mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-01 01:33:03 -05:00
Compare commits
1 Commits
ciaran/par
...
model-card
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
eff86cb27e |
12
.github/actions/typecheck/action.yml
vendored
Normal file
12
.github/actions/typecheck/action.yml
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
name: Type Check
|
||||
|
||||
description: "Run type checker"
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Run type checker
|
||||
run: |
|
||||
nix --extra-experimental-features nix-command --extra-experimental-features flakes develop -c just sync
|
||||
nix --extra-experimental-features nix-command --extra-experimental-features flakes develop -c just check
|
||||
shell: bash
|
||||
82
.github/workflows/pipeline.yml
vendored
82
.github/workflows/pipeline.yml
vendored
@@ -26,14 +26,73 @@ jobs:
|
||||
name: exo
|
||||
authToken: "${{ secrets.CACHIX_AUTH_TOKEN }}"
|
||||
|
||||
- name: Load nix develop environment
|
||||
run: nix run github:nicknovitski/nix-develop/v1
|
||||
- name: Configure git user
|
||||
run: |
|
||||
git config --local user.email "github-actions@users.noreply.github.com"
|
||||
git config --local user.name "github-actions bot"
|
||||
shell: bash
|
||||
|
||||
- name: Sync dependencies
|
||||
run: uv sync --all-packages
|
||||
- name: Pull LFS files
|
||||
run: |
|
||||
echo "Pulling Git LFS files..."
|
||||
git lfs pull
|
||||
shell: bash
|
||||
|
||||
- name: Run type checker
|
||||
run: uv run basedpyright --project pyproject.toml
|
||||
- name: Setup Nix Environment
|
||||
run: |
|
||||
echo "Checking for nix installation..."
|
||||
|
||||
# Check if nix binary exists directly
|
||||
if [ -f /nix/var/nix/profiles/default/bin/nix ]; then
|
||||
echo "Found nix binary at /nix/var/nix/profiles/default/bin/nix"
|
||||
export PATH="/nix/var/nix/profiles/default/bin:$PATH"
|
||||
echo "PATH=$PATH" >> $GITHUB_ENV
|
||||
nix --version
|
||||
elif [ -f /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh ]; then
|
||||
echo "Found nix profile script, sourcing..."
|
||||
source /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh
|
||||
nix --version
|
||||
elif command -v nix >/dev/null 2>&1; then
|
||||
echo "Nix already in PATH"
|
||||
nix --version
|
||||
else
|
||||
echo "Nix not found. Debugging info:"
|
||||
echo "Contents of /nix/var/nix/profiles/default/:"
|
||||
ls -la /nix/var/nix/profiles/default/ 2>/dev/null || echo "Directory not found"
|
||||
echo "Contents of /nix/var/nix/profiles/default/bin/:"
|
||||
ls -la /nix/var/nix/profiles/default/bin/ 2>/dev/null || echo "Directory not found"
|
||||
exit 1
|
||||
fi
|
||||
shell: bash
|
||||
|
||||
- name: Configure basedpyright include for local MLX
|
||||
run: |
|
||||
RUNNER_LABELS='${{ toJSON(runner.labels) }}'
|
||||
if echo "$RUNNER_LABELS" | grep -q "local_mlx"; then
|
||||
if [ -d "/Users/Shared/mlx" ]; then
|
||||
echo "Updating [tool.basedpyright].include to use /Users/Shared/mlx"
|
||||
awk '
|
||||
BEGIN { in=0 }
|
||||
/^\[tool\.basedpyright\]/ { in=1; print; next }
|
||||
in && /^\[/ { in=0 } # next section
|
||||
in && /^[ \t]*include[ \t]*=/ {
|
||||
print "include = [\"/Users/Shared/mlx\"]"
|
||||
next
|
||||
}
|
||||
{ print }
|
||||
' pyproject.toml > pyproject.toml.tmp && mv pyproject.toml.tmp pyproject.toml
|
||||
|
||||
echo "New [tool.basedpyright] section:"
|
||||
sed -n '/^\[tool\.basedpyright\]/,/^\[/p' pyproject.toml | sed '$d' || true
|
||||
else
|
||||
echo "local_mlx tag present but /Users/Shared/mlx not found; leaving pyproject unchanged."
|
||||
fi
|
||||
else
|
||||
echo "Runner does not have 'local_mlx' tag; leaving pyproject unchanged."
|
||||
fi
|
||||
shell: bash
|
||||
|
||||
- uses: ./.github/actions/typecheck
|
||||
|
||||
nix:
|
||||
name: Build and check (${{ matrix.system }})
|
||||
@@ -132,14 +191,3 @@ jobs:
|
||||
|
||||
- name: Run nix flake check
|
||||
run: nix flake check
|
||||
|
||||
- name: Run pytest (macOS only)
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
# Build the test environment (requires relaxed sandbox for uv2nix on macOS)
|
||||
TEST_ENV=$(nix build '.#exo-test-env' --option sandbox relaxed --print-out-paths)
|
||||
|
||||
# Run pytest outside sandbox (needs GPU access for MLX)
|
||||
export HOME="$RUNNER_TEMP"
|
||||
export EXO_TESTS=1
|
||||
$TEST_ENV/bin/python -m pytest src -m "not slow" --import-mode=importlib
|
||||
|
||||
@@ -342,8 +342,6 @@
|
||||
SDKROOT = macosx;
|
||||
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
|
||||
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
|
||||
SWIFT_TREAT_WARNINGS_AS_ERRORS = YES;
|
||||
GCC_TREAT_WARNINGS_AS_ERRORS = YES;
|
||||
};
|
||||
name = Debug;
|
||||
};
|
||||
@@ -399,8 +397,6 @@
|
||||
MTL_FAST_MATH = YES;
|
||||
SDKROOT = macosx;
|
||||
SWIFT_COMPILATION_MODE = wholemodule;
|
||||
SWIFT_TREAT_WARNINGS_AS_ERRORS = YES;
|
||||
GCC_TREAT_WARNINGS_AS_ERRORS = YES;
|
||||
};
|
||||
name = Release;
|
||||
};
|
||||
|
||||
10
dashboard/package-lock.json
generated
10
dashboard/package-lock.json
generated
@@ -865,6 +865,7 @@
|
||||
"integrity": "sha512-oH8tXw7EZnie8FdOWYrF7Yn4IKrqTFHhXvl8YxXxbKwTMcD/5NNCryUSEXRk2ZR4ojnub0P8rNrsVGHXWqIDtA==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@standard-schema/spec": "^1.0.0",
|
||||
"@sveltejs/acorn-typescript": "^1.0.5",
|
||||
@@ -904,6 +905,7 @@
|
||||
"integrity": "sha512-Y1Cs7hhTc+a5E9Va/xwKlAJoariQyHY+5zBgCZg4PFWNYQ1nMN9sjK1zhw1gK69DuqVP++sht/1GZg1aRwmAXQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@sveltejs/vite-plugin-svelte-inspector": "^4.0.1",
|
||||
"debug": "^4.4.1",
|
||||
@@ -1520,6 +1522,7 @@
|
||||
"integrity": "sha512-LCCV0HdSZZZb34qifBsyWlUmok6W7ouER+oQIGBScS8EsZsQbrtFTUrDX4hOl+CS6p7cnNC4td+qrSVGSCTUfQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"undici-types": "~6.21.0"
|
||||
}
|
||||
@@ -1529,6 +1532,7 @@
|
||||
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz",
|
||||
"integrity": "sha512-NZyJarBfL7nWwIq+FDL6Zp/yHEhePMNnnJ0y3qfieCrmNvYct8uvtiV41UvlSe6apAfk0fY1FbWx+NwfmpvtTg==",
