mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-01 01:33:03 -05:00
Compare commits
8 Commits
ciaran/par
...
gitignore-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d35b73c3c1 | ||
|
|
cd946742f7 | ||
|
|
a5bc38ad1f | ||
|
|
2a4e0d4629 | ||
|
|
46a14153dd | ||
|
|
9ba61f3733 | ||
|
|
d9eca75895 | ||
|
|
9dabde7e57 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -28,3 +28,6 @@ target/
|
||||
dashboard/build/
|
||||
dashboard/node_modules/
|
||||
dashboard/.svelte-kit/
|
||||
|
||||
# host config snapshots
|
||||
hosts_*.json
|
||||
|
||||
@@ -21,7 +21,7 @@ def exo_shard_downloader(max_parallel_downloads: int = 8) -> ShardDownloader:
|
||||
|
||||
|
||||
async def build_base_shard(model_id: ModelId) -> ShardMetadata:
|
||||
model_card = await ModelCard.from_hf(model_id)
|
||||
model_card = await ModelCard.load(model_id)
|
||||
return PipelineShardMetadata(
|
||||
model_card=model_card,
|
||||
device_rank=0,
|
||||
@@ -166,9 +166,8 @@ class ResumableShardDownloader(ShardDownloader):
|
||||
for task in asyncio.as_completed(tasks):
|
||||
try:
|
||||
yield await task
|
||||
# TODO: except Exception
|
||||
except Exception as e:
|
||||
logger.error("Error downloading shard:", e)
|
||||
logger.warning(f"Error downloading shard: {type(e).__name__}")
|
||||
|
||||
async def get_shard_download_status_for_shard(
|
||||
self, shard: ShardMetadata
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import base64
|
||||
import contextlib
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from collections.abc import AsyncGenerator
|
||||
from http import HTTPStatus
|
||||
@@ -66,7 +65,9 @@ from exo.shared.types.api import (
|
||||
StartDownloadParams,
|
||||
StartDownloadResponse,
|
||||
StreamingChoiceResponse,
|
||||
StreamOptions,
|
||||
ToolCall,
|
||||
Usage,
|
||||
)
|
||||
from exo.shared.types.chunks import (
|
||||
ErrorChunk,
|
||||
@@ -113,17 +114,10 @@ def _format_to_content_type(image_format: Literal["png", "jpeg", "webp"] | None)
|
||||
return f"image/{image_format or 'png'}"
|
||||
|
||||
|
||||
def _ensure_seed(params: AdvancedImageParams | None) -> AdvancedImageParams:
|
||||
"""Ensure advanced params has a seed set for distributed consistency."""
|
||||
if params is None:
|
||||
return AdvancedImageParams(seed=random.randint(0, 2**32 - 1))
|
||||
if params.seed is None:
|
||||
return params.model_copy(update={"seed": random.randint(0, 2**32 - 1)})
|
||||
return params
|
||||
|
||||
|
||||
def chunk_to_response(
|
||||
chunk: TokenChunk | ToolCallChunk, command_id: CommandId
|
||||
chunk: TokenChunk | ToolCallChunk,
|
||||
command_id: CommandId,
|
||||
usage: Usage | None,
|
||||
) -> ChatCompletionResponse:
|
||||
return ChatCompletionResponse(
|
||||
id=command_id,
|
||||
@@ -148,21 +142,10 @@ def chunk_to_response(
|
||||
finish_reason=chunk.finish_reason,
|
||||
)
|
||||
],
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
|
||||
async def resolve_model_card(model_id: ModelId) -> ModelCard:
|
||||
if model_id in MODEL_CARDS:
|
||||
model_card = MODEL_CARDS[model_id]
|
||||
return model_card
|
||||
|
||||
for card in MODEL_CARDS.values():
|
||||
if card.model_id == ModelId(model_id):
|
||||
return card
|
||||
|
||||
return await ModelCard.from_hf(model_id)
|
||||
|
||||
|
||||
class API:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -284,7 +267,7 @@ class API:
|
||||
|
||||
async def place_instance(self, payload: PlaceInstanceParams):
|
||||
command = PlaceInstance(
|
||||
model_card=await resolve_model_card(payload.model_id),
|
||||
model_card=await ModelCard.load(payload.model_id),
|
||||
sharding=payload.sharding,
|
||||
instance_meta=payload.instance_meta,
|
||||
min_nodes=payload.min_nodes,
|
||||
@@ -301,7 +284,7 @@ class API:
|
||||
self, payload: CreateInstanceParams
|
||||
) -> CreateInstanceResponse:
|
||||
instance = payload.instance
|
||||
model_card = await resolve_model_card(instance.shard_assignments.model_id)
|
||||
model_card = await ModelCard.load(instance.shard_assignments.model_id)
|
||||
required_memory = model_card.storage_size
|
||||
available_memory = self._calculate_total_available_memory()
|
||||
|
||||
@@ -329,7 +312,7 @@ class API:
|
||||
instance_meta: InstanceMeta = InstanceMeta.MlxRing,
|
||||
min_nodes: int = 1,
|
||||
) -> Instance:
|
||||
model_card = await resolve_model_card(model_id)
|
||||
model_card = await ModelCard.load(model_id)
|
||||
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
@@ -532,9 +515,10 @@ class API:
|
||||
del self._chat_completion_queues[command_id]
|
||||
|
||||
async def _generate_chat_stream(
|
||||
self, command_id: CommandId
|
||||
self, command_id: CommandId, stream_options: StreamOptions | None = None
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""Generate chat completion stream as JSON strings."""
|
||||
include_usage = stream_options.include_usage if stream_options else False
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id):
|
||||
assert not isinstance(chunk, ImageChunk)
|
||||
@@ -550,8 +534,10 @@ class API:
|
||||
yield "data: [DONE]\n\n"
|
||||
return
|
||||
|
||||
usage = chunk.usage if include_usage else None
|
||||
|
||||
chunk_response: ChatCompletionResponse = chunk_to_response(
|
||||
chunk, command_id
|
||||
chunk, command_id, usage=usage
|
||||
)
|
||||
logger.debug(f"chunk_response: {chunk_response}")
|
||||
|
||||
@@ -567,8 +553,9 @@ class API:
|
||||
|
||||
text_parts: list[str] = []
|
||||
tool_calls: list[ToolCall] = []
|
||||
model: str | None = None
|
||||
model: ModelId | None = None
|
||||
finish_reason: FinishReason | None = None
|
||||
usage: Usage | None = None
|
||||
|
||||
async for chunk in self._chat_chunk_stream(command_id):
|
||||
if isinstance(chunk, ErrorChunk):
|
||||
@@ -593,6 +580,9 @@ class API:
|
||||
for i, tool in enumerate(chunk.tool_calls)
|
||||
)
|
||||
|
||||
if chunk.usage is not None:
|
||||
usage = chunk.usage
|
||||
|
||||
if chunk.finish_reason is not None:
|
||||
finish_reason = chunk.finish_reason
|
||||
|
||||
@@ -614,6 +604,7 @@ class API:
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
],
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def _collect_chat_completion_with_stats(
|
||||
@@ -621,7 +612,7 @@ class API:
|
||||
) -> BenchChatCompletionResponse:
|
||||
text_parts: list[str] = []
|
||||
tool_calls: list[ToolCall] = []
|
||||
model: str | None = None
|
||||
model: ModelId | None = None
|
||||
finish_reason: FinishReason | None = None
|
||||
|
||||
stats: GenerationStats | None = None
|
||||
@@ -674,7 +665,7 @@ class API:
|
||||
)
|
||||
return resp
|
||||
|
||||
async def _trigger_notify_user_to_download_model(self, model_id: str) -> None:
|
||||
async def _trigger_notify_user_to_download_model(self, model_id: ModelId) -> None:
|
||||
logger.warning(
|
||||
"TODO: we should send a notification to the user to download the model"
|
||||
)
|
||||
@@ -683,7 +674,7 @@ class API:
|
||||
self, payload: ChatCompletionTaskParams
|
||||
) -> ChatCompletionResponse | StreamingResponse:
|
||||
"""Handle chat completions, supporting both streaming and non-streaming responses."""
|
||||
model_card = await resolve_model_card(ModelId(payload.model))
|
||||
model_card = await ModelCard.load(ModelId(payload.model))
|
||||
payload.model = model_card.model_id
|
||||
|
||||
if not any(
|
||||
@@ -701,7 +692,7 @@ class API:
|
||||
await self._send(command)
|
||||
if payload.stream:
|
||||
return StreamingResponse(
|
||||
self._generate_chat_stream(command.command_id),
|
||||
self._generate_chat_stream(command.command_id, payload.stream_options),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
|
||||
@@ -710,7 +701,7 @@ class API:
|
||||
async def bench_chat_completions(
|
||||
self, payload: BenchChatCompletionTaskParams
|
||||
) -> BenchChatCompletionResponse:
|
||||
model_card = await resolve_model_card(ModelId(payload.model))
|
||||
model_card = await ModelCard.load(ModelId(payload.model))
|
||||
payload.model = model_card.model_id
|
||||
|
||||
if not any(
|
||||
@@ -730,12 +721,12 @@ class API:
|
||||
response = await self._collect_chat_completion_with_stats(command.command_id)
|
||||
return response
|
||||
|
||||
async def _validate_image_model(self, model: str) -> ModelId:
|
||||
async def _validate_image_model(self, model: ModelId) -> ModelId:
|
||||
"""Validate model exists and return resolved model ID.
|
||||
|
||||
Raises HTTPException 404 if no instance is found for the model.
|
||||
"""
|
||||
model_card = await resolve_model_card(ModelId(model))
|
||||
model_card = await ModelCard.load(model)
|
||||
resolved_model = model_card.model_id
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == resolved_model
|
||||
@@ -781,10 +772,7 @@ class API:
|
||||
When stream=True and partial_images > 0, returns a StreamingResponse
|
||||
with SSE-formatted events for partial and final images.
|
||||
"""
|
||||
payload.model = await self._validate_image_model(payload.model)
|
||||
payload = payload.model_copy(
|
||||
update={"advanced_params": _ensure_seed(payload.advanced_params)}
|
||||
)
|
||||
payload.model = await self._validate_image_model(ModelId(payload.model))
|
||||
|
||||
command = ImageGeneration(
|
||||
request_params=payload,
|
||||
@@ -1029,13 +1017,10 @@ class API:
|
||||
async def bench_image_generations(
|
||||
self, request: Request, payload: BenchImageGenerationTaskParams
|
||||
) -> BenchImageGenerationResponse:
|
||||
payload.model = await self._validate_image_model(payload.model)
|
||||
payload.model = await self._validate_image_model(ModelId(payload.model))
|
||||
|
||||
payload.stream = False
|
||||
payload.partial_images = 0
|
||||
payload = payload.model_copy(
|
||||
update={"advanced_params": _ensure_seed(payload.advanced_params)}
|
||||
)
|
||||
|
||||
command = ImageGeneration(
|
||||
request_params=payload,
|
||||
@@ -1053,7 +1038,7 @@ class API:
|
||||
self,
|
||||
image: UploadFile,
|
||||
prompt: str,
|
||||
model: str,
|
||||
model: ModelId,
|
||||
n: int,
|
||||
size: str,
|
||||
response_format: Literal["url", "b64_json"],
|
||||
@@ -1067,7 +1052,6 @@ class API:
|
||||
) -> ImageEdits:
|
||||
"""Prepare and send an image edits command with chunked image upload."""
