Compare commits

...

5 Commits

Author SHA1 Message Date
Patrick Devine
3a88f7eb20 bugfix: add missing linear layer factory (#14289) 2026-02-16 17:22:20 -08:00
Patrick Devine
0d5da826d4 bugfix: display the parameter count correctly in mlx for ollama show (#14285) 2026-02-16 13:03:34 -08:00
Patrick Devine
9b795698b8 model: add llama3 architecture to mlxrunner (#14277) 2026-02-15 23:06:28 -08:00
Patrick Devine
041fb77639 model: add gemma3 to the mlxrunner (#14276)
This change adds the gemma3 model to the mlxrunner and simplifies some of the quantization
code for loading weights.
2026-02-15 22:47:59 -08:00
Saumil Shah
8224cce583 readme: update download link for macOS (#1) (#14271) 2026-02-15 15:25:15 -08:00
11 changed files with 1548 additions and 97 deletions

View File

@@ -16,7 +16,7 @@ Start building with open models.
curl -fsSL https://ollama.com/install.sh | sh
```
or [download manually](http://localhost:8080/download/Ollama.dmg)
or [download manually](https://ollama.com/download/Ollama.dmg)
### Windows

View File

@@ -3,5 +3,7 @@
package mlxrunner
import (
_ "github.com/ollama/ollama/x/models/gemma3"
_ "github.com/ollama/ollama/x/models/glm4_moe_lite"
_ "github.com/ollama/ollama/x/models/llama"
)

View File

@@ -0,0 +1,92 @@
//go:build mlx
package model
import (
"github.com/ollama/ollama/x/mlxrunner/mlx"
"github.com/ollama/ollama/x/models/nn"
)
// LinearFactory builds linear layers using shared tensor maps and quant defaults.
type LinearFactory struct {
tensors map[string]*mlx.Array
defaultGroupSize int
defaultBits int
defaultMode string
tensorQuant map[string]*TensorQuantInfo
}
// NewLinearFactory creates a reusable constructor for model linear layers.
func NewLinearFactory(
tensors map[string]*mlx.Array,
defaultGroupSize, defaultBits int,
defaultMode string,
tensorQuant map[string]*TensorQuantInfo,
) LinearFactory {
return LinearFactory{
tensors: tensors,
defaultGroupSize: defaultGroupSize,
defaultBits: defaultBits,
defaultMode: defaultMode,
tensorQuant: tensorQuant,
}
}
// Make constructs a linear layer at path.
func (f LinearFactory) Make(path string) nn.LinearLayer {
return MakeLinearLayer(
f.tensors,
path,
f.defaultGroupSize,
f.defaultBits,
f.defaultMode,
f.tensorQuant,
)
}
// MakeLinearLayer constructs a linear layer from a tensor map.
//
// For quantized tensors (path.weight + path.weight_scale), it resolves per-tensor
// quant params via TensorQuant metadata (with shape-based affine fallback).
// For non-quantized tensors, it returns a standard nn.Linear.
func MakeLinearLayer(
tensors map[string]*mlx.Array,
path string,
defaultGroupSize, defaultBits int,
defaultMode string,
tensorQuant map[string]*TensorQuantInfo,
) nn.LinearLayer {
w := tensors[path+".weight"]
if w == nil {
return nil
}
scales := tensors[path+".weight_scale"]
if scales != nil {
qbiases := tensors[path+".weight_qbias"]
bias := tensors[path+".bias"]
groupSize, bits, mode := ResolveLinearQuantParams(
defaultGroupSize,
defaultBits,
defaultMode,
tensorQuant,
path+".weight",
w,
scales,
)
return &nn.QuantizedLinear{
Weight: w,
Scales: scales,
QBiases: qbiases,
Bias: bias,
GroupSize: groupSize,
Bits: bits,
Mode: mode,
}
}
bias := tensors[path+".bias"]
return nn.NewLinear(w, bias)
}

130
x/mlxrunner/model/quant.go Normal file
View File

@@ -0,0 +1,130 @@
//go:build mlx
package model
import (
"strings"
"github.com/ollama/ollama/x/mlxrunner/mlx"
)
// QuantizationParams returns default groupSize, bits, and mode for a quantization type.
func QuantizationParams(quantization string) (groupSize, bits int, mode string) {
switch strings.ToUpper(quantization) {
case "NVFP4":
return 16, 4, "nvfp4"
case "FP4", "Q4", "INT4":
return 32, 4, "affine"
case "MXFP8":
return 32, 8, "mxfp8"
case "FP8", "Q8", "INT8", "":
return 64, 8, "affine"
default:
return 32, 8, "affine"
}
}
// TensorQuantParams resolves quant params for a tensor using per-tensor metadata
// when available, otherwise falling back to the provided model defaults.
func TensorQuantParams(
defaultGroupSize, defaultBits int,
defaultMode string,
tensorQuant map[string]*TensorQuantInfo,
tensorName string,
) (groupSize, bits int, mode string, fromTensor bool) {
if tensorQuant != nil {
if tq := tensorQuant[tensorName]; tq != nil {
groupSize, bits, mode = QuantizationParams(tq.QuantType)
if tq.GroupSize > 0 {
groupSize = tq.GroupSize
}
return groupSize, bits, mode, true
}
}
return defaultGroupSize, defaultBits, defaultMode, false
}
// ResolveLinearQuantParams resolves quantization params for a quantized linear
// tensor, preferring per-tensor metadata and falling back to shape-based
// inference for affine packed tensors.
func ResolveLinearQuantParams(
defaultGroupSize, defaultBits int,
defaultMode string,
tensorQuant map[string]*TensorQuantInfo,
tensorName string,
weight, scales *mlx.Array,
) (groupSize, bits int, mode string) {
groupSize, bits, mode, fromTensor := TensorQuantParams(
defaultGroupSize,
defaultBits,
defaultMode,
tensorQuant,
tensorName,
)
if mode == "affine" {
if inferredGroupSize, inferredBits, ok := InferAffineQuantParamsFromShapes(weight, scales, bits); ok {
if !fromTensor || groupSize == 0 || bits == 0 {
groupSize = inferredGroupSize
bits = inferredBits
}
}
}
return groupSize, bits, mode
}
// InferAffineQuantParamsFromShapes infers (groupSize,bits) for affine quantized
// tensors from packed weight and scale shapes.
func InferAffineQuantParamsFromShapes(weight, scales *mlx.Array, hintBits int) (groupSize, bits int, ok bool) {
if weight == nil || scales == nil {
return 0, 0, false
}
weightShape := weight.Dims()
scaleShape := scales.Dims()
if len(weightShape) == 0 || len(scaleShape) == 0 {
return 0, 0, false
}
weightCols := weightShape[len(weightShape)-1]
scalesCols := scaleShape[len(scaleShape)-1]
if weightCols <= 0 || scalesCols <= 0 {
return 0, 0, false
}
groupSize4 := weightCols * 8 / scalesCols
groupSize8 := weightCols * 4 / scalesCols
switch {
case groupSize4 == 32:
return 32, 4, true
case groupSize8 == 64:
return 64, 8, true
case groupSize4 == 64 && groupSize8 == 32:
if hintBits == 8 {
return 32, 8, true
}
if hintBits == 4 {
return 64, 4, true
}
}
if isCommonGroupSize(groupSize4) && !isCommonGroupSize(groupSize8) {
return groupSize4, 4, true
}
if isCommonGroupSize(groupSize8) && !isCommonGroupSize(groupSize4) {
return groupSize8, 8, true
}
return 0, 0, false
}
func isCommonGroupSize(v int) bool {
switch v {
case 16, 32, 64, 128:
return true
default:
return false
}
}

View File

@@ -8,42 +8,63 @@ import (
"fmt"
"io"
"os"
"sort"
"strconv"
"strings"
"github.com/ollama/ollama/x/imagegen/manifest"
)
// Root wraps a ModelManifest with pre-scanned quantization metadata.
type Root struct {
Manifest *manifest.ModelManifest
quantType string
groupSize int
// TensorQuantInfo describes per-tensor quantization metadata.
type TensorQuantInfo struct {
QuantType string
GroupSize int
}
// Open loads a manifest for the given model name and pre-scans the first
// tensor blob for quantization metadata (quant_type, group_size).