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"acorn": "bin/acorn"
|
||||
},
|
||||
@@ -1941,6 +1945,7 @@
|
||||
"integrity": "sha512-fmTRWbNMmsmWq6xJV8D19U/gw/bwrHfNXxrIN+HfZgnzqTHp9jOmKMhsTUjXOJnZOdZY9Q28y4yebKzqDKlxlQ==",
|
||||
"dev": true,
|
||||
"license": "ISC",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
}
|
||||
@@ -2648,6 +2653,7 @@
|
||||
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
},
|
||||
@@ -2690,6 +2696,7 @@
|
||||
"integrity": "sha512-UOnG6LftzbdaHZcKoPFtOcCKztrQ57WkHDeRD9t/PTQtmT0NHSeWWepj6pS0z/N7+08BHFDQVUrfmfMRcZwbMg==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"prettier": "bin/prettier.cjs"
|
||||
},
|
||||
@@ -2862,6 +2869,7 @@
|
||||
"resolved": "https://registry.npmjs.org/svelte/-/svelte-5.45.3.tgz",
|
||||
"integrity": "sha512-ngKXNhNvwPzF43QqEhDOue7TQTrG09em1sd4HBxVF0Wr2gopAmdEWan+rgbdgK4fhBtSOTJO8bYU4chUG7VXZQ==",
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@jridgewell/remapping": "^2.3.4",
|
||||
"@jridgewell/sourcemap-codec": "^1.5.0",
|
||||
@@ -3006,6 +3014,7 @@
|
||||
"integrity": "sha512-jl1vZzPDinLr9eUt3J/t7V6FgNEw9QjvBPdysz9KfQDD41fQrC2Y4vKQdiaUpFT4bXlb1RHhLpp8wtm6M5TgSw==",
|
||||
"dev": true,
|
||||
"license": "Apache-2.0",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
@@ -3027,6 +3036,7 @@
|
||||
"integrity": "sha512-+Oxm7q9hDoLMyJOYfUYBuHQo+dkAloi33apOPP56pzj+vsdJDzr+j1NISE5pyaAuKL4A3UD34qd0lx5+kfKp2g==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"esbuild": "^0.25.0",
|
||||
"fdir": "^6.4.4",
|
||||
|
||||
@@ -173,11 +173,6 @@ export interface PlacementPreviewResponse {
|
||||
previews: PlacementPreview[];
|
||||
}
|
||||
|
||||
interface ImageApiResponse {
|
||||
created: number;
|
||||
data: Array<{ b64_json?: string; url?: string }>;
|
||||
}
|
||||
|
||||
interface RawStateResponse {
|
||||
topology?: RawTopology;
|
||||
instances?: Record<
|
||||
@@ -2100,137 +2095,107 @@ class AppStore {
|
||||
throw new Error(`API error: ${response.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
// Streaming requires both stream=true AND partialImages > 0
|
||||
const isStreaming = params.stream && params.partialImages > 0;
|
||||
|
||||
if (!isStreaming) {
|
||||
// Non-streaming: parse JSON response directly
|
||||
const jsonResponse = (await response.json()) as ImageApiResponse;
|
||||
const format = params.outputFormat || "png";
|
||||
const mimeType = `image/${format}`;
|
||||
|
||||
const attachments: MessageAttachment[] = jsonResponse.data
|
||||
.filter((img) => img.b64_json)
|
||||
.map((img, index) => ({
|
||||
type: "generated-image" as const,
|
||||
name: `generated-image-${index + 1}.${format}`,
|
||||
preview: `data:${mimeType};base64,${img.b64_json}`,
|
||||
mimeType,
|
||||
}));
|
||||
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = "";
|
||||
msg.attachments = attachments;
|
||||
},
|
||||
);
|
||||
this.syncActiveMessagesIfNeeded(targetConversationId);
|
||||
} else {
|
||||
// Streaming mode: use SSE parser
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error("No response body");
|
||||
}
|
||||
|
||||
interface ImageGenerationChunk {
|
||||
data?: { b64_json?: string };
|
||||
format?: string;
|
||||
type?: "partial" | "final";
|
||||
image_index?: number;
|
||||
partial_index?: number;
|
||||
total_partials?: number;
|
||||
}
|
||||
|
||||
const numImages = params.numImages;
|
||||
|
||||
await this.parseSSEStream<ImageGenerationChunk>(
|
||||
reader,
|
||||
targetConversationId,
|
||||
(parsed) => {
|
||||
const imageData = parsed.data?.b64_json;
|
||||
|
||||
if (imageData) {
|
||||
const format = parsed.format || "png";
|
||||
const mimeType = `image/${format}`;
|
||||
const imageIndex = parsed.image_index ?? 0;
|
||||
|
||||
if (parsed.type === "partial") {
|
||||
// Update with partial image and progress
|
||||
const partialNum = (parsed.partial_index ?? 0) + 1;
|
||||
const totalPartials = parsed.total_partials ?? 3;
|
||||
const progressText =
|
||||
numImages > 1
|
||||
? `Generating image ${imageIndex + 1}/${numImages}... ${partialNum}/${totalPartials}`
|
||||
: `Generating... ${partialNum}/${totalPartials}`;
|
||||
|
||||
const partialAttachment: MessageAttachment = {
|
||||
type: "generated-image",
|
||||
name: `generated-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
};
|
||||
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = progressText;
|
||||
if (imageIndex === 0) {
|
||||
// First image - safe to replace attachments with partial preview
|
||||
msg.attachments = [partialAttachment];
|
||||
} else {
|
||||
// Subsequent images - keep existing finals, show partial at current position
|
||||
const existingAttachments = msg.attachments || [];
|
||||
// Keep only the completed final images (up to current imageIndex)
|
||||
const finals = existingAttachments.slice(0, imageIndex);
|
||||
msg.attachments = [...finals, partialAttachment];
|
||||
}
|
||||
},
|
||||
);
|
||||
} else if (parsed.type === "final") {
|
||||
// Final image - replace partial at this position
|
||||
const newAttachment: MessageAttachment = {
|
||||
type: "generated-image",
|
||||
name: `generated-image-${imageIndex + 1}.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
};
|
||||
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
if (imageIndex === 0) {
|
||||
// First final image - replace any partial preview
|
||||
msg.attachments = [newAttachment];
|
||||
} else {
|
||||
// Subsequent images - keep previous finals, replace partial at current position
|
||||
const existingAttachments = msg.attachments || [];
|
||||
// Slice keeps indices 0 to imageIndex-1 (the previous final images)
|
||||
const previousFinals = existingAttachments.slice(
|
||||
0,
|
||||
imageIndex,
|
||||
);
|
||||
msg.attachments = [...previousFinals, newAttachment];
|
||||
}
|
||||
|
||||
// Update progress message for multiple images
|
||||
if (numImages > 1 && imageIndex < numImages - 1) {
|
||||
msg.content = `Generating image ${imageIndex + 2}/${numImages}...`;
|
||||
} else {
|
||||
msg.content = "";
|
||||
}
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
