
// channel to stop decoding (such as if the remote connection is closed)
quit chan bool
// number of tokens to predict
numPredict int
// set of samplers to run on generated logits
samplers []sample.Sampler
// channel to send back the embedding if embedding only
embedding chan []float32
// stop sequences
stop []string
// number of inputs to keep at the beginning when shifting context window
numKeep int32
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason string
// Metrics
startProcessingTime time.Time
startGenerationTime time.Time
numPredicted int
numPromptInputs int
}
type NewSequenceParams struct {
numPredict int
stop []string
numKeep int32
samplers []sample.Sampler
embedding bool
}
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
inputs, err := s.inputs(prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
return nil, errors.New("no input provided")
}
if params.numKeep < 0 {
params.numKeep = int32(len(inputs))
}
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
if int32(len(inputs)) > s.cache.numCtx {
discard := int32(len(inputs)) - s.cache.numCtx
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[params.numKeep+discard:]...)
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
inputs = newInputs
}
// TODO(jessegross): Ingest cached history for grammar
return &Sequence{
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
numPredict: params.numPredict,
pendingResponses: make([]string, 0),
responses: make(chan string, 100),
quit: make(chan bool, 1),
embedding: make(chan []float32, 1),
samplers: params.samplers,
embeddingOnly: params.embedding,
stop: params.stop,
numKeep: params.numKeep,
}, nil
}
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
var parts []string
var matches [][]string
// TODO(jessegross): This can sometimes trigger for matching text in the
// user's prompt. We previously tried to avoid it by only looking for images
// on image models. We don't have a clear indication now but it would be better
// to properly escape it in any case.
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(model.TextProcessor).Encode(part)
if err != nil {
return nil, err
}
for _, t := range tokens {
inputs = append(inputs, input{token: t})
}
// image - decode and store
if i < len(matches) {
n, _ := strconv.Atoi(matches[i][1])
imageIndex := -1
for j := range images {
if images[j].ID == n {
imageIndex = j
break
}
}
if imageIndex < 0 {
return nil, fmt.Errorf("invalid image index: %d", n)
}
image, _, err := image.Decode(bytes.NewReader(images[imageIndex].Data))
if err != nil {
return nil, err
}
inputs = append(inputs, input{image: image})
}
}
return inputs, nil
}
type Server struct {
// is the server ready to process requests?
// protects access to model and image
ready sync.WaitGroup
// loaded model
model model.Model
// status for external health reporting - loading, ready to serve, etc.
status ServerStatus
// current progress on loading the model
progress float32
// number of simultaneous requests to handle
parallel int
// maximum number of elements in a batch (per sequence)
// TODO (jmorganca): make this n_batch
batchSize int
// protects access to everything below this line
// this is context state needed for decoding
mu sync.Mutex
// indicates that data is ready for processing
cond *sync.Cond
// the list of simultaneous sequences being evaluated
seqs []*Sequence
// seqs can have a maximum of parallel entries, which
// is enfoced by seqSem
seqsSem *semaphore.Weighted
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
}
func (s *Server) allNil() bool {
for _, item := range s.seqs {
if item != nil {
return false
}
}
return true
}
func flushPending(seq *Sequence) bool {
joined := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = []string{}
// Check if there are any partial UTF-8 characters remaining.
// We already check and queue as we are generating but some may
// still make it here:
// - Sequence is ending, e.g. generation limit has been hit
// - Invalid characters in the middle of a string
// This is a stricter check to ensure we never output invalid Unicode.
for !utf8.ValidString(joined) {
joined = joined[:len(joined)-1]
}
if len(joined) == 0 {
return true
}
select {
case seq.responses <- joined:
return true
case <-seq.quit:
return false
}
}
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
seq.doneReason = reason
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
for {
select {
case <-ctx.Done():
return
default:
err := s.processBatch()
if err != nil {
panic(err)
}
}
}
}
func (s *Server) processBatch() error {
s.mu.Lock()
for s.allNil() {
s.cond.Wait() // Wait until an item is added
}
defer s.mu.Unlock()
var options model.Options
imgSeq := -1
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
continue
}
if !s.cache.enabled {
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
seq.cache.Inputs = []input{}
}
for i, input := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
} else {
break
}
}
if i >= s.batchSize {
break
}
// TODO(jessegross): Image inputs need to be rethought - it's
// it doesn't work well for different types of models or multiple sequences
if input.image != nil {
if len(seq.pendingInputs) != len(options.Images) {
break
}
if imgSeq != seqIdx && imgSeq != -1 {
s.nextSeq = seqIdx
break
}
imgSeq = seqIdx
options.Images = append(options.Images, input.image)
seq.pendingInputs = append(seq.pendingInputs, input)
continue
}
options.Inputs = append(options.Inputs, input.token)
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(options.Outputs)
if i+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, input)
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
}
if len(options.Inputs) == 0 {
return nil
}
ctx := s.model.Backend().NewContext()
defer ctx.Close()
modelOutput, err := model.Forward(ctx, s.model, options)
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
}
f32s := modelOutput.Floats()
// TODO(jessegross): This will no longer be necessary once the sampling interface takes f32s
logits := make([]float64, len(f32s))
for i, f32 := range f32s {
logits[i] = float64(f32)
}
for i, seq := range s.seqs {
if seq == nil {
continue
}
// After calling Forward, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []input{}
}
// don't sample prompt processing
if len(seq.inputs) != 0 {
if !s.cache.enabled {
return errors.New("caching disabled but unable to fit entire input in a batch")
}
continue
}
seq.numPredicted++
if seq.numPredicted == 1 {
seq.startGenerationTime = time.Now()
}
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
s.removeSequence(i, "")
continue
}
// sample a token
vocabSize := len(f32s) / len(options.Outputs)
tokens, err := sample.Sample(logits[seq.iBatch*vocabSize:(seq.iBatch+1)*vocabSize], seq.samplers...)