// Root wraps a ModelManifest with pre-scanned quantization metadata.
type Root struct {
Manifest *manifest.ModelManifest
// Backwards-compatible model-level quant metadata (first tensor blob).
quantType string
groupSize int
// Per-tensor quantization metadata.
tensorQuant map[string]*TensorQuantInfo
}
// Open loads a manifest for the given model name and scans tensor blobs for
// quantization metadata.
func Open(modelName string) (*Root, error) {
m, err := manifest.LoadManifest(modelName)
if err != nil {
return nil, err
}
root := &Root{Manifest: m}
root := &Root{
Manifest: m,
tensorQuant: make(map[string]*TensorQuantInfo),
}
// Pre-scan first tensor blob for quantization metadata
for _, layer := range m.GetTensorLayers("") {
blobPath := m.BlobPath(layer.Digest)
meta, err := readBlobMetadata(blobPath)
if err != nil || meta == nil {
infos, blobQuantType, blobGroupSize, err := readBlobTensorQuantInfo(blobPath)
if err != nil {
continue
}
if qt := meta["quant_type"]; qt != "" {
root.quantType = strings.ToUpper(qt)
for name, info := range infos {
root.tensorQuant[name] = info
}
if gs := meta["group_size"]; gs != "" {
fmt.Sscanf(gs, "%d", &root.groupSize)
if root.quantType == "" && blobQuantType != "" {
root.quantType = strings.ToUpper(blobQuantType)
root.groupSize = blobGroupSize
if root.groupSize == 0 {
root.groupSize = defaultGroupSize(root.quantType)
}
}
break // only check the first tensor blob
}
return root, nil
@@ -52,46 +73,180 @@ func Open(modelName string) (*Root, error) {
// Close is a no-op for now (future: release resources).
func (r *Root) Close() {}
// QuantType returns the quantization type detected from tensor metadata.
// QuantType returns the quantization type detected from the first tensor blob metadata.
func (r *Root) QuantType() string { return r.quantType }
// GroupSize returns the quantization group size detected from tensor metadata.
// GroupSize returns the quantization group size detected from the first tensor blob metadata.
func (r *Root) GroupSize() int { return r.groupSize }
// readBlobMetadata reads the __metadata__ from a safetensors blob header.
func readBlobMetadata(path string) (map[string]string, error) {
// TensorQuant returns per-tensor quantization metadata if available.
func (r *Root) TensorQuant(name string) *TensorQuantInfo {
if r == nil {
return nil
}
return r.tensorQuant[name]
}
// AllTensorQuant returns a copy of the per-tensor quantization metadata.
func (r *Root) AllTensorQuant() map[string]*TensorQuantInfo {
out := make(map[string]*TensorQuantInfo, len(r.tensorQuant))
for k, v := range r.tensorQuant {
if v == nil {
continue
}
copy := *v
out[k] = &copy
}
return out
}
func defaultGroupSize(quantType string) int {
groupSize, _, _ := QuantizationParams(quantType)
return groupSize
}
func readBlobTensorQuantInfo(path string) (map[string]*TensorQuantInfo, string, int, error) {
f, err := os.Open(path)
if err != nil {
return nil, err
return nil, "", 0, err
}
defer f.Close()
var headerSize uint64
if err := binary.Read(f, binary.LittleEndian, &headerSize); err != nil {
return nil, err
return nil, "", 0, err
}
if headerSize > 1024*1024 {
return nil, fmt.Errorf("header too large: %d", headerSize)
if headerSize > 100*1024*1024 {
return nil, "", 0, fmt.Errorf("header too large: %d", headerSize)
}
data := make([]byte, headerSize)
if _, err := io.ReadFull(f, data); err != nil {
return nil, err
return nil, "", 0, err
}
var header map[string]json.RawMessage
if err := json.Unmarshal(data, &header); err != nil {
return nil, err
return nil, "", 0, err
}
globalQuantType, globalGroupSize := parseGlobalQuantMetadata(header)
globalQuantType = strings.ToUpper(globalQuantType)
mainNames := mainTensorNames(header)
infos := make(map[string]*TensorQuantInfo)
for _, name := range mainNames {
if _, ok := header[name+".scale"]; !ok {
continue
}
quantType := globalQuantType
groupSize := globalGroupSize
inferredType, inferredGroup := inferQuantTypeFromShapes(header, name, quantType)
if quantType == "" {
quantType = inferredType
}
if groupSize == 0 {
groupSize = inferredGroup
}
if quantType == "" {
continue
}
if groupSize == 0 {
groupSize = defaultGroupSize(quantType)
}
infos[name] = &TensorQuantInfo{QuantType: quantType, GroupSize: groupSize}
}
return infos, globalQuantType, globalGroupSize, nil
}
func parseGlobalQuantMetadata(header map[string]json.RawMessage) (quantType string, groupSize int) {
metaRaw, ok := header["__metadata__"]
if !ok {
return nil, nil
return "", 0
}
var meta map[string]string
if err := json.Unmarshal(metaRaw, &meta); err != nil {
return nil, err
return "", 0
}
return meta, nil
quantType = meta["quant_type"]
if gs := meta["group_size"]; gs != "" {
groupSize, _ = strconv.Atoi(gs)
}
return quantType, groupSize
}
func mainTensorNames(header map[string]json.RawMessage) []string {
names := make([]string, 0, len(header))
for name := range header {
if name == "__metadata__" || strings.HasSuffix(name, ".scale") || strings.HasSuffix(name, ".bias") {
continue
}
names = append(names, name)
}
sort.Strings(names)
return names
}
func inferQuantTypeFromShapes(header map[string]json.RawMessage, tensorName string, hintQuantType string) (string, int) {
type tensorShape struct {
Shape []int64 `json:"shape"`
}
mainRaw, ok := header[tensorName]
if !ok {
return "", 0
}
scaleRaw, ok := header[tensorName+".scale"]
if !ok {
return "", 0
}
var mainInfo tensorShape
if err := json.Unmarshal(mainRaw, &mainInfo); err != nil || len(mainInfo.Shape) == 0 {
return "", 0
}
var scaleInfo tensorShape
if err := json.Unmarshal(scaleRaw, &scaleInfo); err != nil || len(scaleInfo.Shape) == 0 {
return "", 0
}
weightCols := int(mainInfo.Shape[len(mainInfo.Shape)-1])
scalesCols := int(scaleInfo.Shape[len(scaleInfo.Shape)-1])
if weightCols <= 0 || scalesCols <= 0 {
return "", 0
}
groupSize4 := weightCols * 8 / scalesCols
groupSize8 := weightCols * 4 / scalesCols
switch {
case groupSize4 == 32:
return "INT4", 32
case groupSize8 == 64:
return "INT8", 64
case groupSize4 == 64 && groupSize8 == 32:
h := strings.ToUpper(hintQuantType)
if strings.Contains(h, "8") {
return "INT8", 32
}
if strings.Contains(h, "4") {
return "INT4", 64
}
}
if isCommonGroupSize(groupSize4) && !isCommonGroupSize(groupSize8) {
return "INT4", groupSize4
}
if isCommonGroupSize(groupSize8) && !isCommonGroupSize(groupSize4) {
return "INT8", groupSize8
}
return "", 0
}

View File

@@ -24,9 +24,13 @@ func (r *Runner) TextGenerationPipeline(request Request) error {
caches, tokens := r.FindNearestCache(inputs)
if len(caches) == 0 {
caches = make([]cache.Cache, r.Model.NumLayers())
for i := range caches {
caches[i] = cache.NewKVCache()
if cacheFactory, ok := r.Model.(interface{ NewCaches() []cache.Cache }); ok {
caches = cacheFactory.NewCaches()
} else {
caches = make([]cache.Cache, r.Model.NumLayers())
for i := range caches {
caches[i] = cache.NewKVCache()
}
}
}

521
x/models/gemma3/gemma3.go Normal file
View File

@@ -0,0 +1,521 @@
//go:build mlx
// Package gemma3 provides the Gemma 3 text model implementation for MLX.