this.syncActiveMessagesIfNeeded(targetConversationId);
|
||||
}
|
||||
},
|
||||
);
|
||||
const reader = response.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error("No response body");
|
||||
}
|
||||
|
||||
interface ImageGenerationChunk {
|
||||
data?: { b64_json?: string };
|
||||
format?: string;
|
||||
type?: "partial" | "final";
|
||||
image_index?: number;
|
||||
partial_index?: number;
|
||||
total_partials?: number;
|
||||
}
|
||||
|
||||
const numImages = params.numImages;
|
||||
|
||||
await this.parseSSEStream<ImageGenerationChunk>(
|
||||
reader,
|
||||
targetConversationId,
|
||||
(parsed) => {
|
||||
const imageData = parsed.data?.b64_json;
|
||||
|
||||
if (imageData) {
|
||||
const format = parsed.format || "png";
|
||||
const mimeType = `image/${format}`;
|
||||
const imageIndex = parsed.image_index ?? 0;
|
||||
|
||||
if (parsed.type === "partial") {
|
||||
// Update with partial image and progress
|
||||
const partialNum = (parsed.partial_index ?? 0) + 1;
|
||||
const totalPartials = parsed.total_partials ?? 3;
|
||||
const progressText =
|
||||
numImages > 1
|
||||
? `Generating image ${imageIndex + 1}/${numImages}... ${partialNum}/${totalPartials}`
|
||||
: `Generating... ${partialNum}/${totalPartials}`;
|
||||
|
||||
const partialAttachment: MessageAttachment = {
|
||||
type: "generated-image",
|
||||
name: `generated-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
};
|
||||
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = progressText;
|
||||
if (imageIndex === 0) {
|
||||
// First image - safe to replace attachments with partial preview
|
||||
msg.attachments = [partialAttachment];
|
||||
} else {
|
||||
// Subsequent images - keep existing finals, show partial at current position
|
||||
const existingAttachments = msg.attachments || [];
|
||||
// Keep only the completed final images (up to current imageIndex)
|
||||
const finals = existingAttachments.slice(0, imageIndex);
|
||||
msg.attachments = [...finals, partialAttachment];
|
||||
}
|
||||
},
|
||||
);
|
||||
} else if (parsed.type === "final") {
|
||||
// Final image - replace partial at this position
|
||||
const newAttachment: MessageAttachment = {
|
||||
type: "generated-image",
|
||||
name: `generated-image-${imageIndex + 1}.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
};
|
||||
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
if (imageIndex === 0) {
|
||||
// First final image - replace any partial preview
|
||||
msg.attachments = [newAttachment];
|
||||
} else {
|
||||
// Subsequent images - keep previous finals, replace partial at current position
|
||||
const existingAttachments = msg.attachments || [];
|
||||
// Slice keeps indices 0 to imageIndex-1 (the previous final images)
|
||||
const previousFinals = existingAttachments.slice(
|
||||
0,
|
||||
imageIndex,
|
||||
);
|
||||
msg.attachments = [...previousFinals, newAttachment];
|
||||
}
|
||||
|
||||
// Update progress message for multiple images
|
||||
if (numImages > 1 && imageIndex < numImages - 1) {
|
||||
msg.content = `Generating image ${imageIndex + 2}/${numImages}...`;
|
||||
} else {
|
||||
msg.content = "";
|
||||
}
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
this.syncActiveMessagesIfNeeded(targetConversationId);
|
||||
}
|
||||
},
|
||||
);
|
||||
} catch (error) {
|
||||
console.error("Error generating image:", error);
|
||||
this.handleStreamingError(
|
||||
@@ -2378,98 +2343,69 @@ class AppStore {
|
||||
throw new Error(`API error: ${apiResponse.status} - ${errorText}`);
|
||||
}
|
||||
|
||||
// Streaming requires both stream=true AND partialImages > 0
|
||||
const isStreaming = params.stream && params.partialImages > 0;
|
||||
|
||||
if (!isStreaming) {
|
||||
// Non-streaming: parse JSON response directly
|
||||
const jsonResponse = (await apiResponse.json()) as ImageApiResponse;
|
||||
const format = params.outputFormat || "png";
|
||||
const mimeType = `image/${format}`;
|
||||
const attachments: MessageAttachment[] = jsonResponse.data
|
||||
.filter((img) => img.b64_json)
|
||||
.map((img) => ({
|
||||
type: "generated-image" as const,
|
||||
name: `edited-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${img.b64_json}`,
|
||||
mimeType,
|
||||
}));
|
||||
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = "";
|
||||
msg.attachments = attachments;
|
||||
},
|
||||
);
|
||||
this.syncActiveMessagesIfNeeded(targetConversationId);
|
||||
} else {
|
||||
// Streaming mode: use SSE parser
|
||||
const reader = apiResponse.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error("No response body");
|
||||
}
|
||||
|
||||
interface ImageEditChunk {
|
||||
data?: { b64_json?: string };
|
||||
format?: string;
|
||||
type?: "partial" | "final";
|
||||
partial_index?: number;
|
||||
total_partials?: number;
|
||||
}
|
||||
|
||||
await this.parseSSEStream<ImageEditChunk>(
|
||||
reader,
|
||||
targetConversationId,
|
||||
(parsed) => {
|
||||
const imageData = parsed.data?.b64_json;
|
||||
|
||||
if (imageData) {
|
||||
const format = parsed.format || "png";
|
||||
const mimeType = `image/${format}`;
|
||||
if (parsed.type === "partial") {
|
||||
// Update with partial image and progress
|
||||
const partialNum = (parsed.partial_index ?? 0) + 1;
|
||||
const totalPartials = parsed.total_partials ?? 3;
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = `Editing... ${partialNum}/${totalPartials}`;
|
||||
msg.attachments = [
|
||||
{
|
||||
type: "generated-image",
|
||||
name: `edited-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
},
|
||||
];
|
||||
},
|
||||
);
|
||||
} else if (parsed.type === "final") {
|
||||
// Final image
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = "";
|
||||
msg.attachments = [
|
||||
{
|
||||
type: "generated-image",
|
||||
name: `edited-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
},
|
||||
];
|
||||
},
|
||||
);
|
||||
}
|
||||
this.syncActiveMessagesIfNeeded(targetConversationId);
|
||||
}
|
||||
},
|
||||
);
|
||||
const reader = apiResponse.body?.getReader();