|
||||
resolved_model = await self._validate_image_model(model)
|
||||
advanced_params = _ensure_seed(advanced_params)
|
||||
|
||||
image_content = await image.read()
|
||||
image_data = base64.b64encode(image_content).decode("utf-8")
|
||||
@@ -1149,7 +1133,7 @@ class API:
|
||||
command = await self._send_image_edits_command(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
model=ModelId(model),
|
||||
n=n,
|
||||
size=size,
|
||||
response_format=response_format,
|
||||
@@ -1205,7 +1189,7 @@ class API:
|
||||
command = await self._send_image_edits_command(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
model=ModelId(model),
|
||||
n=n,
|
||||
size=size,
|
||||
response_format=response_format,
|
||||
|
||||
@@ -94,35 +94,20 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
|
||||
node_to_runner: dict[NodeId, RunnerId] = {}
|
||||
|
||||
# Determine CFG parallelism topology
|
||||
# CFG parallel only for even node counts with CFG models (2+ nodes)
|
||||
use_cfg_parallel = model_card.uses_cfg and world_size >= 2 and world_size % 2 == 0
|
||||
cfg_world_size = 2 if use_cfg_parallel else 1
|
||||
pipeline_world_size = world_size // cfg_world_size
|
||||
|
||||
# For CFG parallel, we only need to allocate layers for one pipeline group
|
||||
# (both CFG groups run the same layers). Use the first pipeline group's nodes.
|
||||
pipeline_node_ids = cycle.node_ids[:pipeline_world_size]
|
||||
pipeline_memory = sum(
|
||||
(node_memory[node_id].ram_available for node_id in pipeline_node_ids),
|
||||
start=Memory(),
|
||||
)
|
||||
|
||||
layer_allocations = allocate_layers_proportionally(
|
||||
total_layers=total_layers,
|
||||
memory_fractions=[
|
||||
node_memory[node_id].ram_available.in_bytes / pipeline_memory.in_bytes
|
||||
for node_id in pipeline_node_ids
|
||||
node_memory[node_id].ram_available.in_bytes / cycle_memory.in_bytes
|
||||
for node_id in cycle.node_ids
|
||||
],
|
||||
)
|
||||
|
||||
# Validate each pipeline node has sufficient memory for its assigned layers
|
||||
# Use integer arithmetic to avoid floating point precision issues
|
||||
total_storage_bytes = model_card.storage_size.in_bytes
|
||||
for i, node_id in enumerate(pipeline_node_ids):
|
||||
node_layers = layer_allocations[i]
|
||||
# Integer division then multiply to get conservative estimate
|
||||
required_memory = (total_storage_bytes * node_layers) // total_layers
|
||||
# Validate each node has sufficient memory for its assigned layers
|
||||
memory_per_layer = model_card.storage_size.in_bytes / total_layers
|
||||
for i, (node_id, node_layers) in enumerate(
|
||||
zip(cycle.node_ids, layer_allocations, strict=True)
|
||||
):
|
||||
required_memory = node_layers * memory_per_layer
|
||||
available_memory = node_memory[node_id].ram_available.in_bytes
|
||||
if required_memory > available_memory:
|
||||
raise ValueError(
|
||||
@@ -131,69 +116,24 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
f"but only has {available_memory / (1024**3):.2f} GB available"
|
||||
)
|
||||
|
||||
# CFG group 0: pipeline ranks in ascending order (0, 1, 2, ...)
|
||||
# CFG group 1: pipeline ranks in descending order (reversed)
|
||||
# This places both "last stages" as ring neighbors for CFG exchange.
|
||||
position_to_cfg_pipeline = [(0, r) for r in range(pipeline_world_size)] + [
|
||||
(1, r) for r in reversed(range(pipeline_world_size))
|
||||
]
|
||||
|
||||
cfg_pipeline_to_device: dict[tuple[int, int], int] = {
|
||||
(cfg_rank, pipeline_rank): i
|
||||
for i, (cfg_rank, pipeline_rank) in enumerate(position_to_cfg_pipeline)
|
||||
}
|
||||
|
||||
for i, node_id in enumerate(cycle.node_ids):
|
||||
cfg_rank, pipeline_rank = position_to_cfg_pipeline[i]
|
||||
|
||||
layers_before = sum(layer_allocations[:pipeline_rank])
|
||||
node_layers = layer_allocations[pipeline_rank]
|
||||
|
||||
is_first_stage = pipeline_rank == 0
|
||||
is_last_stage = pipeline_rank == pipeline_world_size - 1
|
||||
|
||||
if is_last_stage:
|
||||
next_pipeline_device = None
|
||||
else:
|
||||
next_pipeline_device = cfg_pipeline_to_device[(cfg_rank, pipeline_rank + 1)]
|
||||
|
||||
if is_first_stage:
|
||||
prev_pipeline_device = None
|
||||
else:
|
||||
prev_pipeline_device = cfg_pipeline_to_device[(cfg_rank, pipeline_rank - 1)]
|
||||
|
||||
if is_last_stage and use_cfg_parallel:
|
||||
other_cfg_rank = 1 - cfg_rank
|
||||
cfg_peer_device = cfg_pipeline_to_device[(other_cfg_rank, pipeline_rank)]
|
||||
else:
|
||||
cfg_peer_device = None
|
||||
|
||||
first_pipeline_device = cfg_pipeline_to_device[(cfg_rank, 0)]
|
||||
last_pipeline_device = cfg_pipeline_to_device[
|
||||
(cfg_rank, pipeline_world_size - 1)
|
||||
]
|
||||
|
||||
layers_assigned = 0
|
||||
for i, (node_id, node_layers) in enumerate(
|
||||
zip(cycle.node_ids, layer_allocations, strict=True)
|
||||
):
|
||||
runner_id = RunnerId()
|
||||
|
||||
shard = PipelineShardMetadata(
|
||||
model_card=model_card,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=layers_before,
|
||||
end_layer=layers_before + node_layers,
|
||||
start_layer=layers_assigned,
|
||||
end_layer=layers_assigned + node_layers,
|
||||
n_layers=total_layers,
|
||||
cfg_rank=cfg_rank,
|
||||
cfg_world_size=cfg_world_size,
|
||||
explicit_pipeline_rank=pipeline_rank,
|
||||
next_pipeline_device=next_pipeline_device,
|
||||
prev_pipeline_device=prev_pipeline_device,
|
||||
cfg_peer_device=cfg_peer_device,
|
||||
first_pipeline_device=first_pipeline_device,
|
||||
last_pipeline_device=last_pipeline_device,
|
||||
)
|
||||
|
||||
runner_to_shard[runner_id] = shard
|
||||
node_to_runner[node_id] = runner_id
|
||||
layers_assigned += node_layers
|
||||
|
||||
shard_assignments = ShardAssignments(
|
||||
model_id=model_card.model_id,
|
||||
|
||||
@@ -5,7 +5,6 @@ from exo.master.placement_utils import (
|
||||
filter_cycles_by_memory,
|
||||
get_mlx_jaccl_coordinators,
|
||||
get_shard_assignments,
|
||||
get_shard_assignments_for_pipeline_parallel,
|
||||
get_smallest_cycles,
|
||||
)
|
||||
from exo.master.tests.conftest import (
|
||||
@@ -21,7 +20,7 @@ from exo.shared.types.profiling import (
|
||||
NodeNetworkInfo,
|
||||
)
|
||||
from exo.shared.types.topology import Connection, SocketConnection
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, Sharding
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
|
||||
|
||||
def test_filter_cycles_by_memory():
|
||||
@@ -488,195 +487,3 @@ def test_get_shard_assignments_insufficient_memory_raises():
|
||||
get_shard_assignments(
|
||||
model_card, selected_cycle, Sharding.Pipeline, node_memory
|
||||
)
|
||||
|
||||
|
||||
class TestCfgParallelPlacement:
|
||||
def _create_ring_topology(self, node_ids: list[NodeId]) -> Topology:
|
||||
topology = Topology()
|
||||
for node_id in node_ids:
|
||||
topology.add_node(node_id)
|
||||
|
||||
for i, node_id in enumerate(node_ids):
|
||||
next_node = node_ids[(i + 1) % len(node_ids)]
|
||||
conn = Connection(
|
||||
source=node_id,
|
||||
sink=next_node,
|
||||
edge=create_socket_connection(i + 1),
|
||||
)
|
||||
topology.add_connection(conn)
|
||||
|
||||
return topology
|
||||
|
||||
def test_two_nodes_cfg_model_uses_cfg_parallel(self):
|
||||
"""Two nodes with CFG model should use CFG parallel (no pipeline)."""
|
||||
node_a = NodeId()
|
||||
node_b = NodeId()
|
||||
|
||||
topology = self._create_ring_topology([node_a, node_b])
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 2]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {
|
||||
node_a: create_node_memory(1000 * 1024),
|
||||
node_b: create_node_memory(1000 * 1024),
|
||||
}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("qwen-image-test"),
|
||||
n_layers=60,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=True,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 2
|
||||
|
||||
# Both nodes should have all layers (no pipeline split)
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
assert shard.start_layer == 0
|
||||
assert shard.end_layer == 60
|
||||
assert shard.cfg_world_size == 2
|
||||
|
||||
cfg_ranks = sorted(
|
||||
s.cfg_rank for s in shards if isinstance(s, PipelineShardMetadata)
|
||||
)
|
||||
assert cfg_ranks == [0, 1]
|
||||
|
||||
def test_four_nodes_cfg_model_uses_hybrid(self):
|
||||
"""Four nodes with CFG model should use 2 CFG groups x 2 pipeline stages."""
|
||||
nodes = [NodeId() for _ in range(4)]
|
||||
|
||||
topology = self._create_ring_topology(nodes)
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 4]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {n: create_node_memory(1000 * 1024) for n in nodes}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("qwen-image-test"),
|
||||
n_layers=60,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=True,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 4
|
||||
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
assert shard.cfg_world_size == 2
|
||||
assert shard.pipeline_world_size == 2
|
||||
|
||||
# Check we have 2 nodes in each CFG group
|
||||
cfg_0_shards = [
|
||||
s
|
||||
for s in shards
|
||||
if isinstance(s, PipelineShardMetadata) and s.cfg_rank == 0
|
||||
]
|
||||
cfg_1_shards = [
|
||||
s
|
||||
for s in shards
|
||||
if isinstance(s, PipelineShardMetadata) and s.cfg_rank == 1
|
||||
]
|
||||
assert len(cfg_0_shards) == 2
|
||||
assert len(cfg_1_shards) == 2
|
||||
|
||||
# Both CFG groups should have the same layer assignments
|
||||
cfg_0_layers = [(s.start_layer, s.end_layer) for s in cfg_0_shards]
|
||||
cfg_1_layers = [(s.start_layer, s.end_layer) for s in cfg_1_shards]
|
||||
assert sorted(cfg_0_layers) == sorted(cfg_1_layers)
|
||||
|
||||
def test_three_nodes_cfg_model_uses_sequential_cfg(self):
|
||||
"""Three nodes (odd) with CFG model should use sequential CFG."""
|
||||
nodes = [NodeId() for _ in range(3)]
|
||||
|
||||
topology = self._create_ring_topology(nodes)
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 3]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {n: create_node_memory(1000 * 1024) for n in nodes}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("qwen-image-test"),
|
||||
n_layers=60,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=True,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 3
|
||||
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
# cfg_world_size = 1 means sequential CFG
|
||||
assert shard.cfg_world_size == 1
|
||||
assert shard.cfg_rank == 0
|
||||
|
||||
def test_two_nodes_non_cfg_model_uses_pipeline(self):
|
||||
"""Two nodes with non-CFG model should use pure pipeline."""
|
||||
node_a = NodeId()
|
||||
node_b = NodeId()
|
||||
|
||||
topology = self._create_ring_topology([node_a, node_b])
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 2]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {
|
||||
node_a: create_node_memory(1000 * 1024),
|
||||
node_b: create_node_memory(1000 * 1024),
|
||||
}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("flux-test"),
|
||||
n_layers=57,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=False, # Non-CFG model
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 2
|
||||
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
# cfg_world_size = 1 means no CFG parallel
|
||||
assert shard.cfg_world_size == 1
|
||||
assert shard.cfg_rank == 0
|
||||
|
||||
# Should have actual layer sharding (pipeline)
|
||||
layer_ranges = sorted(
|
||||
(s.start_layer, s.end_layer)
|
||||
for s in shards
|
||||
if isinstance(s, PipelineShardMetadata)
|
||||
)
|
||||
# First shard starts at 0, last shard ends at 57
|
||||
assert layer_ranges[0][0] == 0
|
||||
assert layer_ranges[-1][1] == 57
|
||||
|
||||
@@ -216,6 +216,8 @@ def get_node_id_keypair(
|
||||
Obtains the :class:`Keypair` associated with this node-ID.