package gemma3
import (
"encoding/json"
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/tokenizer"
"github.com/ollama/ollama/x/mlxrunner/cache"
"github.com/ollama/ollama/x/mlxrunner/mlx"
"github.com/ollama/ollama/x/mlxrunner/model"
"github.com/ollama/ollama/x/mlxrunner/model/base"
"github.com/ollama/ollama/x/models/nn"
)
func init() {
base.Register("Gemma3ForCausalLM", newModel)
base.Register("Gemma3ForConditionalGeneration", newModel)
}
// TextConfig holds configuration for the Gemma 3 text model.
type TextConfig struct {
HiddenSize int32 `json:"hidden_size"`
NumHiddenLayers int32 `json:"num_hidden_layers"`
IntermediateSize int32 `json:"intermediate_size"`
NumAttentionHeads int32 `json:"num_attention_heads"`
NumKeyValueHeads int32 `json:"num_key_value_heads"`
HeadDim int32 `json:"head_dim"`
VocabSize int32 `json:"vocab_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
MaxPositionEmbeddings int32 `json:"max_position_embeddings"`
SlidingWindow int32 `json:"sliding_window"`
SlidingWindowPattern int32 `json:"sliding_window_pattern"`
LayerTypes []string `json:"layer_types"`
TieWordEmbeddings bool `json:"tie_word_embeddings"`
// Quantization parameters (set during load based on model quantization).
QuantGroupSize int `json:"-"`
QuantBits int `json:"-"`
QuantMode string `json:"-"`
TensorQuant map[string]*model.TensorQuantInfo `json:"-"`
// Computed fields.
Scale float32 `json:"-"`
}
// Attention implements Gemma 3 attention with Q/K normalization.
type Attention struct {
QProj nn.LinearLayer
KProj nn.LinearLayer
VProj nn.LinearLayer
OProj nn.LinearLayer
QNorm *nn.RMSNorm
KNorm *nn.RMSNorm
// Precomputed (1 + weight) for Gemma-style RMSNorm.
QNormScaled *mlx.Array
KNormScaled *mlx.Array
}
// MLP is the feed-forward network with GELU activation.
type MLP struct {
GateProj nn.LinearLayer
UpProj nn.LinearLayer
DownProj nn.LinearLayer
}
// DecoderLayer is a single transformer block.
type DecoderLayer struct {
InputNorm *nn.RMSNorm
Attention *Attention
PostAttnNorm *nn.RMSNorm
PreFFNorm *nn.RMSNorm
MLP *MLP
PostFFNorm *nn.RMSNorm
// Precomputed (1 + weight) for Gemma-style RMSNorm.
InputNormScaled *mlx.Array
PostAttnNormScaled *mlx.Array
PreFFNormScaled *mlx.Array
PostFFNormScaled *mlx.Array
// Layer metadata.
IsSliding bool
LayerIdx int32
}
// Model is the Gemma 3 text-only model.
type Model struct {
EmbedTokens *nn.Embedding
Layers []*DecoderLayer
Norm *nn.RMSNorm
LMHead nn.LinearLayer
// Precomputed (1 + weight) for Gemma-style RMSNorm.
NormScaled *mlx.Array
tok *tokenizer.Tokenizer
*TextConfig
weightPrefix string
}
func defaultHeads(numLayers int32) (numHeads, numKVHeads int32) {
switch numLayers {
case 34:
return 8, 4
case 48:
return 16, 8
case 62:
return 32, 16
default:
return 8, 4
}
}
func parseTextConfig(configData []byte) (TextConfig, bool, error) {
var cfg TextConfig
if err := json.Unmarshal(configData, &cfg); err != nil {
return TextConfig{}, false, fmt.Errorf("parse config: %w", err)
}
var wrapped struct {
TextConfig *TextConfig `json:"text_config"`
}
if err := json.Unmarshal(configData, &wrapped); err != nil {
return TextConfig{}, false, fmt.Errorf("parse nested text config: %w", err)
}
fromConditional := wrapped.TextConfig != nil
if fromConditional {
cfg = *wrapped.TextConfig
if cfg.HeadDim == 0 {
cfg.HeadDim = 256
}
if cfg.NumAttentionHeads == 0 {
cfg.NumAttentionHeads, cfg.NumKeyValueHeads = defaultHeads(cfg.NumHiddenLayers)
}
if cfg.NumKeyValueHeads == 0 {
_, cfg.NumKeyValueHeads = defaultHeads(cfg.NumHiddenLayers)
}
if cfg.VocabSize == 0 {
cfg.VocabSize = 262208
}
if cfg.SlidingWindowPattern == 0 && len(cfg.LayerTypes) == 0 {
cfg.SlidingWindowPattern = 6
}
if cfg.MaxPositionEmbeddings == 0 {
cfg.MaxPositionEmbeddings = 131072
}
}
if cfg.HeadDim == 0 {
cfg.HeadDim = 256
}
if cfg.NumAttentionHeads == 0 {
cfg.NumAttentionHeads, cfg.NumKeyValueHeads = defaultHeads(cfg.NumHiddenLayers)
}
if cfg.NumKeyValueHeads == 0 {
cfg.NumKeyValueHeads = max(1, cfg.NumAttentionHeads/2)
}
if cfg.RopeTheta == 0 {
cfg.RopeTheta = 1000000
}
if cfg.RopeLocalBaseFreq == 0 {
cfg.RopeLocalBaseFreq = 10000
}
if cfg.RMSNormEps == 0 {
cfg.RMSNormEps = 1e-6
}
if cfg.VocabSize == 0 {
cfg.VocabSize = 262208
}
cfg.Scale = float32(1.0 / math.Sqrt(float64(cfg.HeadDim)))
return cfg, fromConditional, nil
}
func resolveWeightPrefix(tensors map[string]*mlx.Array) string {
for _, prefix := range []string{"", "language_model."} {
if tensors[prefix+"model.embed_tokens.weight"] != nil {
return prefix
}
}
return ""
}
func isLayerSliding(layerIdx int32, cfg *TextConfig) bool {
if len(cfg.LayerTypes) > 0 && int(layerIdx) < len(cfg.LayerTypes) {
return cfg.LayerTypes[layerIdx] == "sliding_attention"
}
if cfg.SlidingWindowPattern <= 0 {
return false
}
return (layerIdx+1)%cfg.SlidingWindowPattern != 0
}
func precomputeGemmaScaledWeights(m *Model) {
if m.Norm != nil {
m.NormScaled = mlx.AddScalar(m.Norm.Weight, 1.0)
}
var scaled []*mlx.Array
if m.NormScaled != nil {
scaled = append(scaled, m.NormScaled)
}
for _, layer := range m.Layers {
if layer == nil || layer.Attention == nil {
continue
}
if layer.InputNorm != nil {
layer.InputNormScaled = mlx.AddScalar(layer.InputNorm.Weight, 1.0)
scaled = append(scaled, layer.InputNormScaled)
}
if layer.PostAttnNorm != nil {
layer.PostAttnNormScaled = mlx.AddScalar(layer.PostAttnNorm.Weight, 1.0)
scaled = append(scaled, layer.PostAttnNormScaled)
}
if layer.PreFFNorm != nil {
layer.PreFFNormScaled = mlx.AddScalar(layer.PreFFNorm.Weight, 1.0)
scaled = append(scaled, layer.PreFFNormScaled)
}
if layer.PostFFNorm != nil {
layer.PostFFNormScaled = mlx.AddScalar(layer.PostFFNorm.Weight, 1.0)
scaled = append(scaled, layer.PostFFNormScaled)
}
if layer.Attention.QNorm != nil {
layer.Attention.QNormScaled = mlx.AddScalar(layer.Attention.QNorm.Weight, 1.0)
scaled = append(scaled, layer.Attention.QNormScaled)
}
if layer.Attention.KNorm != nil {
layer.Attention.KNormScaled = mlx.AddScalar(layer.Attention.KNorm.Weight, 1.0)
scaled = append(scaled, layer.Attention.KNormScaled)
}
}
if len(scaled) > 0 {
mlx.Eval(scaled...)