|
||||
if (!reader) {
|
||||
throw new Error("No response body");
|
||||
}
|
||||
|
||||
interface ImageEditChunk {
|
||||
data?: { b64_json?: string };
|
||||
format?: string;
|
||||
type?: "partial" | "final";
|
||||
partial_index?: number;
|
||||
total_partials?: number;
|
||||
}
|
||||
|
||||
await this.parseSSEStream<ImageEditChunk>(
|
||||
reader,
|
||||
targetConversationId,
|
||||
(parsed) => {
|
||||
const imageData = parsed.data?.b64_json;
|
||||
|
||||
if (imageData) {
|
||||
const format = parsed.format || "png";
|
||||
const mimeType = `image/${format}`;
|
||||
if (parsed.type === "partial") {
|
||||
// Update with partial image and progress
|
||||
const partialNum = (parsed.partial_index ?? 0) + 1;
|
||||
const totalPartials = parsed.total_partials ?? 3;
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = `Editing... ${partialNum}/${totalPartials}`;
|
||||
msg.attachments = [
|
||||
{
|
||||
type: "generated-image",
|
||||
name: `edited-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
},
|
||||
];
|
||||
},
|
||||
);
|
||||
} else if (parsed.type === "final") {
|
||||
// Final image
|
||||
this.updateConversationMessage(
|
||||
targetConversationId,
|
||||
assistantMessage.id,
|
||||
(msg) => {
|
||||
msg.content = "";
|
||||
msg.attachments = [
|
||||
{
|
||||
type: "generated-image",
|
||||
name: `edited-image.${format}`,
|
||||
preview: `data:${mimeType};base64,${imageData}`,
|
||||
mimeType,
|
||||
},
|
||||
];
|
||||
},
|
||||
);
|
||||
}
|
||||
this.syncActiveMessagesIfNeeded(targetConversationId);
|
||||
}
|
||||
},
|
||||
);
|
||||
} catch (error) {
|
||||
console.error("Error editing image:", error);
|
||||
this.handleStreamingError(
|
||||
|
||||
65
flake.lock
generated
65
flake.lock
generated
@@ -21,9 +21,7 @@
|
||||
"nixpkgs"
|
||||
],
|
||||
"purescript-overlay": "purescript-overlay",
|
||||
"pyproject-nix": [
|
||||
"pyproject-nix"
|
||||
]
|
||||
"pyproject-nix": "pyproject-nix"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1765953015,
|
||||
@@ -151,44 +149,19 @@
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"pyproject-build-systems": {
|
||||
"inputs": {
|
||||
"nixpkgs": [
|
||||
"nixpkgs"
|
||||
],
|
||||
"pyproject-nix": [
|
||||
"pyproject-nix"
|
||||
],
|
||||
"uv2nix": [
|
||||
"uv2nix"
|
||||
]
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1763662255,
|
||||
"narHash": "sha256-4bocaOyLa3AfiS8KrWjZQYu+IAta05u3gYZzZ6zXbT0=",
|
||||
"owner": "pyproject-nix",
|
||||
"repo": "build-system-pkgs",
|
||||
"rev": "042904167604c681a090c07eb6967b4dd4dae88c",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "pyproject-nix",
|
||||
"repo": "build-system-pkgs",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"pyproject-nix": {
|
||||
"inputs": {
|
||||
"nixpkgs": [
|
||||
"dream2nix",
|
||||
"nixpkgs"
|
||||
]
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1764134915,
|
||||
"narHash": "sha256-xaKvtPx6YAnA3HQVp5LwyYG1MaN4LLehpQI8xEdBvBY=",
|
||||
"lastModified": 1763017646,
|
||||
"narHash": "sha256-Z+R2lveIp6Skn1VPH3taQIuMhABg1IizJd8oVdmdHsQ=",
|
||||
"owner": "pyproject-nix",
|
||||
"repo": "pyproject.nix",
|
||||
"rev": "2c8df1383b32e5443c921f61224b198a2282a657",
|
||||
"rev": "47bd6f296502842643078d66128f7b5e5370790c",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@@ -205,10 +178,7 @@
|
||||
"flake-parts": "flake-parts",
|
||||
"nixpkgs": "nixpkgs",
|
||||
"nixpkgs-swift": "nixpkgs-swift",
|
||||
"pyproject-build-systems": "pyproject-build-systems",
|
||||
"pyproject-nix": "pyproject-nix",
|
||||
"treefmt-nix": "treefmt-nix",
|
||||
"uv2nix": "uv2nix"
|
||||
"treefmt-nix": "treefmt-nix"
|
||||
}
|
||||
},
|
||||
"rust-analyzer-src": {
|
||||
@@ -269,29 +239,6 @@
|
||||
"repo": "treefmt-nix",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"uv2nix": {
|
||||
"inputs": {
|
||||
"nixpkgs": [
|
||||
"nixpkgs"
|
||||
],
|
||||
"pyproject-nix": [
|
||||
"pyproject-nix"
|
||||
]
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1767701098,
|
||||
"narHash": "sha256-CJhKZnWb3gumR9oTRjFvCg/6lYTGbZRU7xtvcyWIRwU=",
|
||||
"owner": "pyproject-nix",
|
||||
"repo": "uv2nix",
|
||||
"rev": "9d357f0d2ce6f5f35ec7959d7e704452352eb4da",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "pyproject-nix",
|
||||
"repo": "uv2nix",
|
||||
"type": "github"
|
||||
}
|
||||
}
|
||||
},
|
||||
"root": "root",
|
||||
|
||||
27
flake.nix
27
flake.nix
@@ -24,26 +24,6 @@
|
||||
dream2nix = {
|
||||
url = "github:nix-community/dream2nix";
|
||||
inputs.nixpkgs.follows = "nixpkgs";
|
||||
inputs.pyproject-nix.follows = "pyproject-nix";
|
||||
};
|
||||
|
||||
# Python packaging with uv2nix
|
||||
pyproject-nix = {
|
||||
url = "github:pyproject-nix/pyproject.nix";
|
||||
inputs.nixpkgs.follows = "nixpkgs";
|
||||
};
|
||||
|
||||
uv2nix = {
|
||||
url = "github:pyproject-nix/uv2nix";
|
||||
inputs.pyproject-nix.follows = "pyproject-nix";
|
||||
inputs.nixpkgs.follows = "nixpkgs";
|
||||
};
|
||||
|
||||
pyproject-build-systems = {
|
||||
url = "github:pyproject-nix/build-system-pkgs";
|
||||
inputs.pyproject-nix.follows = "pyproject-nix";
|
||||
inputs.uv2nix.follows = "uv2nix";
|
||||
inputs.nixpkgs.follows = "nixpkgs";
|
||||
};
|
||||
|
||||
# Pinned nixpkgs for swift-format (swift is broken on x86_64-linux in newer nixpkgs)
|
||||
@@ -68,7 +48,6 @@
|
||||
inputs.treefmt-nix.flakeModule
|
||||
./dashboard/parts.nix
|
||||
./rust/parts.nix
|
||||
./python/parts.nix
|
||||
];
|
||||
|
||||
perSystem =
|
||||
@@ -109,6 +88,12 @@
|
||||
};
|
||||
};
|
||||
|
||||
checks.lint = pkgs.runCommand "lint-check" { } ''
|
||||
export RUFF_CACHE_DIR="$TMPDIR/ruff-cache"
|
||||
${pkgs.ruff}/bin/ruff check ${inputs.self}/
|
||||
touch $out
|
||||
'';
|
||||
|
||||
packages = lib.optionalAttrs pkgs.stdenv.hostPlatform.isDarwin (
|
||||
let
|
||||
uvLock = builtins.fromTOML (builtins.readFile ./uv.lock);
|
||||
|
||||
@@ -10,6 +10,7 @@ PROJECT_ROOT = Path.cwd()
|
||||
SOURCE_ROOT = PROJECT_ROOT / "src"
|
||||
ENTRYPOINT = SOURCE_ROOT / "exo" / "__main__.py"
|
||||