if err != nil {
return err
}
// TODO(jessegross): Sampler will output a single int32 in the future
token := int32(tokens[0])
// if it's an end of sequence token, break
if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, "stop")
continue
}
piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
if err != nil {
return err
}
seq.inputs = []input{{token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
if ok, stop := common.FindStop(sequence, seq.stop); ok {
slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)
var tokenTruncated bool
origLen := len(seq.pendingResponses)
seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
newLen := len(seq.pendingResponses)
// Update the cache based on the tokens that will be returned:
// - We have 1 token more than is currently in the cache because
// the last one generated wasn't submitted to Decode
// - Remove any stop sequences that we stripped out
// - If truncateStop removed a portion of a token, drop that
// - As defense-in-depth, if truncatedToken didn't find a stop token
// remove the extra one that we added to the cache len
tokenLen := len(seq.cache.Inputs) + 1
tokenLen -= origLen - newLen
if tokenTruncated || origLen == newLen {
tokenLen--
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, "stop")
continue
}
if common.ContainsStopSuffix(sequence, seq.stop) {
continue
}
if common.IncompleteUnicode(sequence) {
continue
}
if !flushPending(seq) {
s.removeSequence(i, "connection")
}
}
return nil
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func getSamplers(_ CompletionRequest) []sample.Sampler {
// TODO(jessegross): Waiting for sampling code
/*samplingParams.TopK = req.TopK
samplingParams.TopP = req.TopP
samplingParams.MinP = req.MinP
samplingParams.TypicalP = req.TypicalP
samplingParams.Temp = req.Temperature
samplingParams.RepeatLastN = req.RepeatLastN
samplingParams.PenaltyRepeat = req.RepeatPenalty
samplingParams.PenaltyFreq = req.FrequencyPenalty
samplingParams.PenaltyPresent = req.PresencePenalty
samplingParams.Mirostat = req.Mirostat
samplingParams.MirostatTau = req.MirostatTau
samplingParams.MirostatEta = req.MirostatEta
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar*/
return []sample.Sampler{sample.Greedy()}
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
return
}
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: int32(req.NumKeep),
samplers: getSamplers(req),
embedding: false,
})
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
// Ensure there is a place to put the sequence, released when removed from s.seqs
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
for {
select {
case <-r.Context().Done():
close(seq.quit)
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
close(seq.quit)
return
}
flusher.Flush()
} else {
// Send the final response
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numPredicted,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
return
}
}
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
var req EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
slog.Debug("embedding request", "content", req.Content)
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
// Ensure there is a place to put the sequence, released when removed from s.seqs
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embeddings request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
embedding := <-seq.embedding
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
Embedding: embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type multiLPath []string
func (m *multiLPath) Set(value string) error {
*m = append(*m, value)
return nil
}
func (m *multiLPath) String() string {
return strings.Join(*m, ", ")
}
func (s *Server) loadModel(
mpath string,
lpath multiLPath,
parallel int,
kvCacheType string,
kvSize int,
multiUserCache bool,
) {
var err error
s.model, err = model.New(mpath)
if err != nil {
panic(err)
}
slog.Info("system", "info", s.model.Backend().SystemInfo() /* "threads", *threads */)
// TODO(jessegross): LoRA loading
if lpath.String() != "" {
panic("loras are not yet implemented")
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
if err != nil {
panic(err)
}
if !s.cache.enabled && parallel > 1 {
parallel = 1
slog.Warn("model does not support caching, disabling parallel processing")
}
s.parallel = parallel
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
s.status = ServerStatusReady
s.ready.Done()
}
func Execute(args []string) error {
fs := flag.NewFlagSet("runner", flag.ExitOnError)
mpath := fs.String("model", "", "Path to model binary file")
parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
batchSize := fs.Int("batch-size", 512, "Batch size")
_ = fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
_ = fs.Int("main-gpu", 0, "Main GPU")
_ = fs.Bool("flash-attn", false, "Enable flash attention")
kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
port := fs.Int("port", 8080, "Port to expose the server on")
_ = fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
_ = fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
_ = fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
var lpaths multiLPath
fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
fs.Usage = func() {
fmt.Fprintf(fs.Output(), "Runner usage\n")
fs.PrintDefaults()
}
if err := fs.Parse(args); err != nil {
return err
}
level := slog.LevelInfo
if *verbose {
level = slog.LevelDebug
}
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.Info("starting ollama engine")
server := &Server{
batchSize: *batchSize,
status: ServerStatusLoadingModel,
}
// TODO(jessegross): Parameters that need to be implemented:
// n-gpu-layers
// main-gpu
// flash-attn
// threads
// no-mmap
// mlock
// tensor-split
/*var tensorSplitFloats []float32
if *tensorSplit != "" {
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
tensorSplitFloats = make([]float32, 0, len(stringFloats))
for _, s := range stringFloats {
f, _ := strconv.ParseFloat(s, 32)
tensorSplitFloats = append(tensorSplitFloats, float32(f))
}
}*/
server.ready.Add(1)
go server.loadModel(*mpath, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)
listener, err := net.Listen("tcp", addr)
if err != nil {
fmt.Println("Listen error:", err)
cancel()
return err
}
defer listener.Close()
mux := http.NewServeMux()
mux.HandleFunc("/embedding", server.embeddings)
mux.HandleFunc("/completion", server.completion)
mux.HandleFunc("/health", server.health)
httpServer := http.Server{
Handler: mux,
}
log.Println("Server listening on", addr)
if err := httpServer.Serve(listener); err != nil {
log.Fatal("server error:", err)
return err
}
cancel()
return nil
}

Some files were not shown because too many files have changed in this diff Show More