}
}
func newModel(root *model.Root) (base.Model, error) {
configData, err := root.Manifest.ReadConfig("config.json")
if err != nil {
return nil, fmt.Errorf("load config: %w", err)
}
cfg, _, err := parseTextConfig(configData)
if err != nil {
return nil, err
}
if qt := root.QuantType(); qt != "" {
cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode = model.QuantizationParams(qt)
if gs := root.GroupSize(); gs > 0 {
cfg.QuantGroupSize = gs
}
} else {
cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode = model.QuantizationParams("")
}
cfg.TensorQuant = root.AllTensorQuant()
tokData, err := root.Manifest.ReadConfig("tokenizer.json")
if err != nil {
return nil, fmt.Errorf("load tokenizer config: %w", err)
}
tokConfig := &tokenizer.TokenizerConfig{ConfigJSON: configData}
if genConfigData, err := root.Manifest.ReadConfig("generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = genConfigData
}
if tokConfigData, err := root.Manifest.ReadConfig("tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = tokConfigData
}
tok, err := tokenizer.LoadFromBytesWithConfig(tokData, tokConfig)
if err != nil {
return nil, fmt.Errorf("parse tokenizer: %w", err)
}
m := &Model{
Layers: make([]*DecoderLayer, cfg.NumHiddenLayers),
TextConfig: &cfg,
tok: tok,
}
for i := range m.Layers {
m.Layers[i] = &DecoderLayer{
LayerIdx: int32(i),
IsSliding: isLayerSliding(int32(i), m.TextConfig),
}
}
return m, nil
}
// LoadWeights receives all tensors loaded from the manifest and assigns them
// to model fields.
func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
m.weightPrefix = resolveWeightPrefix(tensors)
prefix := m.weightPrefix
linears := model.NewLinearFactory(tensors, m.QuantGroupSize, m.QuantBits, m.QuantMode, m.TensorQuant)
embedWeight := tensors[prefix+"model.embed_tokens.weight"]
if embedWeight == nil {
return fmt.Errorf("missing embedding weight: %smodel.embed_tokens.weight", prefix)
}
m.EmbedTokens = nn.NewEmbedding(embedWeight)
normWeight := tensors[prefix+"model.norm.weight"]
if normWeight == nil {
return fmt.Errorf("missing final norm weight: %smodel.norm.weight", prefix)
}
m.Norm = nn.NewRMSNorm(normWeight, m.RMSNormEps)
if lmHead := linears.Make(prefix + "lm_head"); lmHead != nil {
m.LMHead = lmHead
} else if lmHead := linears.Make("lm_head"); lmHead != nil {
m.LMHead = lmHead
} else {
// Gemma usually ties output projection to embeddings.
m.LMHead = nn.NewLinear(embedWeight, nil)
}
for i := int32(0); i < m.NumHiddenLayers; i++ {
layerPrefix := fmt.Sprintf("%smodel.layers.%d", prefix, i)
layer := &DecoderLayer{
LayerIdx: i,
IsSliding: isLayerSliding(i, m.TextConfig),
Attention: &Attention{},
MLP: &MLP{},
}
if w := tensors[layerPrefix+".input_layernorm.weight"]; w != nil {
layer.InputNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
if w := tensors[layerPrefix+".post_attention_layernorm.weight"]; w != nil {
layer.PostAttnNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
if w := tensors[layerPrefix+".pre_feedforward_layernorm.weight"]; w != nil {
layer.PreFFNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
if w := tensors[layerPrefix+".post_feedforward_layernorm.weight"]; w != nil {
layer.PostFFNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
layer.Attention.QProj = linears.Make(layerPrefix + ".self_attn.q_proj")
layer.Attention.KProj = linears.Make(layerPrefix + ".self_attn.k_proj")
layer.Attention.VProj = linears.Make(layerPrefix + ".self_attn.v_proj")
layer.Attention.OProj = linears.Make(layerPrefix + ".self_attn.o_proj")
if w := tensors[layerPrefix+".self_attn.q_norm.weight"]; w != nil {
layer.Attention.QNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
if w := tensors[layerPrefix+".self_attn.k_norm.weight"]; w != nil {
layer.Attention.KNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
layer.MLP.GateProj = linears.Make(layerPrefix + ".mlp.gate_proj")
layer.MLP.UpProj = linears.Make(layerPrefix + ".mlp.up_proj")
layer.MLP.DownProj = linears.Make(layerPrefix + ".mlp.down_proj")
if layer.InputNorm == nil {
return fmt.Errorf("layer %d: missing input_layernorm", i)
}
if layer.PostAttnNorm == nil {
return fmt.Errorf("layer %d: missing post_attention_layernorm", i)
}
if layer.PreFFNorm == nil {
return fmt.Errorf("layer %d: missing pre_feedforward_layernorm", i)
}
if layer.PostFFNorm == nil {
return fmt.Errorf("layer %d: missing post_feedforward_layernorm", i)
}
if layer.Attention.QProj == nil || layer.Attention.KProj == nil || layer.Attention.VProj == nil || layer.Attention.OProj == nil {
return fmt.Errorf("layer %d: missing attention projections", i)
}
if layer.Attention.QNorm == nil || layer.Attention.KNorm == nil {
return fmt.Errorf("layer %d: missing attention q/k norms", i)
}
if layer.MLP.GateProj == nil || layer.MLP.UpProj == nil || layer.MLP.DownProj == nil {
return fmt.Errorf("layer %d: missing mlp projections", i)
}
m.Layers[i] = layer
}
precomputeGemmaScaledWeights(m)
if m.NormScaled == nil {
return fmt.Errorf("missing precomputed final norm weight")
}
collected := mlx.Collect(m)
mlx.Eval(collected...)
return nil
}
func (m *Model) Forward(tokens *mlx.Array, caches []cache.Cache) *mlx.Array {
dims := tokens.Dims()
B, L := int32(dims[0]), int32(dims[1])
h := m.EmbedTokens.Forward(tokens)
h = mlx.MulScalar(h, float32(math.Sqrt(float64(m.HiddenSize))))
for i, layer := range m.Layers {
var c cache.Cache
if caches != nil && i < len(caches) {
c = caches[i]
}
h = layer.Forward(h, c, B, L, m.TextConfig)
}
return mlx.RMSNormFn(h, m.NormScaled, m.RMSNormEps)
}
func (m *Model) Unembed(x *mlx.Array) *mlx.Array {
return m.LMHead.Forward(x)
}
func (m *Model) NumLayers() int {
return len(m.Layers)
}
func (m *Model) Tokenizer() *tokenizer.Tokenizer {
return m.tok
}
// NewCaches creates cache objects for all layers.
func (m *Model) NewCaches() []cache.Cache {
caches := make([]cache.Cache, len(m.Layers))
for i, layer := range m.Layers {
if m.SlidingWindow > 0 && layer.IsSliding {
caches[i] = cache.NewRotatingKVCache(int(m.SlidingWindow))
} else {
caches[i] = cache.NewKVCache()
}
}
return caches
}
// FormatPrompt applies the Gemma 3 chat template.