DASHBOARD_DIR = PROJECT_ROOT / "dashboard" / "build"
|
||||
RESOURCES_DIR = PROJECT_ROOT / "resources"
|
||||
EXO_SHARED_MODELS_DIR = SOURCE_ROOT / "exo" / "shared" / "models"
|
||||
|
||||
if not ENTRYPOINT.is_file():
|
||||
@@ -18,6 +19,9 @@ if not ENTRYPOINT.is_file():
|
||||
if not DASHBOARD_DIR.is_dir():
|
||||
raise SystemExit(f"Dashboard assets are missing: {DASHBOARD_DIR}")
|
||||
|
||||
if not RESOURCES_DIR.is_dir():
|
||||
raise SystemExit(f"Resource assets are missing: {RESOURCES_DIR}")
|
||||
|
||||
if not EXO_SHARED_MODELS_DIR.is_dir():
|
||||
raise SystemExit(f"Shared model assets are missing: {EXO_SHARED_MODELS_DIR}")
|
||||
|
||||
@@ -58,6 +62,7 @@ HIDDEN_IMPORTS = sorted(
|
||||
|
||||
DATAS: list[tuple[str, str]] = [
|
||||
(str(DASHBOARD_DIR), "dashboard"),
|
||||
(str(RESOURCES_DIR), "resources"),
|
||||
(str(MLX_LIB_DIR), "mlx/lib"),
|
||||
(str(EXO_SHARED_MODELS_DIR), "exo/shared/models"),
|
||||
]
|
||||
|
||||
@@ -1,93 +0,0 @@
|
||||
{ inputs, ... }:
|
||||
{
|
||||
perSystem =
|
||||
{ config, self', pkgs, lib, system, ... }:
|
||||
let
|
||||
# Load workspace from uv.lock
|
||||
workspace = inputs.uv2nix.lib.workspace.loadWorkspace {
|
||||
workspaceRoot = inputs.self;
|
||||
};
|
||||
|
||||
# Create overlay from workspace
|
||||
# Use wheels from PyPI for most packages; we override mlx with our pure Nix Metal build
|
||||
overlay = workspace.mkPyprojectOverlay { sourcePreference = "wheel"; };
|
||||
|
||||
# Override overlay to inject Nix-built components
|
||||
exoOverlay = final: prev: {
|
||||
# Replace workspace exo_pyo3_bindings with Nix-built wheel
|
||||
exo-pyo3-bindings = pkgs.stdenv.mkDerivation {
|
||||
pname = "exo-pyo3-bindings";
|
||||
version = "0.1.0";
|
||||
src = self'.packages.exo_pyo3_bindings;
|
||||
# Install from pre-built wheel
|
||||
nativeBuildInputs = [ final.pyprojectWheelHook ];
|
||||
dontStrip = true;
|
||||
};
|
||||
};
|
||||
|
||||
python = pkgs.python313;
|
||||
|
||||
# Overlay to provide build systems and custom packages
|
||||
buildSystemsOverlay = final: prev: {
|
||||
# Use our pure Nix-built MLX with Metal support
|
||||
mlx = self'.packages.mlx;
|
||||
|
||||
# mlx-lm is a git dependency that needs setuptools
|
||||
mlx-lm = prev.mlx-lm.overrideAttrs (old: {
|
||||
nativeBuildInputs = (old.nativeBuildInputs or [ ]) ++ [
|
||||
final.setuptools
|
||||
];
|
||||
});
|
||||
};
|
||||
|
||||
pythonSet = (pkgs.callPackage inputs.pyproject-nix.build.packages {
|
||||
inherit python;
|
||||
}).overrideScope (
|
||||
lib.composeManyExtensions [
|
||||
inputs.pyproject-build-systems.overlays.default
|
||||
overlay
|
||||
exoOverlay
|
||||
buildSystemsOverlay
|
||||
]
|
||||
);
|
||||
exoVenv = pythonSet.mkVirtualEnv "exo-env" workspace.deps.default;
|
||||
|
||||
# Virtual environment with dev dependencies for testing
|
||||
testVenv = pythonSet.mkVirtualEnv "exo-test-env" (
|
||||
workspace.deps.default // {
|
||||
exo = [ "dev" ]; # Include pytest, pytest-asyncio, pytest-env
|
||||
}
|
||||
);
|
||||
|
||||
exoPackage = pkgs.runCommand "exo"
|
||||
{
|
||||
nativeBuildInputs = [ pkgs.makeWrapper ];
|
||||
}
|
||||
''
|
||||
mkdir -p $out/bin
|
||||
|
||||
# Create wrapper scripts
|
||||
for script in exo exo-master exo-worker; do
|
||||
makeWrapper ${exoVenv}/bin/$script $out/bin/$script \
|
||||
--set DASHBOARD_DIR ${self'.packages.dashboard}
|
||||
done
|
||||
'';
|
||||
in
|
||||
{
|
||||
# Python package only available on macOS (requires MLX/Metal)
|
||||
packages = lib.optionalAttrs pkgs.stdenv.hostPlatform.isDarwin {
|
||||
exo = exoPackage;
|
||||
# Test environment for running pytest outside of Nix sandbox (needs GPU access)
|
||||
exo-test-env = testVenv;
|
||||
};
|
||||
|
||||
checks = {
|
||||
# Ruff linting (works on all platforms)
|
||||
lint = pkgs.runCommand "ruff-lint" { } ''
|
||||
export RUFF_CACHE_DIR="$TMPDIR/ruff-cache"
|
||||
${pkgs.ruff}/bin/ruff check ${inputs.self}/
|
||||
touch $out
|
||||
'';
|
||||
};
|
||||
};
|
||||
}
|
||||
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-Krea-dev-4bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 15475325472
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 5950704160
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-Krea-dev-8bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 21426029632
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 11901408320
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
45
resources/image_model_cards/exolabs--FLUX.1-Krea-dev.toml
Normal file
45
resources/image_model_cards/exolabs--FLUX.1-Krea-dev.toml
Normal file
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-Krea-dev"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33327437952
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 23802816640
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
45
resources/image_model_cards/exolabs--FLUX.1-dev-4bit.toml
Normal file
45
resources/image_model_cards/exolabs--FLUX.1-dev-4bit.toml
Normal file
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-dev-4bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 15475325472
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 5950704160
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
45
resources/image_model_cards/exolabs--FLUX.1-dev-8bit.toml
Normal file
45
resources/image_model_cards/exolabs--FLUX.1-dev-8bit.toml
Normal file
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-dev-8bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 21426029632
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 11901408320
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
45
resources/image_model_cards/exolabs--FLUX.1-dev.toml
Normal file
45
resources/image_model_cards/exolabs--FLUX.1-dev.toml
Normal file
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-dev"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33327437952
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 23802816640
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-schnell-4bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 15470210592