|
||||
Obtain the :class:`PeerId` by from it.
|
||||
"""
|
||||
# TODO(evan): bring back node id persistence once we figure out how to deal with duplicates
|
||||
return Keypair.generate_ed25519()
|
||||
|
||||
def lock_path(path: str | bytes | PathLike[str] | PathLike[bytes]) -> Path:
|
||||
return Path(str(path) + ".lock")
|
||||
|
||||
@@ -47,7 +47,6 @@ class ModelCard(CamelCaseModel):
|
||||
supports_tensor: bool
|
||||
tasks: list[ModelTask]
|
||||
components: list[ComponentInfo] | None = None
|
||||
uses_cfg: bool = False
|
||||
|
||||
@field_validator("tasks", mode="before")
|
||||
@classmethod
|
||||
@@ -563,7 +562,6 @@ _IMAGE_BASE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
uses_cfg=True,
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
@@ -598,7 +596,6 @@ _IMAGE_BASE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.ImageToImage],
|
||||
uses_cfg=True,
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
@@ -684,7 +681,6 @@ def _generate_image_model_quant_variants(
|
||||
hidden_size=base_card.hidden_size,
|
||||
supports_tensor=base_card.supports_tensor,
|
||||
tasks=base_card.tasks,
|
||||
uses_cfg=base_card.uses_cfg,
|
||||
components=with_transformer_size(transformer_bytes),
|
||||
)
|
||||
}
|
||||
@@ -704,7 +700,6 @@ def _generate_image_model_quant_variants(
|
||||
hidden_size=base_card.hidden_size,
|
||||
supports_tensor=base_card.supports_tensor,
|
||||
tasks=base_card.tasks,
|
||||
uses_cfg=base_card.uses_cfg,
|
||||
components=with_transformer_size(quant_transformer_bytes),
|
||||
)
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ from multiprocessing.synchronize import Event as EventT
|
||||
from multiprocessing.synchronize import Semaphore as SemaphoreT
|
||||
|
||||
from loguru import logger
|
||||
from pytest import LogCaptureFixture
|
||||
from pytest import LogCaptureFixture, mark
|
||||
|
||||
from exo.routing.router import get_node_id_keypair
|
||||
from exo.shared.constants import EXO_NODE_ID_KEYPAIR
|
||||
@@ -74,6 +74,7 @@ def _delete_if_exists(p: str | bytes | os.PathLike[str] | os.PathLike[bytes]):
|
||||
os.remove(p)
|
||||
|
||||
|
||||
@mark.skip(reason="this functionality is currently disabled but may return in future")
|
||||
def test_node_id_fetching(caplog: LogCaptureFixture):
|
||||
reps = 10
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from exo.shared.types.common import CommandId, NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding, ShardMetadata
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
from exo.utils.pydantic_ext import CamelCaseModel, ConfigDict, TaggedModel
|
||||
|
||||
FinishReason = Literal[
|
||||
"stop", "length", "tool_calls", "content_filter", "function_call", "error"
|
||||
@@ -116,8 +116,8 @@ class Usage(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
prompt_tokens_details: PromptTokensDetails | None = None
|
||||
completion_tokens_details: CompletionTokensDetails | None = None
|
||||
prompt_tokens_details: PromptTokensDetails
|
||||
completion_tokens_details: CompletionTokensDetails
|
||||
|
||||
|
||||
class StreamingChoiceResponse(BaseModel):
|
||||
@@ -170,7 +170,13 @@ class BenchChatCompletionResponse(ChatCompletionResponse):
|
||||
generation_stats: GenerationStats | None = None
|
||||
|
||||
|
||||
class ChatCompletionTaskParams(BaseModel):
|
||||
class StreamOptions(BaseModel):
|
||||
include_usage: bool = False
|
||||
|
||||
|
||||
class ChatCompletionTaskParams(TaggedModel):
|
||||
model_config = ConfigDict(extra="ignore")
|
||||
|
||||
model: str
|
||||
frequency_penalty: float | None = None
|
||||
messages: list[ChatCompletionMessage]
|
||||
@@ -184,6 +190,7 @@ class ChatCompletionTaskParams(BaseModel):
|
||||
seed: int | None = None
|
||||
stop: str | list[str] | None = None
|
||||
stream: bool = False
|
||||
stream_options: StreamOptions | None = None
|
||||
temperature: float | None = None
|
||||
top_p: float | None = None
|
||||
tools: list[dict[str, Any]] | None = None
|
||||
|
||||
@@ -2,7 +2,7 @@ from collections.abc import Generator
|
||||
from typing import Any, Literal
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.api import GenerationStats, ImageGenerationStats
|
||||
from exo.shared.types.api import GenerationStats, ImageGenerationStats, Usage
|
||||
from exo.utils.pydantic_ext import TaggedModel
|
||||
|
||||
from .api import FinishReason
|
||||
@@ -17,6 +17,7 @@ class BaseChunk(TaggedModel):
|
||||
class TokenChunk(BaseChunk):
|
||||
text: str
|
||||
token_id: int
|
||||
usage: Usage | None
|
||||
finish_reason: Literal["stop", "length", "content_filter"] | None = None
|
||||
stats: GenerationStats | None = None
|
||||
|
||||
@@ -28,6 +29,7 @@ class ErrorChunk(BaseChunk):
|
||||
|
||||
class ToolCallChunk(BaseChunk):
|
||||
tool_calls: list[ToolCallItem]
|
||||
usage: Usage | None
|
||||
finish_reason: Literal["tool_calls"] = "tool_calls"
|
||||
stats: GenerationStats | None = None
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@ from pydantic import Field
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.api import (
|
||||
BenchChatCompletionTaskParams,
|
||||
ChatCompletionTaskParams,
|
||||
ImageEditsInternalParams,
|
||||
ImageGenerationTaskParams,
|
||||
@@ -22,7 +23,7 @@ class TestCommand(BaseCommand):
|
||||
|
||||
|
||||
class ChatCompletion(BaseCommand):
|
||||
request_params: ChatCompletionTaskParams
|
||||
request_params: ChatCompletionTaskParams | BenchChatCompletionTaskParams
|
||||
|
||||
|
||||
class ImageGeneration(BaseCommand):
|
||||
|
||||
@@ -3,6 +3,7 @@ from enum import Enum
|
||||
from pydantic import Field
|
||||
|
||||
from exo.shared.types.api import (
|
||||
BenchChatCompletionTaskParams,
|
||||
ChatCompletionTaskParams,
|
||||
ImageEditsInternalParams,
|
||||
ImageGenerationTaskParams,
|
||||
@@ -54,7 +55,7 @@ class StartWarmup(BaseTask): # emitted by Worker
|
||||
|
||||
class ChatCompletion(BaseTask): # emitted by Master
|
||||
command_id: CommandId
|
||||
task_params: ChatCompletionTaskParams
|
||||
task_params: ChatCompletionTaskParams | BenchChatCompletionTaskParams
|
||||
|
||||
error_type: str | None = Field(default=None)
|
||||
error_message: str | None = Field(default=None)
|
||||
|
||||
@@ -6,6 +6,7 @@ from exo.shared.types.api import (
|
||||
GenerationStats,
|
||||
ImageGenerationStats,
|
||||
ToolCallItem,
|
||||
Usage,
|
||||
)
|
||||
from exo.utils.pydantic_ext import TaggedModel
|
||||
|
||||
@@ -24,6 +25,7 @@ class GenerationResponse(BaseRunnerResponse):
|
||||
# logprobs: list[float] | None = None # too big. we can change to be top-k
|
||||
finish_reason: FinishReason | None = None
|
||||
stats: GenerationStats | None = None
|
||||
usage: Usage | None
|
||||
|
||||
|
||||
class ImageGenerationResponse(BaseRunnerResponse):
|
||||
@@ -57,6 +59,7 @@ class PartialImageResponse(BaseRunnerResponse):
|
||||
|
||||
class ToolCallResponse(BaseRunnerResponse):
|
||||
tool_calls: list[ToolCallItem]
|
||||
usage: Usage | None
|
||||
|
||||
|
||||
class FinishedResponse(BaseRunnerResponse):
|
||||
|
||||
@@ -57,62 +57,8 @@ class PipelineShardMetadata(BaseShardMetadata):
|
||||
|
||||
Layers are represented as a half-open interval [start_layer, end_layer),
|
||||
where start_layer is inclusive and end_layer is exclusive.
|
||||
|
||||
CFG parallelism fields:
|
||||
- cfg_rank: 0 = positive branch, 1 = negative branch (or 0 if no CFG parallel)
|
||||
- cfg_world_size: 1 = sequential CFG, 2 = parallel CFG
|
||||
|
||||
Communication rank fields (explicit to support ring topology):
|
||||
- next_pipeline_device: device to send to in pipeline forward pass
|
||||
- prev_pipeline_device: device to receive from in pipeline forward pass
|
||||
- cfg_peer_device: device for CFG exchange (last stage only)
|
||||
- first_pipeline_device: device of first stage in same CFG group (for latent return)
|
||||
"""
|
||||
|
||||
cfg_rank: int = 0
|
||||
cfg_world_size: int = 1
|
||||
|
||||
# Explicit pipeline position (CFG group 1 uses reversed pipeline order)
|
||||
explicit_pipeline_rank: int | None = None
|
||||
|
||||
next_pipeline_device: int | None = None
|
||||
prev_pipeline_device: int | None = None
|
||||
cfg_peer_device: int | None = None
|
||||
first_pipeline_device: int | None = None
|
||||
last_pipeline_device: int | None = None
|
||||
|
||||
@property
|
||||
def pipeline_world_size(self) -> int:
|
||||
return self.world_size // self.cfg_world_size
|
||||
|
||||
@property
|
||||
def pipeline_rank(self) -> int:
|
||||
if self.explicit_pipeline_rank is not None:
|
||||
return self.explicit_pipeline_rank
|
||||
return self.device_rank % self.pipeline_world_size
|
||||
|
||||
@property
|
||||
def is_pipeline_first(self) -> bool:
|
||||
return self.pipeline_rank == 0
|
||||
|
||||
@property
|
||||
def is_pipeline_last(self) -> bool:
|
||||
return self.pipeline_rank == self.pipeline_world_size - 1
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(
|
||||
(
|
||||
self.model_card.model_id,
|
||||
self.start_layer,
|
||||
self.end_layer,
|
||||
self.n_layers,
|
||||
self.device_rank,
|
||||
self.world_size,
|
||||
self.cfg_rank,
|
||||
self.cfg_world_size,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class TensorShardMetadata(BaseShardMetadata):
|
||||
pass
|
||||
|
||||
@@ -37,12 +37,7 @@ class DistributedImageModel:
|
||||
config = get_config_for_model(model_id)
|
||||
adapter = create_adapter_for_model(config, model_id, local_path, quantize)
|
||||
|
||||
has_layer_sharding = (
|
||||
shard_metadata.start_layer != 0
|
||||
or shard_metadata.end_layer != shard_metadata.n_layers
|
||||
)
|
||||
|
||||
if group is not None and has_layer_sharding:
|
||||
if group is not None:
|
||||
adapter.slice_transformer_blocks(
|
||||
start_layer=shard_metadata.start_layer,
|
||||
end_layer=shard_metadata.end_layer,
|
||||
|
||||
@@ -86,27 +86,6 @@ class PromptData(ABC):
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
"""Get embeddings for a single CFG branch (positive or negative).
|
||||
|
||||
Used for sequential CFG and CFG parallel modes where we process
|
||||
one branch at a time instead of batching.