func (m *Model) FormatPrompt(prompt string) string {
return fmt.Sprintf("<start_of_turn>user\n%s<end_of_turn>\n<start_of_turn>model\n", prompt)
}
func (l *DecoderLayer) Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *TextConfig) *mlx.Array {
normed := mlx.RMSNormFn(x, l.InputNormScaled, cfg.RMSNormEps)
attnOut := l.Attention.Forward(normed, c, B, L, l.IsSliding, cfg)
attnOut = mlx.RMSNormFn(attnOut, l.PostAttnNormScaled, cfg.RMSNormEps)
h := mlx.Add(x, attnOut)
normed = mlx.RMSNormFn(h, l.PreFFNormScaled, cfg.RMSNormEps)
mlpOut := l.MLP.Forward(normed)
mlpOut = mlx.RMSNormFn(mlpOut, l.PostFFNormScaled, cfg.RMSNormEps)
return mlx.Add(h, mlpOut)
}
func (a *Attention) Forward(x *mlx.Array, c cache.Cache, B, L int32, isSliding bool, cfg *TextConfig) *mlx.Array {
q := a.QProj.Forward(x)
k := a.KProj.Forward(x)
v := a.VProj.Forward(x)
q = mlx.Reshape(q, B, L, cfg.NumAttentionHeads, cfg.HeadDim)
q = mlx.Transpose(q, 0, 2, 1, 3)
k = mlx.Reshape(k, B, L, cfg.NumKeyValueHeads, cfg.HeadDim)
k = mlx.Transpose(k, 0, 2, 1, 3)
v = mlx.Reshape(v, B, L, cfg.NumKeyValueHeads, cfg.HeadDim)
v = mlx.Transpose(v, 0, 2, 1, 3)
q = mlx.RMSNormFn(q, a.QNormScaled, cfg.RMSNormEps)
k = mlx.RMSNormFn(k, a.KNormScaled, cfg.RMSNormEps)
ropeTheta := cfg.RopeTheta
if isSliding {
ropeTheta = cfg.RopeLocalBaseFreq
}
offset := 0
if c != nil {
offset = c.Offset()
}
q = mlx.RoPEWithBase(q, int(cfg.HeadDim), false, ropeTheta, 1.0, offset)
k = mlx.RoPEWithBase(k, int(cfg.HeadDim), false, ropeTheta, 1.0, offset)
if c != nil {
k, v = c.Update(k, v)
}
repeatFactor := cfg.NumAttentionHeads / cfg.NumKeyValueHeads
if repeatFactor > 1 {
k = nn.RepeatKV(k, repeatFactor)
v = nn.RepeatKV(v, repeatFactor)
}
out := mlx.ScaledDotProductAttentionCausal(q, k, v, cfg.Scale, L > 1)
out = mlx.Reshape(mlx.Transpose(out, 0, 2, 1, 3), B, L, cfg.NumAttentionHeads*cfg.HeadDim)
return a.OProj.Forward(out)
}
func (m *MLP) Forward(x *mlx.Array) *mlx.Array {
gate := mlx.GELUApprox(m.GateProj.Forward(x))
up := m.UpProj.Forward(x)
return m.DownProj.Forward(mlx.Mul(gate, up))
}

View File

@@ -8,7 +8,6 @@ import (
"encoding/json"
"fmt"
"math"
"strings"
"github.com/ollama/ollama/x/imagegen/tokenizer"
"github.com/ollama/ollama/x/mlxrunner/cache"
@@ -64,9 +63,10 @@ type Config struct {
RopeScaling *RopeScaling `json:"rope_scaling"`
// Quantization parameters (set during load based on model quantization)
QuantGroupSize int `json:"-"` // Group size for quantization (default 64)
QuantBits int `json:"-"` // Bits per weight (4 or 8)
QuantMode string `json:"-"` // Quantization mode ("affine", etc.)
QuantGroupSize int `json:"-"` // Group size for quantization (default 64)
QuantBits int `json:"-"` // Bits per weight (4 or 8)
QuantMode string `json:"-"` // Quantization mode ("affine", etc.)
TensorQuant map[string]*model.TensorQuantInfo `json:"-"`
// Computed fields
QHeadDim int32 `json:"-"` // qk_nope_head_dim + qk_rope_head_dim
@@ -372,22 +372,6 @@ func supportsGatherQMM(mode string, bits int) bool {
return mode == "affine" && (bits == 4 || bits == 8)
}
// quantizationParams returns groupSize, bits, mode for a quantization type string.
func quantizationParams(quantization string) (groupSize, bits int, mode string) {
switch strings.ToUpper(quantization) {
case "NVFP4":
return 16, 4, "nvfp4"
case "FP4", "Q4", "INT4":
return 32, 4, "affine"
case "MXFP8":
return 32, 8, "mxfp8"
case "FP8", "Q8", "INT8", "":
return 64, 8, "affine"
default:
return 32, 8, "affine"
}
}
// ExpertWeight holds a single expert's weight with optional quantization components.
type ExpertWeight struct {
Weight *mlx.Array
@@ -408,7 +392,15 @@ func loadExpertWeight(tensors map[string]*mlx.Array, path string, useQuantized b
if scales != nil {
qbiases := tensors[path+".weight_qbias"]
groupSize, bits, mode := cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode
groupSize, bits, mode := model.ResolveLinearQuantParams(
cfg.QuantGroupSize,
cfg.QuantBits,
cfg.QuantMode,
cfg.TensorQuant,
path+".weight",
w,
scales,
)
if useQuantized && supportsGatherQMM(mode, bits) {
return &ExpertWeight{Weight: w, Scales: scales, Biases: qbiases, Bits: bits, GroupSize: groupSize}
@@ -492,7 +484,16 @@ func sanitizeMLAWeights(tensors map[string]*mlx.Array, prefix string, cfg *Confi
// Check if quantized and dequantize
if scales := tensors[path+".weight_scale"]; scales != nil {
qbiases := tensors[path+".weight_qbias"]
w = mlx.Dequantize(w, scales, qbiases, cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode)
groupSize, bits, mode := model.ResolveLinearQuantParams(
cfg.QuantGroupSize,
cfg.QuantBits,
cfg.QuantMode,
cfg.TensorQuant,
path+".weight",
w,
scales,
)
w = mlx.Dequantize(w, scales, qbiases, groupSize, bits, mode)
}
headDim := cfg.QKNopeHeadDim + cfg.VHeadDim
@@ -507,32 +508,6 @@ func sanitizeMLAWeights(tensors map[string]*mlx.Array, prefix string, cfg *Confi
return embedQ, unembedOut
}
// makeLinear creates a Linear or QuantizedLinear layer from the tensor map.
func makeLinear(tensors map[string]*mlx.Array, path string, cfg *Config) nn.LinearLayer {
w := tensors[path+".weight"]
if w == nil {
return nil
}
scales := tensors[path+".weight_scale"]
if scales != nil {
qbiases := tensors[path+".weight_qbias"]
bias := tensors[path+".bias"]
return &nn.QuantizedLinear{
Weight: w,
Scales: scales,
QBiases: qbiases,
Bias: bias,
GroupSize: cfg.QuantGroupSize,
Bits: cfg.QuantBits,
Mode: cfg.QuantMode,
}
}
bias := tensors[path+".bias"]
return nn.NewLinear(w, bias)
}
// newModel creates a new GLM4-MoE-Lite model from a Root (config + tokenizer,
// no weights loaded yet). Called by the registry via base.New().
func newModel(root *model.Root) (base.Model, error) {
@@ -551,13 +526,14 @@ func newModel(root *model.Root) (base.Model, error) {
// Set up quantization parameters from pre-scanned metadata
if qt := root.QuantType(); qt != "" {
_, cfg.QuantBits, cfg.QuantMode = quantizationParams(qt)
cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode = model.QuantizationParams(qt)
if gs := root.GroupSize(); gs > 0 {
cfg.QuantGroupSize = gs
} else {
cfg.QuantGroupSize, _, _ = quantizationParams(qt)
}
} else {
cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode = model.QuantizationParams("")
}
cfg.TensorQuant = root.AllTensorQuant()
// Load tokenizer
tokData, err := root.Manifest.ReadConfig("tokenizer.json")
@@ -596,7 +572,20 @@ func newModel(root *model.Root) (base.Model, error) {
// layer creation.