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 5945589280
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-schnell-8bit"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 21415799872
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 11891178560
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
45
resources/image_model_cards/exolabs--FLUX.1-schnell.toml
Normal file
45
resources/image_model_cards/exolabs--FLUX.1-schnell.toml
Normal file
@@ -0,0 +1,45 @@
|
||||
model_id = "exolabs/FLUX.1-schnell"
|
||||
n_layers = 57
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33306978432
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder_2"
|
||||
component_path = "text_encoder_2/"
|
||||
n_layers = 24
|
||||
can_shard = false
|
||||
safetensors_index_filename = "model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 9524621312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 57
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 23782357120
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
35
resources/image_model_cards/exolabs--Qwen-Image-4bit.toml
Normal file
35
resources/image_model_cards/exolabs--Qwen-Image-4bit.toml
Normal file
@@ -0,0 +1,35 @@
|
||||
model_id = "exolabs/Qwen-Image-4bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 26799533856
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 10215200544
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
35
resources/image_model_cards/exolabs--Qwen-Image-8bit.toml
Normal file
35
resources/image_model_cards/exolabs--Qwen-Image-8bit.toml
Normal file
@@ -0,0 +1,35 @@
|
||||
model_id = "exolabs/Qwen-Image-8bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 37014734400
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 20430401088
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,35 @@
|
||||
model_id = "exolabs/Qwen-Image-Edit-2509-4bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["ImageToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 26799533856
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 10215200544
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,35 @@
|
||||
model_id = "exolabs/Qwen-Image-Edit-2509-8bit"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["ImageToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 37014734400
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 20430401088
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,35 @@
|
||||
model_id = "exolabs/Qwen-Image-Edit-2509"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["ImageToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 57445135488
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 40860802176
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
35
resources/image_model_cards/exolabs--Qwen-Image.toml
Normal file
35
resources/image_model_cards/exolabs--Qwen-Image.toml
Normal file
@@ -0,0 +1,35 @@
|
||||
model_id = "exolabs/Qwen-Image"
|
||||
n_layers = 60
|
||||
hidden_size = 1
|
||||
supports_tensor = false
|
||||
tasks = ["TextToImage"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 57445135488
|
||||
|
||||
[[components]]
|
||||
component_name = "text_encoder"
|
||||
component_path = "text_encoder/"
|
||||
n_layers = 12
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 16584333312
|
||||
|
||||
[[components]]
|
||||
component_name = "transformer"
|
||||
component_path = "transformer/"
|
||||
n_layers = 60
|
||||
can_shard = true
|
||||
safetensors_index_filename = "diffusion_pytorch_model.safetensors.index.json"
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 40860802176
|
||||
|
||||
[[components]]
|
||||
component_name = "vae"
|
||||
component_path = "vae/"
|
||||
can_shard = false
|
||||
|
||||
[components.storage_size]
|
||||
in_bytes = 0
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/DeepSeek-V3.1-4bit"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 405874409472
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/DeepSeek-V3.1-8bit"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 765577920512
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.5-Air-8bit"
|
||||
n_layers = 46
|
||||
hidden_size = 4096
|
||||
supports_tensor = false
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 122406567936
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.5-Air-bf16"
|
||||
n_layers = 46
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 229780750336
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-4bit"
|
||||
n_layers = 91
|
||||
hidden_size = 5120
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 198556925568
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-6bit"
|
||||
n_layers = 91
|
||||
hidden_size = 5120
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 286737579648
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-8bit-gs32"
|
||||
n_layers = 91
|
||||
hidden_size = 5120
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 396963397248
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-4bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 19327352832
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-5bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 22548578304
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-6bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 26843545600
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/GLM-4.7-Flash-8bit"
|
||||
n_layers = 47
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 34359738368
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 620622774272
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Kimi-K2-Thinking"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 706522120192
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Kimi-K2.5"
|
||||
n_layers = 61
|
||||
hidden_size = 7168
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 662498705408
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
|
||||
n_layers = 16
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 729808896
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
n_layers = 28