|
||||
|
||||
Args:
|
||||
positive: True for positive prompt, False for negative prompt
|
||||
|
||||
Returns:
|
||||
Tuple of:
|
||||
- embeds: [1, seq, hidden] prompt embeddings
|
||||
- mask: [1, seq] attention mask or None
|
||||
- pooled: [1, hidden] pooled embeddings or None
|
||||
- conditioning_latents: [1, latent_seq, latent_dim] or None
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class ModelAdapter(ABC, Generic[ModelT, TransformerT]):
|
||||
_config: ImageModelConfig
|
||||
|
||||
@@ -64,12 +64,6 @@ class FluxPromptData(PromptData):
|
||||
) -> tuple[mx.array, mx.array, mx.array | None, mx.array | None] | None:
|
||||
return None
|
||||
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
"""Flux doesn't use CFG, but we return positive data for compatibility."""
|
||||
return (self._prompt_embeds, None, self._pooled_prompt_embeds, None)
|
||||
|
||||
|
||||
class FluxModelAdapter(ModelAdapter[Flux1, Transformer]):
|
||||
def __init__(
|
||||
|
||||
@@ -133,24 +133,6 @@ class QwenPromptData(PromptData):
|
||||
|
||||
return batched_embeds, batched_mask, None, cond_latents
|
||||
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
if positive:
|
||||
return (
|
||||
self._prompt_embeds,
|
||||
self._prompt_mask,
|
||||
None,
|
||||
self.conditioning_latents,
|
||||
)
|
||||
else:
|
||||
return (
|
||||
self._negative_prompt_embeds,
|
||||
self._negative_prompt_mask,
|
||||
None,
|
||||
self.conditioning_latents,
|
||||
)
|
||||
|
||||
|
||||
class QwenModelAdapter(ModelAdapter[QwenImage, QwenTransformer]):
|
||||
"""Adapter for Qwen-Image model.
|
||||
|
||||
@@ -153,24 +153,6 @@ class QwenEditPromptData(PromptData):
|
||||
|
||||
return batched_embeds, batched_mask, None, batched_cond_latents
|
||||
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
if positive:
|
||||
return (
|
||||
self._prompt_embeds,
|
||||
self._prompt_mask,
|
||||
None,
|
||||
self._conditioning_latents,
|
||||
)
|
||||
else:
|
||||
return (
|
||||
self._negative_prompt_embeds,
|
||||
self._negative_prompt_mask,
|
||||
None,
|
||||
self._conditioning_latents,
|
||||
)
|
||||
|
||||
|
||||
class QwenEditModelAdapter(ModelAdapter[QwenImageEdit, QwenTransformer]):
|
||||
"""Adapter for Qwen-Image-Edit model.
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
from collections.abc import Iterator
|
||||
from dataclasses import dataclass
|
||||
from math import ceil
|
||||
from typing import Any, Optional, final
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
from mflux.models.common.config.config import Config
|
||||
@@ -22,16 +20,6 @@ from exo.worker.engines.image.pipeline.block_wrapper import (
|
||||
)
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class CfgBranch:
|
||||
positive: bool
|
||||
embeds: mx.array
|
||||
mask: mx.array | None
|
||||
pooled: mx.array | None
|
||||
cond_latents: mx.array | None
|
||||
|
||||
|
||||
def calculate_patch_heights(
|
||||
latent_height: int, num_patches: int
|
||||
) -> tuple[list[int], int]:
|
||||
@@ -84,11 +72,22 @@ class DiffusionRunner:
|
||||
self.adapter = adapter
|
||||
self.group = group
|
||||
|
||||
self._init_cfg_topology(shard_metadata)
|
||||
if group is None:
|
||||
self.rank = 0
|
||||
self.world_size = 1
|
||||
self.next_rank = 0
|
||||
self.prev_rank = 0
|
||||
self.start_layer = 0
|
||||
self.end_layer = config.total_blocks
|
||||
else:
|
||||
self.rank = shard_metadata.device_rank
|
||||
self.world_size = shard_metadata.world_size
|
||||
self.next_rank = (self.rank + 1) % self.world_size
|
||||
self.prev_rank = (self.rank - 1 + self.world_size) % self.world_size
|
||||
self.start_layer = shard_metadata.start_layer
|
||||
self.end_layer = shard_metadata.end_layer
|
||||
|
||||
self.num_patches = (
|
||||
num_patches if num_patches else max(1, self.pipeline_world_size)
|
||||
)
|
||||
self.num_patches = num_patches if num_patches else max(1, self.world_size)
|
||||
|
||||
self.total_joint = config.joint_block_count
|
||||
self.total_single = config.single_block_count
|
||||
@@ -98,48 +97,6 @@ class DiffusionRunner:
|
||||
|
||||
self._compute_assigned_blocks()
|
||||
|
||||
def _init_cfg_topology(self, shard_metadata: PipelineShardMetadata) -> None:
|
||||
"""Initialize CFG and pipeline topology from shard metadata."""
|
||||
if self.group is None:
|
||||
self.rank = 0
|
||||
self.world_size = 1
|
||||
self.start_layer = 0
|
||||
self.end_layer = self.config.total_blocks
|
||||
|
||||
self.cfg_rank = 0
|
||||
self.cfg_world_size = 1
|
||||
self.cfg_parallel = False
|
||||
|
||||
self.pipeline_world_size = 1
|
||||
self.pipeline_rank = 0
|
||||
|
||||
self.next_pipeline_rank: int | None = None
|
||||
self.prev_pipeline_rank: int | None = None
|
||||
self.cfg_peer_rank: int | None = None
|
||||
self.first_pipeline_rank: int = 0
|
||||
self.last_pipeline_rank: int = 0
|
||||
else:
|
||||
self.rank = shard_metadata.device_rank
|
||||
self.world_size = shard_metadata.world_size
|
||||
self.start_layer = shard_metadata.start_layer
|
||||
self.end_layer = shard_metadata.end_layer
|
||||
|
||||
self.cfg_rank = shard_metadata.cfg_rank
|
||||
self.cfg_world_size = shard_metadata.cfg_world_size
|
||||
self.cfg_parallel = self.cfg_world_size > 1
|
||||
|
||||
self.pipeline_world_size = shard_metadata.pipeline_world_size
|
||||
self.pipeline_rank = shard_metadata.pipeline_rank
|
||||
|
||||
self.next_pipeline_rank = shard_metadata.next_pipeline_device
|
||||
self.prev_pipeline_rank = shard_metadata.prev_pipeline_device
|
||||
self.cfg_peer_rank = shard_metadata.cfg_peer_device
|
||||
|
||||
assert shard_metadata.first_pipeline_device is not None
|
||||
assert shard_metadata.last_pipeline_device is not None
|
||||
self.first_pipeline_rank = shard_metadata.first_pipeline_device
|
||||
self.last_pipeline_rank = shard_metadata.last_pipeline_device
|
||||
|
||||
def _compute_assigned_blocks(self) -> None:
|
||||
"""Determine which joint/single blocks this stage owns."""
|
||||
start = self.start_layer
|
||||
@@ -176,11 +133,11 @@ class DiffusionRunner:
|
||||
|
||||
@property
|
||||
def is_first_stage(self) -> bool:
|
||||
return self.pipeline_rank == 0
|
||||
return self.rank == 0
|
||||
|
||||
@property
|
||||
def is_last_stage(self) -> bool:
|
||||
return self.pipeline_rank == self.pipeline_world_size - 1
|
||||
return self.rank == self.world_size - 1
|
||||
|
||||
@property
|
||||
def is_distributed(self) -> bool:
|
||||
@@ -191,97 +148,6 @@ class DiffusionRunner:
|
||||
return self._guidance_override
|
||||
return self.config.guidance_scale
|
||||
|
||||
def _get_cfg_branches(self, prompt_data: PromptData) -> Iterator[CfgBranch]:
|
||||
"""Yield the CFG branches this node should process.
|
||||
|
||||
- No CFG: yields one branch (positive)
|
||||
- CFG parallel: yields one branch (our assigned branch)
|
||||
- Sequential CFG: yields two branches (positive, then negative)
|
||||
"""
|
||||
if not self.adapter.needs_cfg:
|
||||
embeds, mask, pooled, cond = prompt_data.get_cfg_branch_data(positive=True)
|
||||
yield CfgBranch(
|
||||
positive=True,
|
||||
embeds=embeds,
|
||||
mask=mask,
|
||||
pooled=pooled,
|
||||
cond_latents=cond,
|
||||
)
|
||||
elif self.cfg_parallel:
|
||||
positive = self.cfg_rank == 0
|
||||
embeds, mask, pooled, cond = prompt_data.get_cfg_branch_data(positive)
|
||||
yield CfgBranch(
|
||||
positive=positive,
|
||||
embeds=embeds,
|
||||
mask=mask,
|
||||
pooled=pooled,
|
||||
cond_latents=cond,
|
||||
)
|
||||
else:
|
||||
pos_embeds, pos_mask, pos_pooled, pos_cond = (
|
||||
prompt_data.get_cfg_branch_data(positive=True)
|
||||
)
|
||||
yield CfgBranch(
|
||||
positive=True,
|
||||
embeds=pos_embeds,
|
||||
mask=pos_mask,
|
||||
pooled=pos_pooled,
|
||||
cond_latents=pos_cond,
|
||||
)
|
||||
neg_embeds, neg_mask, neg_pooled, neg_cond = (
|
||||
prompt_data.get_cfg_branch_data(positive=False)
|
||||
)
|
||||
yield CfgBranch(
|
||||
positive=False,
|
||||
embeds=neg_embeds,
|
||||
mask=neg_mask,
|
||||
pooled=neg_pooled,
|
||||
cond_latents=neg_cond,
|
||||
)
|
||||
|
||||
def _combine_cfg_results(self, results: list[tuple[bool, mx.array]]) -> mx.array:
|
||||
if len(results) == 1:
|
||||
positive, noise = results[0]
|
||||
if self.cfg_parallel and self.is_last_stage:
|
||||
# TODO(ciaran): try to remove
|
||||
mx.eval(noise)
|
||||
return self._exchange_and_apply_guidance(noise, positive)
|
||||
return noise
|
||||
|
||||
noise_neg = next(n for p, n in results if not p)
|
||||
noise_pos = next(n for p, n in results if p)
|
||||
return self._apply_guidance(noise_pos, noise_neg)
|
||||
|
||||
def _exchange_and_apply_guidance(
|
||||
self, noise: mx.array, is_positive: bool
|
||||
) -> mx.array:
|
||||
assert self.group is not None
|
||||
assert self.cfg_peer_rank is not None
|
||||
|
||||
if is_positive:
|
||||
noise = mx.distributed.send(noise, self.cfg_peer_rank, group=self.group)
|
||||
mx.async_eval(noise)
|
||||
noise_neg = mx.distributed.recv_like(
|
||||
noise, self.cfg_peer_rank, group=self.group
|
||||
)
|
||||
mx.eval(noise_neg)
|
||||
noise_pos = noise
|
||||
else:
|
||||
noise_pos = mx.distributed.recv_like(
|
||||
noise, self.cfg_peer_rank, group=self.group
|
||||
)
|
||||
mx.eval(noise_pos)
|
||||
noise = mx.distributed.send(noise, self.cfg_peer_rank, group=self.group)
|
||||
mx.async_eval(noise)
|
||||
noise_neg = noise
|
||||
|
||||
return self._apply_guidance(noise_pos, noise_neg)
|
||||
|
||||
def _apply_guidance(self, noise_pos: mx.array, noise_neg: mx.array) -> mx.array:
|
||||
scale = self._get_effective_guidance_scale()
|
||||
assert scale is not None
|
||||
return self.adapter.apply_guidance(noise_pos, noise_neg, scale)
|
||||
|
||||
def _ensure_wrappers(
|
||||
self,
|
||||
text_seq_len: int,
|
||||
@@ -598,9 +464,7 @@ class DiffusionRunner:
|
||||
) -> mx.array:
|
||||
if self.group is None:
|
||||
return self._single_node_step(t, config, latents, prompt_data)
|
||||
elif (
|
||||
self.pipeline_world_size == 1 or t < config.init_time_step + num_sync_steps
|
||||
):
|
||||
elif t < config.init_time_step + num_sync_steps:
|
||||
return self._sync_pipeline_step(
|
||||
t,
|
||||
config,
|
||||
@@ -624,29 +488,42 @@ class DiffusionRunner:
|
||||
prompt_data: PromptData,
|
||||
) -> mx.array:
|
||||
cond_image_grid = prompt_data.cond_image_grid
|
||||
results: list[tuple[bool, mx.array]] = []
|
||||
|
||||
for branch in self._get_cfg_branches(prompt_data):
|
||||