func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
cfg := m.Config
linears := model.NewLinearFactory(tensors, cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode, cfg.TensorQuant)
useQuantized := supportsGatherQMM(cfg.QuantMode, cfg.QuantBits)
if !useQuantized && cfg.TensorQuant != nil {
for _, tq := range cfg.TensorQuant {
if tq == nil {
continue
}
_, bits, mode := model.QuantizationParams(tq.QuantType)
if supportsGatherQMM(mode, bits) {
useQuantized = true
break
}
}
}
// Load embedding
if w := tensors["model.embed_tokens.weight"]; w != nil {
@@ -609,7 +598,7 @@ func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
}
// Load LM head
m.LMHead = makeLinear(tensors, "lm_head", cfg)
m.LMHead = linears.Make("lm_head")
// Load layers
for i := int32(0); i < cfg.NumHiddenLayers; i++ {
@@ -617,16 +606,16 @@ func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
// Load attention (same for both block types)
attn := &MLAAttention{}
attn.QAProj = makeLinear(tensors, prefix+".self_attn.q_a_proj", cfg)
attn.QAProj = linears.Make(prefix + ".self_attn.q_a_proj")
if w := tensors[prefix+".self_attn.q_a_layernorm.weight"]; w != nil {
attn.QALayerNorm = nn.NewRMSNorm(w, cfg.RMSNormEps)
}
attn.QBProj = makeLinear(tensors, prefix+".self_attn.q_b_proj", cfg)
attn.KVAProjWithMQA = makeLinear(tensors, prefix+".self_attn.kv_a_proj_with_mqa", cfg)
attn.QBProj = linears.Make(prefix + ".self_attn.q_b_proj")
attn.KVAProjWithMQA = linears.Make(prefix + ".self_attn.kv_a_proj_with_mqa")
if w := tensors[prefix+".self_attn.kv_a_layernorm.weight"]; w != nil {
attn.KVALayerNorm = nn.NewRMSNorm(w, cfg.RMSNormEps)
}
attn.OProj = makeLinear(tensors, prefix+".self_attn.o_proj", cfg)
attn.OProj = linears.Make(prefix + ".self_attn.o_proj")
// Sanitize MLA weights for absorbed attention
embedQ, unembedOut := sanitizeMLAWeights(tensors, prefix, cfg)
@@ -647,9 +636,9 @@ func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
}
block.MLP = &DenseMLP{
GateProj: makeLinear(tensors, prefix+".mlp.gate_proj", cfg),
UpProj: makeLinear(tensors, prefix+".mlp.up_proj", cfg),
DownProj: makeLinear(tensors, prefix+".mlp.down_proj", cfg),
GateProj: linears.Make(prefix + ".mlp.gate_proj"),
UpProj: linears.Make(prefix + ".mlp.up_proj"),
DownProj: linears.Make(prefix + ".mlp.down_proj"),
}
m.Layers[i] = block
@@ -690,7 +679,7 @@ func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
}
moeGate := &MoEGate{}
moeGate.Gate = makeLinear(tensors, prefix+".mlp.gate", cfg)
moeGate.Gate = linears.Make(prefix + ".mlp.gate")
if bias := tensors[prefix+".mlp.gate.e_score_correction_bias"]; bias != nil {
moeGate.EScoreCorrectionBias = bias
}
@@ -703,9 +692,9 @@ func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
// Load shared experts if present
if cfg.NSharedExperts > 0 {
block.MoE.SharedExperts = &SharedExperts{
GateProj: makeLinear(tensors, prefix+".mlp.shared_experts.gate_proj", cfg),
UpProj: makeLinear(tensors, prefix+".mlp.shared_experts.up_proj", cfg),
DownProj: makeLinear(tensors, prefix+".mlp.shared_experts.down_proj", cfg),
GateProj: linears.Make(prefix + ".mlp.shared_experts.gate_proj"),
UpProj: linears.Make(prefix + ".mlp.shared_experts.up_proj"),
DownProj: linears.Make(prefix + ".mlp.shared_experts.down_proj"),
}
}

323
x/models/llama/llama.go Normal file
View File

@@ -0,0 +1,323 @@
//go:build mlx
// Package llama provides a Llama-style decoder-only transformer for MLX.
package llama
import (
"encoding/json"
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/tokenizer"
"github.com/ollama/ollama/x/mlxrunner/cache"
"github.com/ollama/ollama/x/mlxrunner/mlx"
"github.com/ollama/ollama/x/mlxrunner/model"
"github.com/ollama/ollama/x/mlxrunner/model/base"
"github.com/ollama/ollama/x/models/nn"
)
func init() {
base.Register("LlamaForCausalLM", newModel)
}
// Config holds Llama model configuration.
type Config struct {
HiddenSize int32 `json:"hidden_size"`
NumHiddenLayers int32 `json:"num_hidden_layers"`
IntermediateSize int32 `json:"intermediate_size"`
NumAttentionHeads int32 `json:"num_attention_heads"`
NumKeyValueHeads int32 `json:"num_key_value_heads"`
VocabSize int32 `json:"vocab_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
MaxPositionEmbeddings int32 `json:"max_position_embeddings"`
TieWordEmbeddings bool `json:"tie_word_embeddings"`
// Quantization parameters (set during load based on model quantization).
QuantGroupSize int `json:"-"`
QuantBits int `json:"-"`
QuantMode string `json:"-"`
TensorQuant map[string]*model.TensorQuantInfo `json:"-"`
// Computed fields.
HeadDim int32 `json:"-"`
Scale float32 `json:"-"`
}
// Model is a Llama text model.
type Model struct {
EmbedTokens *nn.Embedding
Layers []*Layer
Norm *nn.RMSNorm
LMHead nn.LinearLayer
tok *tokenizer.Tokenizer
*Config
weightPrefix string
}
type Layer struct {
Attention *Attention
MLP *MLP
AttentionNorm *nn.RMSNorm
MLPNorm *nn.RMSNorm
}
type Attention struct {
QProj nn.LinearLayer
KProj nn.LinearLayer
VProj nn.LinearLayer
OProj nn.LinearLayer
}
type MLP struct {
GateProj nn.LinearLayer
UpProj nn.LinearLayer
DownProj nn.LinearLayer
}
func resolveWeightPrefix(tensors map[string]*mlx.Array) string {
for _, prefix := range []string{"", "language_model."} {
if tensors[prefix+"model.embed_tokens.weight"] != nil {
return prefix
}
}
return ""
}
func newModel(root *model.Root) (base.Model, error) {
configData, err := root.Manifest.ReadConfig("config.json")
if err != nil {
return nil, fmt.Errorf("load config: %w", err)
}
var cfg Config
if err := json.Unmarshal(configData, &cfg); err != nil {
return nil, fmt.Errorf("parse config: %w", err)
}
if cfg.HiddenSize <= 0 {
return nil, fmt.Errorf("invalid hidden_size: %d", cfg.HiddenSize)
}
if cfg.NumAttentionHeads <= 0 {
return nil, fmt.Errorf("invalid num_attention_heads: %d", cfg.NumAttentionHeads)
}
if cfg.NumKeyValueHeads <= 0 {
cfg.NumKeyValueHeads = cfg.NumAttentionHeads
}
if cfg.HiddenSize%cfg.NumAttentionHeads != 0 {
return nil, fmt.Errorf("hidden_size (%d) must be divisible by num_attention_heads (%d)", cfg.HiddenSize, cfg.NumAttentionHeads)
}
if cfg.HeadDim == 0 {
cfg.HeadDim = cfg.HiddenSize / cfg.NumAttentionHeads
}
if cfg.HeadDim <= 0 {
return nil, fmt.Errorf("invalid head_dim: %d", cfg.HeadDim)
}
if cfg.NumAttentionHeads%cfg.NumKeyValueHeads != 0 {
return nil, fmt.Errorf("num_attention_heads (%d) must be divisible by num_key_value_heads (%d)", cfg.NumAttentionHeads, cfg.NumKeyValueHeads)
}
if cfg.RopeTheta == 0 {
cfg.RopeTheta = 10000
}
if cfg.RMSNormEps == 0 {
cfg.RMSNormEps = 1e-5
}
cfg.Scale = float32(1.0 / math.Sqrt(float64(cfg.HeadDim)))
if qt := root.QuantType(); qt != "" {
cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode = model.QuantizationParams(qt)
if gs := root.GroupSize(); gs > 0 {
cfg.QuantGroupSize = gs
}
} else {
cfg.QuantGroupSize, cfg.QuantBits, cfg.QuantMode = model.QuantizationParams("")
}
cfg.TensorQuant = root.AllTensorQuant()
tokData, err := root.Manifest.ReadConfig("tokenizer.json")
if err != nil {
return nil, fmt.Errorf("load tokenizer config: %w", err)
}
tokConfig := &tokenizer.TokenizerConfig{
ConfigJSON: configData,
}
if genConfigData, err := root.Manifest.ReadConfig("generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = genConfigData
}
if tokConfigData, err := root.Manifest.ReadConfig("tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = tokConfigData
}
tok, err := tokenizer.LoadFromBytesWithConfig(tokData, tokConfig)
if err != nil {
return nil, fmt.Errorf("parse tokenizer: %w", err)
}
m := &Model{
Layers: make([]*Layer, cfg.NumHiddenLayers),
Config: &cfg,
tok: tok,
}
return m, nil
}
// LoadWeights receives all tensors loaded from the manifest and assigns them
// to model fields.