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 1863319552
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
|
||||
n_layers = 28
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 3501195264
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 40652242944
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 76799803392
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 40652242944
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
|
||||
n_layers = 32
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 4637851648
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
|
||||
n_layers = 32
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 8954839040
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
|
||||
n_layers = 32
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 16882073600
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/MiniMax-M2.1-3bit"
|
||||
n_layers = 61
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 100086644736
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/MiniMax-M2.1-8bit"
|
||||
n_layers = 61
|
||||
hidden_size = 3072
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 242986745856
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-0.6B-4bit"
|
||||
n_layers = 28
|
||||
hidden_size = 1024
|
||||
supports_tensor = false
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 342884352
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-0.6B-8bit"
|
||||
n_layers = 28
|
||||
hidden_size = 1024
|
||||
supports_tensor = false
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 698351616
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
|
||||
n_layers = 94
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 141733920768
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
|
||||
n_layers = 94
|
||||
hidden_size = 4096
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 268435456000
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 17612931072
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 33279705088
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
|
||||
n_layers = 62
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 289910292480
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
|
||||
n_layers = 62
|
||||
hidden_size = 6144
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 579820584960
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 46976204800
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 88814387200
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 88814387200
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
|
||||
n_layers = 48
|
||||
hidden_size = 2048
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 88814387200
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
|
||||
n_layers = 36
|
||||
hidden_size = 2880
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 70652212224
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q8"
|
||||
n_layers = 24
|
||||
hidden_size = 2880
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 12025908224
|
||||
@@ -0,0 +1,8 @@
|
||||
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
|
||||
n_layers = 80
|
||||
hidden_size = 8192
|
||||
supports_tensor = true
|
||||
tasks = ["TextGeneration"]
|
||||
|
||||
[storage_size]
|
||||
in_bytes = 144383672320
|
||||
@@ -7,7 +7,7 @@ from loguru import logger
|
||||
|
||||
from exo.download.download_utils import RepoDownloadProgress, download_shard
|
||||
from exo.download.shard_downloader import ShardDownloader
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
|
||||
from exo.shared.types.worker.shards import (
|
||||
PipelineShardMetadata,
|
||||
ShardMetadata,
|
||||
@@ -21,7 +21,7 @@ def exo_shard_downloader(max_parallel_downloads: int = 8) -> ShardDownloader:
|
||||
|
||||
|
||||
async def build_base_shard(model_id: ModelId) -> ShardMetadata:
|
||||
model_card = await ModelCard.from_hf(model_id)
|
||||
model_card = await ModelCard.fetch_from_hf(model_id)
|
||||
return PipelineShardMetadata(
|
||||
model_card=model_card,
|
||||
device_rank=0,
|
||||
@@ -160,7 +160,7 @@ class ResumableShardDownloader(ShardDownloader):
|
||||
# Kick off download status coroutines concurrently
|
||||
tasks = [
|
||||
asyncio.create_task(_status_for_model(model_card.model_id))
|
||||
for model_card in MODEL_CARDS.values()
|
||||
for model_card in await get_model_cards()
|
||||
]
|
||||
|
||||
for task in asyncio.as_completed(tasks):
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import base64
|
||||
import contextlib
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from collections.abc import AsyncGenerator
|
||||
from http import HTTPStatus
|
||||
@@ -23,16 +22,13 @@ from loguru import logger
|
||||
from exo.master.image_store import ImageStore
|
||||
from exo.master.placement import place_instance as get_instance_placements
|
||||
from exo.shared.apply import apply
|
||||
from exo.shared.constants import (
|
||||
EXO_IMAGE_CACHE_DIR,
|
||||
EXO_MAX_CHUNK_SIZE,
|
||||
)
|
||||
from exo.shared.constants import DASHBOARD_DIR, EXO_IMAGE_CACHE_DIR, EXO_MAX_CHUNK_SIZE
|
||||
from exo.shared.election import ElectionMessage
|
||||
from exo.shared.logging import InterceptLogger
|
||||
from exo.shared.models.model_cards import (
|
||||
MODEL_CARDS,
|
||||
ModelCard,
|
||||
ModelId,
|
||||
get_model_cards,
|
||||
)
|
||||
from exo.shared.types.api import (
|
||||
AdvancedImageParams,
|
||||
@@ -105,7 +101,6 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
from exo.utils.banner import print_startup_banner
|
||||
from exo.utils.channels import Receiver, Sender, channel
|
||||
from exo.utils.dashboard_path import find_dashboard
|
||||
from exo.utils.event_buffer import OrderedBuffer
|
||||
|
||||
|
||||
@@ -113,15 +108,6 @@ def _format_to_content_type(image_format: Literal["png", "jpeg", "webp"] | None)
|
||||
return f"image/{image_format or 'png'}"
|
||||
|
||||
|
||||
def _ensure_seed(params: AdvancedImageParams | None) -> AdvancedImageParams:
|
||||
"""Ensure advanced params has a seed set for distributed consistency."""