# Reset caches before each branch to ensure no state contamination
|
||||
self._reset_all_caches()
|
||||
needs_cfg = self.adapter.needs_cfg
|
||||
|
||||
if needs_cfg:
|
||||
batched_data = prompt_data.get_batched_cfg_data()
|
||||
assert batched_data is not None, "CFG model must provide batched data"
|
||||
prompt_embeds, encoder_mask, batched_pooled, cond_latents = batched_data
|
||||
pooled_embeds = (
|
||||
branch.pooled if branch.pooled is not None else branch.embeds
|
||||
batched_pooled if batched_pooled is not None else prompt_embeds
|
||||
)
|
||||
step_latents = mx.concatenate([latents, latents], axis=0)
|
||||
else:
|
||||
prompt_embeds = prompt_data.prompt_embeds
|
||||
pooled_embeds = prompt_data.pooled_prompt_embeds
|
||||
encoder_mask = prompt_data.get_encoder_hidden_states_mask(positive=True)
|
||||
cond_latents = prompt_data.conditioning_latents
|
||||
step_latents = latents
|
||||
|
||||
noise = self._forward_pass(
|
||||
step_latents,
|
||||
prompt_embeds,
|
||||
pooled_embeds,
|
||||
t=t,
|
||||
config=config,
|
||||
encoder_hidden_states_mask=encoder_mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
conditioning_latents=cond_latents,
|
||||
)
|
||||
|
||||
if needs_cfg:
|
||||
noise_pos, noise_neg = mx.split(noise, 2, axis=0)
|
||||
guidance_scale = self._get_effective_guidance_scale()
|
||||
assert guidance_scale is not None
|
||||
noise = self.adapter.apply_guidance(
|
||||
noise_pos, noise_neg, guidance_scale=guidance_scale
|
||||
)
|
||||
|
||||
noise = self._forward_pass(
|
||||
latents,
|
||||
branch.embeds,
|
||||
pooled_embeds,
|
||||
t=t,
|
||||
config=config,
|
||||
encoder_hidden_states_mask=branch.mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
conditioning_latents=branch.cond_latents,
|
||||
)
|
||||
results.append((branch.positive, noise))
|
||||
|
||||
noise = self._combine_cfg_results(results)
|
||||
return config.scheduler.step(noise=noise, timestep=t, latents=latents) # pyright: ignore[reportAny]
|
||||
|
||||
def _create_patches(
|
||||
@@ -697,7 +574,7 @@ class DiffusionRunner:
|
||||
)
|
||||
|
||||
text_embeddings = self.adapter.compute_text_embeddings(
|
||||
t, config, pooled_prompt_embeds, hidden_states=hidden_states
|
||||
t, config, pooled_prompt_embeds
|
||||
)
|
||||
image_rotary_embeddings = self.adapter.compute_rotary_embeddings(
|
||||
prompt_embeds,
|
||||
@@ -709,17 +586,16 @@ class DiffusionRunner:
|
||||
|
||||
if self.has_joint_blocks:
|
||||
if not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.recv(
|
||||
(batch_size, num_img_tokens, hidden_dim),
|
||||
dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
encoder_hidden_states = mx.distributed.recv(
|
||||
(batch_size, text_seq_len, hidden_dim),
|
||||
dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(hidden_states, encoder_hidden_states)
|
||||
@@ -744,30 +620,27 @@ class DiffusionRunner:
|
||||
if self.has_single_blocks or self.is_last_stage:
|
||||
hidden_states = concatenated
|
||||
else:
|
||||
assert self.next_pipeline_rank is not None
|
||||
concatenated = mx.distributed.send(
|
||||
concatenated, self.next_pipeline_rank, group=self.group
|
||||
concatenated, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(concatenated)
|
||||
|
||||
elif self.has_joint_blocks and not self.is_last_stage:
|
||||
assert encoder_hidden_states is not None
|
||||
assert self.next_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.send(
|
||||
hidden_states, self.next_pipeline_rank, group=self.group
|
||||
hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
encoder_hidden_states = mx.distributed.send(
|
||||
encoder_hidden_states, self.next_pipeline_rank, group=self.group
|
||||
encoder_hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(hidden_states, encoder_hidden_states)
|
||||
|
||||
if self.has_single_blocks:
|
||||
if not self.owns_concat_stage and not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.recv(
|
||||
(batch_size, text_seq_len + num_img_tokens, hidden_dim),
|
||||
dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(hidden_states)
|
||||
@@ -782,9 +655,8 @@ class DiffusionRunner:
|
||||
)
|
||||
|
||||
if not self.is_last_stage:
|
||||
assert self.next_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.send(
|
||||
hidden_states, self.next_pipeline_rank, group=self.group
|
||||
hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(hidden_states)
|
||||
|
||||
@@ -807,65 +679,75 @@ class DiffusionRunner:
|
||||
kontext_image_ids: mx.array | None = None,
|
||||
) -> mx.array:
|
||||
prev_latents = hidden_states
|
||||
needs_cfg = self.adapter.needs_cfg
|
||||
cond_image_grid = prompt_data.cond_image_grid
|
||||
|
||||
scaled_hidden_states = config.scheduler.scale_model_input(hidden_states, t) # pyright: ignore[reportAny]
|
||||
original_latent_tokens: int = scaled_hidden_states.shape[1] # pyright: ignore[reportAny]
|
||||
|
||||
results: list[tuple[bool, mx.array]] = []
|
||||
|
||||
for branch in self._get_cfg_branches(prompt_data):
|
||||
if needs_cfg:
|
||||
batched_data = prompt_data.get_batched_cfg_data()
|
||||
assert batched_data is not None, "CFG model must provide batched data"
|
||||
prompt_embeds, encoder_mask, batched_pooled, cond_latents = batched_data
|
||||
pooled_embeds = (
|
||||
branch.pooled if branch.pooled is not None else branch.embeds
|
||||
batched_pooled if batched_pooled is not None else prompt_embeds
|
||||
)
|
||||
|
||||
cond_latents = branch.cond_latents
|
||||
if cond_latents is not None:
|
||||
num_img_tokens: int = original_latent_tokens + cond_latents.shape[1]
|
||||
else:
|
||||
num_img_tokens = original_latent_tokens
|
||||
|
||||
step_latents: mx.array = scaled_hidden_states # pyright: ignore[reportAny]
|
||||
if self.is_first_stage and cond_latents is not None:
|
||||
step_latents = mx.concatenate([step_latents, cond_latents], axis=1)
|
||||
|
||||
text_seq_len = branch.embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, branch.mask)
|
||||
|
||||
noise = self._run_sync_pass(
|
||||
t,
|
||||
config,
|
||||
step_latents,
|
||||
branch.embeds,
|
||||
pooled_embeds,
|
||||
branch.mask,
|
||||
cond_image_grid,
|
||||
kontext_image_ids,
|
||||
num_img_tokens,
|
||||
original_latent_tokens,
|
||||
cond_latents,
|
||||
step_latents = mx.concatenate(
|
||||
[scaled_hidden_states, scaled_hidden_states], axis=0
|
||||
)
|
||||
else:
|
||||
prompt_embeds = prompt_data.prompt_embeds
|
||||
pooled_embeds = prompt_data.pooled_prompt_embeds
|
||||
encoder_mask = prompt_data.get_encoder_hidden_states_mask(positive=True)
|
||||
cond_latents = prompt_data.conditioning_latents
|
||||
step_latents = scaled_hidden_states # pyright: ignore[reportAny]
|
||||
|
||||
if self.is_last_stage:
|
||||
assert noise is not None
|
||||
results.append((branch.positive, noise))
|
||||
if cond_latents is not None:
|
||||
num_img_tokens: int = original_latent_tokens + cond_latents.shape[1]
|
||||
else:
|
||||
num_img_tokens = original_latent_tokens
|
||||
|
||||
if self.is_first_stage and cond_latents is not None:
|
||||
step_latents = mx.concatenate([step_latents, cond_latents], axis=1)
|
||||
|
||||
text_seq_len = prompt_embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, encoder_mask)
|
||||
|
||||
noise = self._run_sync_pass(
|
||||
t,
|
||||
config,
|
||||
step_latents,
|
||||
prompt_embeds,
|
||||
pooled_embeds,
|
||||
encoder_mask,
|
||||
cond_image_grid,
|
||||
kontext_image_ids,
|
||||
num_img_tokens,
|
||||
original_latent_tokens,
|
||||
cond_latents,
|
||||
)
|
||||
|
||||
if self.is_last_stage:
|
||||
noise = self._combine_cfg_results(results)
|
||||
assert noise is not None
|
||||
if needs_cfg:
|
||||
noise_pos, noise_neg = mx.split(noise, 2, axis=0)
|
||||
guidance_scale = self._get_effective_guidance_scale()
|
||||
assert guidance_scale is not None
|
||||
noise = self.adapter.apply_guidance(
|
||||
noise_pos, noise_neg, guidance_scale
|
||||
)
|
||||
|
||||
hidden_states = config.scheduler.step( # pyright: ignore[reportAny]
|
||||
noise=noise, timestep=t, latents=prev_latents
|
||||
)
|
||||
|
||||
if not self.is_first_stage:
|
||||
hidden_states = mx.distributed.send(
|
||||
hidden_states, self.first_pipeline_rank, group=self.group
|
||||
)
|
||||
hidden_states = mx.distributed.send(hidden_states, 0, group=self.group)
|
||||
mx.async_eval(hidden_states)
|
||||
|
||||
elif self.is_first_stage:
|
||||
hidden_states = mx.distributed.recv_like(
|
||||
prev_latents, src=self.last_pipeline_rank, group=self.group
|
||||
prev_latents, src=self.world_size - 1, group=self.group
|
||||
)
|
||||
mx.eval(hidden_states)
|
||||
|
||||
@@ -884,10 +766,39 @@ class DiffusionRunner:
|
||||
kontext_image_ids: mx.array | None = None,
|
||||
) -> mx.array:
|
||||
patch_latents, token_indices = self._create_patches(latents, config)
|
||||
needs_cfg = self.adapter.needs_cfg
|
||||
cond_image_grid = prompt_data.cond_image_grid
|
||||
|
||||
prev_patch_latents = [p for p in patch_latents]
|
||||
if needs_cfg:
|
||||
batched_data = prompt_data.get_batched_cfg_data()
|
||||
assert batched_data is not None, "CFG model must provide batched data"
|
||||
prompt_embeds, encoder_mask, batched_pooled, _ = batched_data
|
||||
pooled_embeds = (
|
||||
batched_pooled if batched_pooled is not None else prompt_embeds
|
||||
)
|
||||
else:
|
||||
prompt_embeds = prompt_data.prompt_embeds
|
||||
pooled_embeds = prompt_data.pooled_prompt_embeds
|
||||
encoder_mask = prompt_data.get_encoder_hidden_states_mask(positive=True)
|
||||
|
||||
text_seq_len = prompt_embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, encoder_mask)
|
||||
self._set_text_seq_len(text_seq_len)
|
||||
|
||||
if self.joint_block_wrappers:
|
||||
for wrapper in self.joint_block_wrappers:
|
||||
wrapper.set_encoder_mask(encoder_mask)
|
||||
|
||||
text_embeddings = self.adapter.compute_text_embeddings(t, config, pooled_embeds)
|
||||
image_rotary_embeddings = self.adapter.compute_rotary_embeddings(
|
||||
prompt_embeds,
|
||||
config,
|
||||
encoder_hidden_states_mask=encoder_mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
kontext_image_ids=kontext_image_ids,
|
||||
)
|
||||
|
||||
prev_patch_latents = [p for p in patch_latents]
|
||||
encoder_hidden_states: mx.array | None = None
|
||||
|
||||
for patch_idx in range(len(patch_latents)):
|
||||
@@ -899,52 +810,31 @@ class DiffusionRunner:
|
||||
and not is_first_async_step
|
||||
):
|
||||