func (m *Model) LoadWeights(tensors map[string]*mlx.Array) error {
m.weightPrefix = resolveWeightPrefix(tensors)
prefix := m.weightPrefix
linears := model.NewLinearFactory(tensors, m.QuantGroupSize, m.QuantBits, m.QuantMode, m.TensorQuant)
embedWeight := tensors[prefix+"model.embed_tokens.weight"]
if embedWeight == nil {
return fmt.Errorf("missing embedding weight: %smodel.embed_tokens.weight", prefix)
}
m.EmbedTokens = nn.NewEmbedding(embedWeight)
normWeight := tensors[prefix+"model.norm.weight"]
if normWeight == nil {
return fmt.Errorf("missing final norm weight: %smodel.norm.weight", prefix)
}
m.Norm = nn.NewRMSNorm(normWeight, m.RMSNormEps)
if m.TieWordEmbeddings {
m.LMHead = nn.NewLinear(embedWeight, nil)
} else if lmHead := linears.Make(prefix + "lm_head"); lmHead != nil {
m.LMHead = lmHead
} else if lmHead := linears.Make("lm_head"); lmHead != nil {
m.LMHead = lmHead
} else {
// Fallback used by many Llama checkpoints where output is tied.
m.LMHead = nn.NewLinear(embedWeight, nil)
}
for i := int32(0); i < m.NumHiddenLayers; i++ {
layerPrefix := fmt.Sprintf("%smodel.layers.%d", prefix, i)
layer := &Layer{
Attention: &Attention{},
MLP: &MLP{},
}
if w := tensors[layerPrefix+".input_layernorm.weight"]; w != nil {
layer.AttentionNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
if w := tensors[layerPrefix+".post_attention_layernorm.weight"]; w != nil {
layer.MLPNorm = nn.NewRMSNorm(w, m.RMSNormEps)
}
layer.Attention.QProj = linears.Make(layerPrefix + ".self_attn.q_proj")
layer.Attention.KProj = linears.Make(layerPrefix + ".self_attn.k_proj")
layer.Attention.VProj = linears.Make(layerPrefix + ".self_attn.v_proj")
layer.Attention.OProj = linears.Make(layerPrefix + ".self_attn.o_proj")
layer.MLP.GateProj = linears.Make(layerPrefix + ".mlp.gate_proj")
layer.MLP.UpProj = linears.Make(layerPrefix + ".mlp.up_proj")
layer.MLP.DownProj = linears.Make(layerPrefix + ".mlp.down_proj")
if layer.AttentionNorm == nil {
return fmt.Errorf("layer %d: missing input_layernorm", i)
}
if layer.MLPNorm == nil {
return fmt.Errorf("layer %d: missing post_attention_layernorm", i)
}
if layer.Attention.QProj == nil || layer.Attention.KProj == nil || layer.Attention.VProj == nil || layer.Attention.OProj == nil {
return fmt.Errorf("layer %d: missing attention projections", i)
}
if layer.MLP.GateProj == nil || layer.MLP.UpProj == nil || layer.MLP.DownProj == nil {
return fmt.Errorf("layer %d: missing mlp projections", i)
}
m.Layers[i] = layer
}
collected := mlx.Collect(m)
mlx.Eval(collected...)
return nil
}
func (m *Model) Forward(tokens *mlx.Array, caches []cache.Cache) *mlx.Array {
dims := tokens.Dims()
B, L := int32(dims[0]), int32(dims[1])
h := m.EmbedTokens.Forward(tokens)
for i, layer := range m.Layers {
var c cache.Cache
if caches != nil && i < len(caches) {
c = caches[i]
}
h = layer.Forward(h, c, B, L, m.Config)
}
return m.Norm.Forward(h, m.RMSNormEps)
}
func (m *Model) Unembed(x *mlx.Array) *mlx.Array {
return m.LMHead.Forward(x)
}
func (m *Model) NumLayers() int {
return len(m.Layers)
}
func (m *Model) Tokenizer() *tokenizer.Tokenizer {
return m.tok
}
func (m *Model) NewCaches() []cache.Cache {
caches := make([]cache.Cache, len(m.Layers))
for i := range caches {
caches[i] = cache.NewKVCache()
}
return caches
}
func (l *Layer) Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *Config) *mlx.Array {
h := mlx.Add(x, l.Attention.Forward(l.AttentionNorm.Forward(x, cfg.RMSNormEps), c, B, L, cfg))
return mlx.Add(h, l.MLP.Forward(l.MLPNorm.Forward(h, cfg.RMSNormEps)))
}
func (a *Attention) Forward(x *mlx.Array, c cache.Cache, B, L int32, cfg *Config) *mlx.Array {
q := a.QProj.Forward(x)
k := a.KProj.Forward(x)
v := a.VProj.Forward(x)
q = mlx.Reshape(q, B, L, cfg.NumAttentionHeads, cfg.HeadDim)
q = mlx.Transpose(q, 0, 2, 1, 3)
k = mlx.Reshape(k, B, L, cfg.NumKeyValueHeads, cfg.HeadDim)
k = mlx.Transpose(k, 0, 2, 1, 3)
v = mlx.Reshape(v, B, L, cfg.NumKeyValueHeads, cfg.HeadDim)
v = mlx.Transpose(v, 0, 2, 1, 3)
offset := 0
if c != nil {
offset = c.Offset()
}
q = mlx.RoPEWithBase(q, int(cfg.HeadDim), false, cfg.RopeTheta, 1.0, offset)
k = mlx.RoPEWithBase(k, int(cfg.HeadDim), false, cfg.RopeTheta, 1.0, offset)
if c != nil {
k, v = c.Update(k, v)
}
repeatFactor := cfg.NumAttentionHeads / cfg.NumKeyValueHeads
if repeatFactor > 1 {
k = nn.RepeatKV(k, repeatFactor)
v = nn.RepeatKV(v, repeatFactor)
}
out := mlx.ScaledDotProductAttentionCausal(q, k, v, cfg.Scale, L > 1)
out = mlx.Reshape(mlx.Transpose(out, 0, 2, 1, 3), B, L, cfg.NumAttentionHeads*cfg.HeadDim)
return a.OProj.Forward(out)
}
func (m *MLP) Forward(x *mlx.Array) *mlx.Array {
return m.DownProj.Forward(mlx.Mul(mlx.SiLU(m.GateProj.Forward(x)), m.UpProj.Forward(x)))
}

View File

@@ -5,6 +5,7 @@ import (
"encoding/json"
"fmt"
"io"
"math"
"os"
"sort"
"strings"
@@ -58,7 +59,15 @@ func GetSafetensorsLLMInfo(name model.Name) (map[string]any, error) {
}
}
return buildModelInfo(config, totalBytes, tensorCount), nil
info := buildModelInfo(config, totalBytes, tensorCount)
// For quantized models, byte-based estimation can significantly undercount
// parameters. Prefer exact counting from tensor shapes in safetensors headers.
if paramCount, err := getParameterCountFromManifest(mf); err == nil && paramCount > 0 {
info["general.parameter_count"] = paramCount
}
return info, nil
}
// buildModelInfo constructs the model info map from config and tensor stats.
@@ -151,6 +160,51 @@ func buildModelInfo(config modelConfig, totalTensorBytes, tensorCount int64) map
return info
}
// getParameterCountFromManifest counts model parameters from tensor shapes.
// This accounts for quantized tensors by using unpacked shapes from
// getTensorInfoFromManifest.
func getParameterCountFromManifest(mf *manifest.Manifest) (int64, error) {
tensors, err := getTensorInfoFromManifest(mf)
if err != nil {
return 0, err
}
var total int64
for _, tensor := range tensors {
if len(tensor.Shape) == 0 {
continue
}
elements := int64(1)
for _, dim := range tensor.Shape {
if dim == 0 {
elements = 0
break
}
if dim > uint64(math.MaxInt64) {
return 0, fmt.Errorf("tensor %s dimension too large: %d", tensor.Name, dim)
}
d := int64(dim)
if elements > math.MaxInt64/d {
return 0, fmt.Errorf("tensor %s element count overflow", tensor.Name)
}
elements *= d
}
if elements == 0 {
continue
}
if total > math.MaxInt64-elements {
return 0, fmt.Errorf("total parameter count overflow")
}
total += elements
}
return total, nil
}
// GetSafetensorsTensorInfo extracts tensor information from safetensors model layers.
// Each tensor is stored as a minimal safetensors file with an 88-byte header containing metadata.
func GetSafetensorsTensorInfo(name model.Name) ([]api.Tensor, error) {

View File

@@ -714,6 +714,187 @@ func TestGetTensorInfoFromManifest_Quantized(t *testing.T) {
}
}
func TestGetParameterCountFromManifest(t *testing.T) {
// Create a temp directory for blobs and set OLLAMA_MODELS
tempDir := t.TempDir()
t.Setenv("OLLAMA_MODELS", tempDir)
blobDir := filepath.Join(tempDir, "blobs")
if err := os.MkdirAll(blobDir, 0o755); err != nil {
t.Fatalf("failed to create blobs dir: %v", err)
}
// Unquantized tensor: [4,5] = 20 params
header1 := map[string]any{
"model.embed_tokens.weight": map[string]any{
"dtype": "BF16",
"shape": []int64{4, 5},
"data_offsets": []int64{0, 40},
},
}
header1JSON, _ := json.Marshal(header1)
var buf1 bytes.Buffer
binary.Write(&buf1, binary.LittleEndian, uint64(len(header1JSON)))
buf1.Write(header1JSON)
digest1 := "sha256:1111111111111111111111111111111111111111111111111111111111111111"
blobPath1, err := manifest.BlobsPath(digest1)
if err != nil {
t.Fatalf("failed to get blob path: %v", err)
}
if err := os.WriteFile(blobPath1, buf1.Bytes(), 0o644); err != nil {
t.Fatalf("failed to write blob1: %v", err)
}
// Quantized int4 tensor with packed shape [10,2] -> unpacked [10,16] = 160 params
header2 := map[string]any{
"__metadata__": map[string]string{
"quant_type": "int4",
"group_size": "32",
},
"model.layers.0.mlp.up_proj.weight": map[string]any{
"dtype": "U32",
"shape": []int64{10, 2},
"data_offsets": []int64{0, 80},
},
"model.layers.0.mlp.up_proj.weight.scale": map[string]any{
"dtype": "BF16",
"shape": []int64{10, 1},
"data_offsets": []int64{80, 100},
},
"model.layers.0.mlp.up_proj.weight.bias": map[string]any{
"dtype": "BF16",
"shape": []int64{10, 1},
"data_offsets": []int64{100, 120},
},
}
header2JSON, _ := json.Marshal(header2)
var buf2 bytes.Buffer
binary.Write(&buf2, binary.LittleEndian, uint64(len(header2JSON)))
buf2.Write(header2JSON)
digest2 := "sha256:2222222222222222222222222222222222222222222222222222222222222222"
blobPath2, err := manifest.BlobsPath(digest2)
if err != nil {
t.Fatalf("failed to get blob path: %v", err)
}
if err := os.WriteFile(blobPath2, buf2.Bytes(), 0o644); err != nil {
t.Fatalf("failed to write blob2: %v", err)
}
mf := &manifest.Manifest{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Layers: []manifest.Layer{
{
MediaType: manifest.MediaTypeImageTensor,
Digest: digest1,
Size: int64(buf1.Len() + 40),
Name: "model.embed_tokens.weight",
},
{
MediaType: manifest.MediaTypeImageTensor,
Digest: digest2,
Size: int64(buf2.Len() + 120),
Name: "model.layers.0.mlp.up_proj.weight",
},
},
}
paramCount, err := getParameterCountFromManifest(mf)
if err != nil {
t.Fatalf("getParameterCountFromManifest() error = %v", err)
}
const want int64 = 180 // 20 + 160
if paramCount != want {
t.Errorf("parameter_count = %d, want %d", paramCount, want)
}
}
func TestGetParameterCountFromManifest_MixedQuantizedPacked(t *testing.T) {
// Create a temp directory for blobs and set OLLAMA_MODELS
tempDir := t.TempDir()
t.Setenv("OLLAMA_MODELS", tempDir)
blobDir := filepath.Join(tempDir, "blobs")
if err := os.MkdirAll(blobDir, 0o755); err != nil {
t.Fatalf("failed to create blobs dir: %v", err)
}
// Packed mixed-precision blob (no global metadata):
// - gate_proj: int4 packed [5,8] + scale [5,2] => unpacked [5,64] = 320 params
// - down_proj: int8 packed [5,16] + scale [5,1] => unpacked [5,64] = 320 params
header := map[string]any{
"model.layers.0.mlp.experts.0.gate_proj.weight": map[string]any{
"dtype": "U32",
"shape": []int64{5, 8},
"data_offsets": []int64{0, 160},
},
"model.layers.0.mlp.experts.0.gate_proj.weight.scale": map[string]any{
"dtype": "BF16",
"shape": []int64{5, 2},
"data_offsets": []int64{160, 180},
},
"model.layers.0.mlp.experts.0.gate_proj.weight.bias": map[string]any{
"dtype": "BF16",
"shape": []int64{5, 2},
"data_offsets": []int64{180, 200},
},
"model.layers.0.mlp.experts.0.down_proj.weight": map[string]any{
"dtype": "U32",
"shape": []int64{5, 16},
"data_offsets": []int64{200, 520},
},
"model.layers.0.mlp.experts.0.down_proj.weight.scale": map[string]any{
"dtype": "BF16",
"shape": []int64{5, 1},
"data_offsets": []int64{520, 530},
},
"model.layers.0.mlp.experts.0.down_proj.weight.bias": map[string]any{
"dtype": "BF16",
"shape": []int64{5, 1},
"data_offsets": []int64{530, 540},
},
}
headerJSON, _ := json.Marshal(header)
var buf bytes.Buffer
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
buf.Write(headerJSON)
digest := "sha256:3333333333333333333333333333333333333333333333333333333333333333"
blobPath, err := manifest.BlobsPath(digest)
if err != nil {
t.Fatalf("failed to get blob path: %v", err)
}
if err := os.WriteFile(blobPath, buf.Bytes(), 0o644); err != nil {
t.Fatalf("failed to write blob: %v", err)
}
mf := &manifest.Manifest{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Layers: []manifest.Layer{
{
MediaType: manifest.MediaTypeImageTensor,
Digest: digest,
Size: int64(buf.Len() + 540),
Name: "model.layers.0.mlp.experts",
},
},
}
paramCount, err := getParameterCountFromManifest(mf)
if err != nil {
t.Fatalf("getParameterCountFromManifest() error = %v", err)
}
const want int64 = 640 // 320 + 320
if paramCount != want {
t.Errorf("parameter_count = %d, want %d", paramCount, want)
}
}
func TestParseSafetensorsAllHeaders(t *testing.T) {
tests := []struct {
name string