patch = mx.distributed.recv_like(
|
||||
patch, src=self.last_pipeline_rank, group=self.group
|
||||
patch, src=self.prev_rank, group=self.group
|
||||
)
|
||||
mx.eval(patch)
|
||||
|
||||
results: list[tuple[bool, mx.array]] = []
|
||||
step_patch = mx.concatenate([patch, patch], axis=0) if needs_cfg else patch
|
||||
|
||||
for branch in self._get_cfg_branches(prompt_data):
|
||||
pooled_embeds = (
|
||||
branch.pooled if branch.pooled is not None else branch.embeds
|
||||
)
|
||||
|
||||
text_seq_len = branch.embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, branch.mask)
|
||||
self._set_text_seq_len(text_seq_len)
|
||||
|
||||
if self.joint_block_wrappers:
|
||||
for wrapper in self.joint_block_wrappers:
|
||||
wrapper.set_encoder_mask(branch.mask)
|
||||
|
||||
text_embeddings = self.adapter.compute_text_embeddings(
|
||||
t, config, pooled_embeds
|
||||
)
|
||||
image_rotary_embeddings = self.adapter.compute_rotary_embeddings(
|
||||
branch.embeds,
|
||||
config,
|
||||
encoder_hidden_states_mask=branch.mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
kontext_image_ids=kontext_image_ids,
|
||||
)
|
||||
|
||||
noise, encoder_hidden_states = self._run_single_patch_pass(
|
||||
patch=patch,
|
||||
patch_idx=patch_idx,
|
||||
token_indices=token_indices[patch_idx],
|
||||
prompt_embeds=branch.embeds,
|
||||
text_embeddings=text_embeddings,
|
||||
image_rotary_embeddings=image_rotary_embeddings,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
|
||||
if self.is_last_stage:
|
||||
assert noise is not None
|
||||
results.append((branch.positive, noise))
|
||||
noise, encoder_hidden_states = self._run_single_patch_pass(
|
||||
patch=step_patch,
|
||||
patch_idx=patch_idx,
|
||||
token_indices=token_indices[patch_idx],
|
||||
prompt_embeds=prompt_embeds,
|
||||
text_embeddings=text_embeddings,
|
||||
image_rotary_embeddings=image_rotary_embeddings,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
|
||||
if self.is_last_stage:
|
||||
noise = self._combine_cfg_results(results)
|
||||
assert noise is not None
|
||||
if needs_cfg:
|
||||
noise_pos, noise_neg = mx.split(noise, 2, axis=0)
|
||||
guidance_scale = self._get_effective_guidance_scale()
|
||||
assert guidance_scale is not None
|
||||
noise = self.adapter.apply_guidance(
|
||||
noise_pos, noise_neg, guidance_scale
|
||||
)
|
||||
|
||||
patch_latents[patch_idx] = config.scheduler.step( # pyright: ignore[reportAny]
|
||||
noise=noise,
|
||||
@@ -954,9 +844,7 @@ class DiffusionRunner:
|
||||
|
||||
if not self.is_first_stage and t != config.num_inference_steps - 1:
|
||||
patch_latents[patch_idx] = mx.distributed.send(
|
||||
patch_latents[patch_idx],
|
||||
self.first_pipeline_rank,
|
||||
group=self.group,
|
||||
patch_latents[patch_idx], self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(patch_latents[patch_idx])
|
||||
|
||||
@@ -996,12 +884,11 @@ class DiffusionRunner:
|
||||
|
||||
if self.has_joint_blocks:
|
||||
if not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
patch_len = patch.shape[1]
|
||||
patch = mx.distributed.recv(
|
||||
(batch_size, patch_len, hidden_dim),
|
||||
patch.dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(patch)
|
||||
@@ -1010,7 +897,7 @@ class DiffusionRunner:
|
||||
encoder_hidden_states = mx.distributed.recv(
|
||||
(batch_size, text_seq_len, hidden_dim),
|
||||
patch.dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(encoder_hidden_states)
|
||||
@@ -1038,34 +925,29 @@ class DiffusionRunner:
|
||||
if self.has_single_blocks or self.is_last_stage:
|
||||
patch = patch_concat
|
||||
else:
|
||||
assert self.next_pipeline_rank is not None
|
||||
patch_concat = mx.distributed.send(
|
||||
patch_concat, self.next_pipeline_rank, group=self.group
|
||||
patch_concat, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(patch_concat)
|
||||
|
||||
elif self.has_joint_blocks and not self.is_last_stage:
|
||||
assert self.next_pipeline_rank is not None
|
||||
patch = mx.distributed.send(
|
||||
patch, self.next_pipeline_rank, group=self.group
|
||||
)
|
||||
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
|
||||
mx.async_eval(patch)
|
||||
|
||||
if patch_idx == 0:
|
||||
assert encoder_hidden_states is not None
|
||||
encoder_hidden_states = mx.distributed.send(
|
||||
encoder_hidden_states, self.next_pipeline_rank, group=self.group
|
||||
encoder_hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(encoder_hidden_states)
|
||||
|
||||
if self.has_single_blocks:
|
||||
if not self.owns_concat_stage and not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
patch_len = patch.shape[1]
|
||||
patch = mx.distributed.recv(
|
||||
(batch_size, text_seq_len + patch_len, hidden_dim),
|
||||
patch.dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(patch)
|
||||
@@ -1080,10 +962,7 @@ class DiffusionRunner:
|
||||
)
|
||||
|
||||
if not self.is_last_stage:
|
||||
assert self.next_pipeline_rank is not None
|
||||
patch = mx.distributed.send(
|
||||
patch, self.next_pipeline_rank, group=self.group
|
||||
)
|
||||
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
|
||||
mx.async_eval(patch)
|
||||
|
||||
noise: mx.array | None = None
|
||||
|
||||
@@ -3,6 +3,7 @@ from copy import deepcopy
|
||||
from typing import Any, cast
|
||||
|
||||
import mlx.core as mx
|
||||
import psutil
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
QuantizedKVCache,
|
||||
@@ -12,25 +13,29 @@ from mlx_lm.models.cache import (
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.mlx import KVCacheType
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.constants import CACHE_GROUP_SIZE, KV_CACHE_BITS
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
# Fraction of device memory above which LRU eviction kicks in
|
||||
_DEFAULT_MEMORY_THRESHOLD = 0.85
|
||||
_DEFAULT_MEMORY_THRESHOLD = 0.9
|
||||
_MEMORY_THRESHOLD = float(
|
||||
os.environ.get("EXO_MEMORY_THRESHOLD", _DEFAULT_MEMORY_THRESHOLD)
|
||||
)
|
||||
|
||||
|
||||
class KVPrefixCache:
|
||||
def __init__(self, tokenizer: TokenizerWrapper):
|
||||
def __init__(
|
||||
self, tokenizer: TokenizerWrapper, group: mx.distributed.Group | None = None
|
||||
):
|
||||
self.prompts: list[mx.array] = [] # mx array of tokens (ints)
|
||||
self.caches: list[KVCacheType] = []
|
||||
self._last_used: list[int] = [] # monotonic counter of last access per entry
|
||||
self._access_counter: int = 0
|
||||
self._tokenizer: TokenizerWrapper = tokenizer
|
||||
self._group = group
|
||||
|
||||
def clear(self):
|
||||
"""Clear all cached prompts and caches."""
|
||||
@@ -81,13 +86,13 @@ class KVPrefixCache:
|
||||
best_snapshot_index, best_snapshot_length = None, 0
|
||||
|
||||
for i, cached_prompt in enumerate(self.prompts):
|
||||
length = _get_prefix_length(tokenized_prompt, cached_prompt)
|
||||
length = get_prefix_length(tokenized_prompt, cached_prompt)
|
||||
|
||||
if length == max_length:
|
||||
# Exact match - cached prompt starts with our entire prompt
|
||||
# Trim cache to prompt length - 1, return last token for stream_generate
|
||||
prompt_cache = deepcopy(self.caches[i])
|
||||
cached_length = _cache_length(self.caches[i])
|
||||
cached_length = cache_length(self.caches[i])
|
||||
tokens_to_trim = cached_length - (max_length - 1)
|
||||
if tokens_to_trim > 0:
|
||||
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
|
||||
@@ -109,7 +114,7 @@ class KVPrefixCache:
|
||||
prompt_cache = deepcopy(self.caches[best_snapshot_index])
|
||||
|
||||
# Trim removes tokens from the end, so we trim (cached_length - prefix_length) to keep the prefix
|
||||
cached_length = _cache_length(self.caches[best_snapshot_index])
|
||||
cached_length = cache_length(self.caches[best_snapshot_index])
|
||||
tokens_to_trim = cached_length - best_snapshot_length
|
||||
if tokens_to_trim > 0:
|
||||
trim_prompt_cache(cast(list[Any], prompt_cache), tokens_to_trim)
|
||||
@@ -131,29 +136,37 @@ class KVPrefixCache:
|
||||
return prompt_cache, tokenized_prompt, None
|
||||
|
||||
def _evict_if_needed(self):
|
||||
"""Evict least recently used entries while memory pressure is high."""
|
||||
"""Evict least recently used entries while memory usage is high."""
|
||||
if len(self.caches) == 0:
|
||||
return
|
||||
|
||||
active: int = mx.metal.get_active_memory()
|
||||
limit = int(mx.metal.device_info()["max_recommended_working_set_size"])
|
||||
if active < limit * _MEMORY_THRESHOLD:
|
||||
return
|
||||
|
||||
# Evict LRU entries until below threshold or only one entry left
|
||||
while len(self.caches) > 0:
|
||||
while (
|
||||
len(self.caches) > 1
|
||||
and self.get_memory_used_percentage() > _MEMORY_THRESHOLD
|
||||
):
|
||||
lru_index = self._last_used.index(min(self._last_used))
|
||||
evicted_tokens = len(self.prompts[lru_index])
|
||||
self.prompts.pop(lru_index)
|
||||
self.caches.pop(lru_index)
|
||||
self._last_used.pop(lru_index)
|
||||
logger.info(
|
||||
f"KV cache evicted LRU entry ({evicted_tokens} tokens) due to memory pressure"
|
||||
f"KV cache evicted LRU entry ({evicted_tokens} tokens) due to memory usage"
|
||||
)
|
||||
|
||||
active = mx.metal.get_active_memory()
|
||||
if active < limit * _MEMORY_THRESHOLD:
|
||||
break
|
||||
def get_memory_used_percentage(self) -> float:
|
||||
local_pressure: float = get_memory_used_percentage()
|
||||
|
||||
if self._group is None:
|
||||
return local_pressure
|
||||
|
||||
all_pressure = mx.distributed.all_gather(
|
||||
mx.array([local_pressure], dtype=mx.float32),
|
||||
group=self._group,
|
||||
)
|
||||
# .item() evals.
|
||||
max_pressure = float(mx.max(all_pressure).item())
|
||||
return max_pressure
|
||||
|
||||
|
||||
def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
@@ -168,13 +181,13 @@ def encode_prompt(tokenizer: TokenizerWrapper, prompt: str) -> mx.array:
|
||||
return mx.array(tokenized_prompt)
|
||||
|
||||
|
||||
def _cache_length(cache: KVCacheType) -> int:
|
||||
def cache_length(cache: KVCacheType) -> int:
|
||||
"""Get the number of tokens in a KV cache."""
|
||||
# Use .offset attribute which all cache types have (len() not implemented in older QuantizedKVCache)
|
||||
return max(c.offset for c in cache) # type: ignore
|
||||
|
||||
|
||||
def _get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
|
||||
def get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
|
||||
"""Find the length of the common prefix between two token arrays."""
|
||||
n = min(int(prompt.shape[0]), int(cached_prompt.shape[0]))
|
||||
if n == 0:
|
||||
@@ -185,6 +198,17 @@ def _get_prefix_length(prompt: mx.array, cached_prompt: mx.array) -> int:
|
||||
return int(mx.sum(prefix_mask).item())
|
||||
|
||||
|
||||
def get_available_memory() -> Memory:
|
||||
mem: int = psutil.virtual_memory().available
|
||||
return Memory.from_bytes(mem)
|
||||
|
||||
|
||||
def get_memory_used_percentage() -> float:
|
||||
mem = psutil.virtual_memory()
|
||||
# percent is 0-100
|
||||
return float(mem.percent / 100)
|
||||
|
||||
|
||||
def make_kv_cache(
|
||||
model: Model, max_kv_size: int | None = None, keep: int = 0
|
||||
) -> KVCacheType:
|
||||
|
||||
@@ -10,8 +10,11 @@ from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
from exo.shared.types.api import (
|
||||
BenchChatCompletionTaskParams,
|
||||
ChatCompletionMessage,
|
||||
CompletionTokensDetails,
|
||||
FinishReason,
|
||||
GenerationStats,
|
||||
PromptTokensDetails,
|
||||
Usage,
|
||||
)
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.mlx import KVCacheType
|
||||
@@ -39,7 +42,7 @@ def prefill(
|
||||
sampler: Callable[[mx.array], mx.array],
|
||||
prompt_tokens: mx.array,
|
||||
cache: KVCacheType,
|
||||
) -> float:
|
||||
) -> tuple[float, int]:
|
||||
"""Prefill the KV cache with prompt tokens.
|
||||
|
||||
This runs the model over the prompt tokens to populate the cache,
|
||||
@@ -50,7 +53,7 @@ def prefill(
|
||||
"""
|
||||
num_tokens = len(prompt_tokens)
|
||||
if num_tokens == 0:
|
||||
return 0.0
|
||||
return 0.0, 0
|
||||
|
||||
logger.debug(f"Prefilling {num_tokens} tokens...")
|
||||
start_time = time.perf_counter()
|
||||
@@ -85,7 +88,7 @@ def prefill(
|
||||
f"Prefill complete: {num_tokens} tokens in {elapsed:.2f}s "
|
||||
f"({tokens_per_sec:.1f} tok/s)"
|
||||
)
|
||||
return tokens_per_sec
|
||||
return tokens_per_sec, num_tokens
|
||||
|
||||
|
||||
def warmup_inference(
|
||||
@@ -169,6 +172,8 @@ def mlx_generate(
|
||||
mx.reset_peak_memory()
|
||||
is_bench: bool = isinstance(task, BenchChatCompletionTaskParams)
|
||||
|
||||
logger.info(f"{is_bench=}")
|
||||
|
||||
# Currently we support chat-completion tasks only.
|
||||
logger.debug(f"task_params: {task}")
|
||||
|
||||
@@ -204,7 +209,9 @@ def mlx_generate(
|
||||
)
|
||||
|
||||
# Prefill cache with all tokens except the last one
|
||||
prefill_tps = prefill(model, tokenizer, sampler, prompt_tokens[:-1], caches)
|
||||
prefill_tps, prefill_tokens = prefill(
|
||||
model, tokenizer, sampler, prompt_tokens[:-1], caches
|
||||
)
|
||||
|
||||
# stream_generate starts from the last token
|
||||
last_token = prompt_tokens[-1:]
|
||||
@@ -212,28 +219,43 @@ def mlx_generate(
|
||||
max_tokens = task.max_tokens or MAX_TOKENS
|
||||
generated_text_parts: list[str] = []
|
||||
generation_start_time = time.perf_counter()
|
||||
for out in stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=last_token,
|
||||
max_tokens=max_tokens,
|
||||
sampler=sampler,
|
||||
logits_processors=logits_processors,
|
||||
prompt_cache=caches,
|
||||
# TODO: Dynamically change prefill step size to be the maximum possible without timing out.
|
||||
prefill_step_size=2048,
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
usage: Usage | None = None
|
||||
in_thinking = False
|
||||
reasoning_tokens = 0
|
||||
think_start = tokenizer.think_start
|
||||
think_end = tokenizer.think_end
|
||||
for completion_tokens, out in enumerate(
|
||||
stream_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=last_token,
|
||||
max_tokens=max_tokens,
|
||||
sampler=sampler,
|
||||
logits_processors=logits_processors,
|
||||
prompt_cache=caches,
|
||||
# TODO: Dynamically change prefill step size to be the maximum possible without timing out.
|
||||
prefill_step_size=2048,
|
||||
kv_group_size=KV_GROUP_SIZE,
|
||||
kv_bits=KV_BITS,
|
||||
),
|
||||
start=1,
|
||||
):
|
||||
generated_text_parts.append(out.text)
|
||||
logger.info(out.text)
|
||||
|
||||
if think_start is not None and out.text == think_start:
|
||||
in_thinking = True
|
||||
elif think_end is not None and out.text == think_end:
|
||||
in_thinking = False
|
||||
if in_thinking:
|
||||
reasoning_tokens += 1
|
||||
|
||||
stats: GenerationStats | None = None
|
||||
if out.finish_reason is not None:
|
||||
stats = GenerationStats(
|
||||
prompt_tps=float(prefill_tps or out.prompt_tps),
|
||||
generation_tps=float(out.generation_tps),
|
||||
prompt_tokens=int(out.prompt_tokens),
|
||||
prompt_tokens=int(prefill_tokens + out.prompt_tokens),
|
||||
generation_tokens=int(out.generation_tokens),
|
||||
peak_memory_usage=Memory.from_gb(out.peak_memory),
|
||||
)
|
||||
@@ -245,11 +267,24 @@ def mlx_generate(
|
||||
f"Model generated unexpected finish_reason: {out.finish_reason}"
|
||||
)
|
||||
|
||||
usage = Usage(
|
||||
prompt_tokens=int(out.prompt_tokens),
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=int(out.prompt_tokens) + completion_tokens,
|
||||
prompt_tokens_details=PromptTokensDetails(
|
||||
cached_tokens=prefix_hit_length
|
||||
),
|
||||
completion_tokens_details=CompletionTokensDetails(
|
||||
reasoning_tokens=reasoning_tokens
|
||||
),
|
||||
)
|
||||
|
||||
yield GenerationResponse(
|
||||
text=out.text,
|
||||
token=out.token,
|
||||
finish_reason=cast(FinishReason | None, out.finish_reason),
|
||||
stats=stats,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
if out.finish_reason is not None:
|
||||
|
||||
@@ -37,6 +37,7 @@ from exo.shared.types.tasks import (
|
||||
Shutdown,
|
||||
StartWarmup,
|
||||
Task,
|
||||
TaskId,
|
||||
TaskStatus,
|
||||
)
|
||||
from exo.shared.types.worker.instances import BoundInstance
|
||||
@@ -61,7 +62,7 @@ from exo.shared.types.worker.runners import (
|
||||
RunnerStatus,
|
||||
RunnerWarmingUp,
|
||||
)
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, ShardMetadata
|
||||
from exo.shared.types.worker.shards import ShardMetadata
|
||||
from exo.utils.channels import MpReceiver, MpSender
|
||||
from exo.worker.engines.image import (
|
||||
DistributedImageModel,
|
||||
@@ -111,8 +112,12 @@ def main(
|
||||
event_sender.send(
|
||||
RunnerStatusUpdated(runner_id=runner_id, runner_status=current_status)
|
||||
)
|
||||
seen = set[TaskId]()
|
||||
with task_receiver as tasks:
|
||||
for task in tasks:
|
||||
if task.task_id in seen:
|
||||
logger.warning("repeat task - potential error")
|
||||
seen.add(task.task_id)
|
||||
event_sender.send(
|
||||
TaskStatusUpdated(task_id=task.task_id, task_status=TaskStatus.Running)
|
||||
)
|
||||
@@ -163,7 +168,7 @@ def main(
|
||||
logger.info(
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling}"
|
||||
)
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer, group)
|
||||
|
||||
elif (
|
||||
ModelTask.TextToImage in shard_metadata.model_card.tasks
|
||||
@@ -277,9 +282,11 @@ def main(
|
||||
tokenizer.tool_parser, # pyright: ignore[reportAny]
|
||||
)
|
||||
|
||||
completion_tokens = 0
|
||||
for response in mlx_generator:
|
||||
match response:
|
||||
case GenerationResponse():
|
||||
completion_tokens += 1
|
||||
if (
|
||||
device_rank == 0
|
||||
and response.finish_reason == "error"
|
||||
@@ -307,6 +314,7 @@ def main(
|
||||
model=shard_metadata.model_card.model_id,
|
||||
text=response.text,
|
||||
token_id=response.token,
|
||||
usage=response.usage,
|
||||
finish_reason=response.finish_reason,
|
||||
stats=response.stats,
|
||||
),
|
||||
@@ -320,6 +328,7 @@ def main(
|
||||
chunk=ToolCallChunk(
|
||||
tool_calls=response.tool_calls,
|
||||
model=shard_metadata.model_card.model_id,
|
||||
usage=response.usage,
|
||||
),
|
||||
)
|
||||
)
|
||||
@@ -360,9 +369,8 @@ def main(
|
||||
image_index = 0
|
||||
for response in generate_image(model=model, task=task_params):
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
shard_metadata.device_rank
|
||||
== shard_metadata.world_size - 1
|
||||
):
|
||||
match response:
|
||||
case PartialImageResponse():
|
||||
@@ -388,11 +396,7 @@ def main(
|
||||
image_index += 1
|
||||
# can we make this more explicit?
|
||||
except Exception as e:
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
):
|
||||
if shard_metadata.device_rank == shard_metadata.world_size - 1:
|
||||
event_sender.send(
|
||||
ChunkGenerated(
|
||||
command_id=command_id,
|
||||
@@ -424,9 +428,8 @@ def main(
|
||||
image_index = 0
|
||||
for response in generate_image(model=model, task=task_params):
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
shard_metadata.device_rank
|
||||
== shard_metadata.world_size - 1
|
||||
):
|
||||
match response:
|
||||
case PartialImageResponse():
|
||||
@@ -451,11 +454,7 @@ def main(
|
||||
)
|
||||
image_index += 1
|
||||
except Exception as e:
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
):
|
||||
if shard_metadata.device_rank == shard_metadata.world_size - 1:
|
||||
event_sender.send(
|
||||
ChunkGenerated(
|
||||
command_id=command_id,
|
||||
@@ -545,10 +544,10 @@ def parse_gpt_oss(
|
||||
name=current_tool_name,
|
||||
arguments="".join(tool_arg_parts).strip(),
|
||||
)
|
||||
]
|
||||
],
|
||||
usage=response.usage,
|
||||
)
|
||||
tool_arg_parts = []
|
||||
break
|
||||
current_tool_name = recipient
|
||||
|
||||
# If inside a tool call, accumulate arguments
|
||||
@@ -694,7 +693,7 @@ def parse_tool_calls(
|
||||
tools = [_validate_single_tool(tool) for tool in parsed]
|
||||
else:
|
||||
tools = [_validate_single_tool(parsed)]
|
||||
yield ToolCallResponse(tool_calls=tools)
|
||||
yield ToolCallResponse(tool_calls=tools, usage=response.usage)
|
||||
|
||||
except (
|
||||
json.JSONDecodeError,
|
||||
|
||||
@@ -127,20 +127,25 @@ class RunnerSupervisor:
|
||||
self._tg.cancel_scope.cancel()
|
||||
|
||||
async def start_task(self, task: Task):
|
||||
if task.task_id in self.pending:
|
||||
logger.warning(
|
||||
f"Skipping invalid task {task} as it has already been submitted"
|
||||
)
|
||||
return
|
||||
if task.task_id in self.completed:
|
||||
logger.info(
|
||||
logger.warning(
|
||||
f"Skipping invalid task {task} as it has already been completed"
|
||||
)
|
||||
return
|
||||
logger.info(f"Starting task {task}")
|
||||
event = anyio.Event()
|
||||
self.pending[task.task_id] = event
|
||||
try:
|
||||
self._task_sender.send(task)
|
||||
await self._task_sender.send_async(task)
|
||||
except ClosedResourceError:
|
||||
logger.warning(f"Task {task} dropped, runner closed communication.")
|
||||
return
|
||||
await event.wait()
|
||||
logger.info(f"Finished task {task}")
|
||||
|
||||
async def _forward_events(self):
|
||||
with self._ev_recv as events:
|
||||
|
||||
@@ -14,9 +14,9 @@ from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.worker.engines.mlx import Model
|
||||
from exo.worker.engines.mlx.cache import (
|
||||
KVPrefixCache,
|
||||
_cache_length,
|
||||
_get_prefix_length,
|
||||
cache_length,
|
||||
encode_prompt,
|
||||
get_prefix_length,
|
||||
make_kv_cache,
|
||||
)
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate, prefill
|
||||
@@ -35,47 +35,47 @@ class TestGetPrefixLength:
|
||||
def test_identical_arrays(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3, 4, 5])
|
||||
assert _get_prefix_length(a, b) == 5
|
||||
assert get_prefix_length(a, b) == 5
|
||||
|
||||
def test_no_common_prefix(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([4, 5, 6])
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
assert get_prefix_length(a, b) == 0
|
||||
|
||||
def test_partial_prefix(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3, 7, 8])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
assert get_prefix_length(a, b) == 3
|
||||
|
||||
def test_prompt_longer_than_cached(self):
|
||||
a = mx.array([1, 2, 3, 4, 5])
|
||||
b = mx.array([1, 2, 3])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
assert get_prefix_length(a, b) == 3
|
||||
|
||||
def test_cached_longer_than_prompt(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([1, 2, 3, 4, 5])
|
||||
assert _get_prefix_length(a, b) == 3
|
||||
assert get_prefix_length(a, b) == 3
|
||||
|
||||
def test_single_token_match(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([1, 5, 6])
|
||||
assert _get_prefix_length(a, b) == 1
|
||||
assert get_prefix_length(a, b) == 1
|
||||
|
||||
def test_empty_prompt(self):
|
||||
a = mx.array([]).astype(mx.int32)
|
||||
b = mx.array([1, 2, 3])
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
assert get_prefix_length(a, b) == 0
|
||||
|
||||
def test_empty_cached(self):
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([]).astype(mx.int32)
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
assert get_prefix_length(a, b) == 0
|
||||
|
||||
def test_both_empty(self):
|
||||
a = mx.array([]).astype(mx.int32)
|
||||
b = mx.array([]).astype(mx.int32)
|
||||
assert _get_prefix_length(a, b) == 0
|
||||
assert get_prefix_length(a, b) == 0
|
||||
|
||||
|
||||
class TestKVPrefix:
|
||||
@@ -146,7 +146,7 @@ class TestKVPrefixCacheWithModel:
|
||||
prefill(model, tokenizer, make_sampler(0.0), tokens, cache)
|
||||
|
||||
# Cache should now hold the prompt tokens
|
||||
assert _cache_length(cache) == len(tokens)
|
||||
assert cache_length(cache) == len(tokens)
|
||||
|
||||
def test_add_and_get_exact_match(self, model_and_tokenizer):
|
||||
model, tokenizer = model_and_tokenizer
|
||||
@@ -166,7 +166,7 @@ class TestKVPrefixCacheWithModel:
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
stored_length = cache_length(kv_prefix_cache.caches[0])
|
||||
assert stored_length > 0
|
||||
|
||||
# Retrieve with same prompt: exact match
|
||||
@@ -209,7 +209,7 @@ class TestKVPrefixCacheWithModel:
|
||||
long_tokens = encode_prompt(tokenizer, long_prompt)
|
||||
|
||||
# The prompts share a prefix (chat template preamble + "Hi")
|
||||
expected_prefix = _get_prefix_length(long_tokens, short_tokens)
|
||||
expected_prefix = get_prefix_length(long_tokens, short_tokens)
|
||||
assert expected_prefix > 0, (
|
||||
"Prompts should share a prefix from the chat template"
|
||||
)
|
||||
@@ -243,7 +243,7 @@ class TestKVPrefixCacheWithModel:
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
stored_length = cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Get cache and mutate it (simulating what generation does)
|
||||
result_cache, _, matched_index = kv_prefix_cache.get_kv_cache(model, prompt)
|
||||
@@ -259,7 +259,7 @@ class TestKVPrefixCacheWithModel:
|
||||
mx.eval([c.keys for c in result_cache])
|
||||
|
||||
# Stored cache must be unchanged
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length
|
||||
assert cache_length(kv_prefix_cache.caches[0]) == stored_length
|
||||
|
||||
def test_stored_cache_survives_repeated_get_mutate_cycles(
|
||||
self, model_and_tokenizer
|
||||
@@ -281,7 +281,7 @@ class TestKVPrefixCacheWithModel:
|
||||
kv_prefix_cache = KVPrefixCache(tokenizer)
|
||||
kv_prefix_cache.add_kv_cache(prompt, cache)
|
||||
|
||||
stored_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
stored_length = cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
for i in range(3):
|
||||
result_cache, _, _ = kv_prefix_cache.get_kv_cache(model, prompt)
|
||||
@@ -293,7 +293,7 @@ class TestKVPrefixCacheWithModel:
|
||||
layer_cache.update_and_fetch(extra, extra)
|
||||
mx.eval([c.keys for c in result_cache])
|
||||
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == stored_length, (
|
||||
assert cache_length(kv_prefix_cache.caches[0]) == stored_length, (
|
||||
f"Failed on loop {i}"
|
||||
)
|
||||
|
||||
@@ -325,7 +325,7 @@ class TestKVPrefixCacheWithModel:
|
||||
assert len(kv_prefix_cache.caches) == 1
|
||||
# Cache should contain prompt + generated tokens
|
||||
expected_length = len(prompt_tokens) + generated_tokens
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == expected_length
|
||||
assert cache_length(kv_prefix_cache.caches[0]) == expected_length
|
||||
|
||||
def test_mlx_generate_second_call_gets_prefix_hit(self, model_and_tokenizer):
|
||||
"""Second mlx_generate call with same prompt should get a prefix hit from stored cache."""
|
||||
@@ -400,7 +400,7 @@ class TestKVPrefixCacheWithModel:
|
||||
first_gen_time = time.perf_counter() - t0
|
||||
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
first_cache_length = cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Second generation: same long prompt + extra content (simulating multi-turn)
|
||||
task2 = ChatCompletionTaskParams(
|
||||
@@ -416,7 +416,7 @@ class TestKVPrefixCacheWithModel:
|
||||
prompt2_tokens = encode_prompt(tokenizer, prompt2)
|
||||
|
||||
# Verify the prompts share a long prefix
|
||||
prefix_len = _get_prefix_length(prompt2_tokens, prompt1_tokens)
|
||||
prefix_len = get_prefix_length(prompt2_tokens, prompt1_tokens)
|
||||
assert prefix_len > 1000, "Prompts must share > 1000 token prefix"
|
||||
|
||||
# Second generation should reuse the cached prefix (only prefill new tokens)
|
||||
@@ -440,7 +440,7 @@ class TestKVPrefixCacheWithModel:
|
||||
# With prefix_hit > 1000, should update in-place (not add a second entry)
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
# Updated cache should be longer (prompt2 + generated > prompt1 + generated)
|
||||
updated_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
updated_cache_length = cache_length(kv_prefix_cache.caches[0])
|
||||
assert updated_cache_length > first_cache_length
|
||||
|
||||
def test_mlx_generate_stored_cache_not_mutated(self, model_and_tokenizer):
|
||||
@@ -465,7 +465,7 @@ class TestKVPrefixCacheWithModel:
|
||||
):
|
||||
pass
|
||||
|
||||
first_cache_length = _cache_length(kv_prefix_cache.caches[0])
|
||||
firstcache_length = cache_length(kv_prefix_cache.caches[0])
|
||||
|
||||
# Second generation gets the cache and mutates it during generation
|
||||
for _response in mlx_generate(
|
||||
@@ -478,7 +478,7 @@ class TestKVPrefixCacheWithModel:
|
||||
pass
|
||||
|
||||
# The first stored cache must not have been mutated by the second generation
|
||||
assert _cache_length(kv_prefix_cache.caches[0]) == first_cache_length
|
||||
assert cache_length(kv_prefix_cache.caches[0]) == firstcache_length
|
||||
|
||||
def test_evicts_lru_entry_under_memory_pressure(self, model_and_tokenizer):
|
||||
"""Under memory pressure, adding a new cache entry evicts the least recently used one."""
|
||||
@@ -540,6 +540,6 @@ class TestKVPrefixCacheWithModel:
|
||||
assert len(kv_prefix_cache.prompts) == 1
|
||||
# The surviving entry should be the newly added one
|
||||
new_tokens = encode_prompt(tokenizer, prompt)
|
||||
assert _get_prefix_length(kv_prefix_cache.prompts[0], new_tokens) == len(
|
||||
assert get_prefix_length(kv_prefix_cache.prompts[0], new_tokens) == len(
|
||||
new_tokens
|
||||
)
|
||||
|
||||
@@ -109,8 +109,8 @@ def assert_events_equal(test_events: Iterable[Event], true_events: Iterable[Even
|
||||
|
||||
@pytest.fixture
|
||||
def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
|
||||
# initialize_mlx returns a "group" equal to 1
|
||||
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(1))
|
||||
# initialize_mlx returns a mock group
|
||||
monkeypatch.setattr(mlx_runner, "initialize_mlx", make_nothin(MockGroup()))
|
||||
monkeypatch.setattr(mlx_runner, "load_mlx_items", make_nothin((1, MockTokenizer)))
|
||||
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
|
||||
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", nothin)
|
||||
@@ -120,7 +120,7 @@ def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
|
||||
monkeypatch.setattr(mlx_runner, "detect_thinking_prompt_suffix", make_nothin(False))
|
||||
|
||||
def fake_generate(*_1: object, **_2: object):
|
||||
yield GenerationResponse(token=0, text="hi", finish_reason="stop")
|
||||
yield GenerationResponse(token=0, text="hi", finish_reason="stop", usage=None)
|
||||
|
||||
monkeypatch.setattr(mlx_runner, "mlx_generate", fake_generate)
|
||||
|
||||
@@ -147,6 +147,14 @@ class MockTokenizer:
|
||||
has_tool_calling = False
|
||||
|
||||
|
||||
class MockGroup:
|
||||
def rank(self) -> int:
|
||||
return 0
|
||||
|
||||
def size(self) -> int:
|
||||
return 1
|
||||
|
||||
|
||||
def _run(tasks: Iterable[Task]):
|
||||
bound_instance = get_bound_mlx_ring_instance(
|
||||
instance_id=INSTANCE_1_ID,
|
||||
@@ -182,6 +190,8 @@ def test_events_processed_in_correct_order(patch_out_mlx: pytest.MonkeyPatch):
|
||||
text="hi",
|
||||
token_id=0,
|
||||
finish_reason="stop",
|
||||
usage=None,
|
||||
stats=None,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
18
tmp/config_examples/opencode.json
Normal file
18
tmp/config_examples/opencode.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"$schema": "https://opencode.ai/config.json",
|
||||
"model": "exo/mlx-community/gpt-oss-120b-MXFP4-Q8",
|
||||
"provider": {
|
||||
"exo": {
|
||||
"api": "http://localhost:52415/v1",
|
||||
"models": {
|
||||
"mlx-community/gpt-oss-120b-MXFP4-Q8": {
|
||||
"name": "GPT OSS 120B",
|
||||
"limit": {
|
||||
"context": 32768,
|
||||
"output": 8192
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user