|
||||
if params is None:
|
||||
return AdvancedImageParams(seed=random.randint(0, 2**32 - 1))
|
||||
if params.seed is None:
|
||||
return params.model_copy(update={"seed": random.randint(0, 2**32 - 1)})
|
||||
return params
|
||||
|
||||
|
||||
def chunk_to_response(
|
||||
chunk: TokenChunk | ToolCallChunk, command_id: CommandId
|
||||
) -> ChatCompletionResponse:
|
||||
@@ -151,18 +137,6 @@ def chunk_to_response(
|
||||
)
|
||||
|
||||
|
||||
async def resolve_model_card(model_id: ModelId) -> ModelCard:
|
||||
if model_id in MODEL_CARDS:
|
||||
model_card = MODEL_CARDS[model_id]
|
||||
return model_card
|
||||
|
||||
for card in MODEL_CARDS.values():
|
||||
if card.model_id == ModelId(model_id):
|
||||
return card
|
||||
|
||||
return await ModelCard.from_hf(model_id)
|
||||
|
||||
|
||||
class API:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -200,7 +174,7 @@ class API:
|
||||
self.app.mount(
|
||||
"/",
|
||||
StaticFiles(
|
||||
directory=find_dashboard(),
|
||||
directory=DASHBOARD_DIR,
|
||||
html=True,
|
||||
),
|
||||
name="dashboard",
|
||||
@@ -284,7 +258,7 @@ class API:
|
||||
|
||||
async def place_instance(self, payload: PlaceInstanceParams):
|
||||
command = PlaceInstance(
|
||||
model_card=await resolve_model_card(payload.model_id),
|
||||
model_card=await ModelCard.load(payload.model_id),
|
||||
sharding=payload.sharding,
|
||||
instance_meta=payload.instance_meta,
|
||||
min_nodes=payload.min_nodes,
|
||||
@@ -301,7 +275,7 @@ class API:
|
||||
self, payload: CreateInstanceParams
|
||||
) -> CreateInstanceResponse:
|
||||
instance = payload.instance
|
||||
model_card = await resolve_model_card(instance.shard_assignments.model_id)
|
||||
model_card = await ModelCard.load(instance.shard_assignments.model_id)
|
||||
required_memory = model_card.storage_size
|
||||
available_memory = self._calculate_total_available_memory()
|
||||
|
||||
@@ -329,7 +303,7 @@ class API:
|
||||
instance_meta: InstanceMeta = InstanceMeta.MlxRing,
|
||||
min_nodes: int = 1,
|
||||
) -> Instance:
|
||||
model_card = await resolve_model_card(model_id)
|
||||
model_card = await ModelCard.load(model_id)
|
||||
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
@@ -371,10 +345,7 @@ class API:
|
||||
if len(list(self.state.topology.list_nodes())) == 0:
|
||||
return PlacementPreviewResponse(previews=[])
|
||||
|
||||
cards = [card for card in MODEL_CARDS.values() if card.model_id == model_id]
|
||||
if not cards:
|
||||
raise HTTPException(status_code=404, detail=f"Model {model_id} not found")
|
||||
|
||||
model_card = await ModelCard.load(model_id)
|
||||
instance_combinations: list[tuple[Sharding, InstanceMeta, int]] = []
|
||||
for sharding in (Sharding.Pipeline, Sharding.Tensor):
|
||||
for instance_meta in (InstanceMeta.MlxRing, InstanceMeta.MlxJaccl):
|
||||
@@ -389,96 +360,93 @@ class API:
|
||||
# TODO: PDD
|
||||
# instance_combinations.append((Sharding.PrefillDecodeDisaggregation, InstanceMeta.MlxRing, 1))
|
||||
|
||||
for model_card in cards:
|
||||
for sharding, instance_meta, min_nodes in instance_combinations:
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
PlaceInstance(
|
||||
model_card=model_card,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
min_nodes=min_nodes,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
topology=self.state.topology,
|
||||
current_instances=self.state.instances,
|
||||
required_nodes=required_nodes,
|
||||
)
|
||||
except ValueError as exc:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error=str(exc),
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
current_ids = set(self.state.instances.keys())
|
||||
new_instances = [
|
||||
instance
|
||||
for instance_id, instance in placements.items()
|
||||
if instance_id not in current_ids
|
||||
]
|
||||
|
||||
if len(new_instances) != 1:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error="Expected exactly one new instance from placement",
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
instance = new_instances[0]
|
||||
shard_assignments = instance.shard_assignments
|
||||
placement_node_ids = list(shard_assignments.node_to_runner.keys())
|
||||
|
||||
memory_delta_by_node: dict[str, int] = {}
|
||||
if placement_node_ids:
|
||||
total_bytes = model_card.storage_size.in_bytes
|
||||
per_node = total_bytes // len(placement_node_ids)
|
||||
remainder = total_bytes % len(placement_node_ids)
|
||||
for index, node_id in enumerate(
|
||||
sorted(placement_node_ids, key=str)
|
||||
):
|
||||
extra = 1 if index < remainder else 0
|
||||
memory_delta_by_node[str(node_id)] = per_node + extra
|
||||
|
||||
if (
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
) not in seen:
|
||||
for sharding, instance_meta, min_nodes in instance_combinations:
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
PlaceInstance(
|
||||
model_card=model_card,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
min_nodes=min_nodes,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
topology=self.state.topology,
|
||||
current_instances=self.state.instances,
|
||||
required_nodes=required_nodes,
|
||||
)
|
||||
except ValueError as exc:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=instance,
|
||||
memory_delta_by_node=memory_delta_by_node or None,
|
||||
error=None,
|
||||
instance=None,
|
||||
error=str(exc),
|
||||
)
|
||||
)
|
||||
seen.add(
|
||||
(
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
current_ids = set(self.state.instances.keys())
|
||||
new_instances = [
|
||||
instance
|
||||
for instance_id, instance in placements.items()
|
||||
if instance_id not in current_ids
|
||||
]
|
||||
|
||||
if len(new_instances) != 1:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error="Expected exactly one new instance from placement",
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
instance = new_instances[0]
|
||||
shard_assignments = instance.shard_assignments
|
||||
placement_node_ids = list(shard_assignments.node_to_runner.keys())
|
||||
|
||||
memory_delta_by_node: dict[str, int] = {}
|
||||
if placement_node_ids:
|
||||
total_bytes = model_card.storage_size.in_bytes
|
||||
per_node = total_bytes // len(placement_node_ids)
|
||||
remainder = total_bytes % len(placement_node_ids)
|
||||
for index, node_id in enumerate(sorted(placement_node_ids, key=str)):
|
||||
extra = 1 if index < remainder else 0
|
||||
memory_delta_by_node[str(node_id)] = per_node + extra
|
||||
|
||||
if (
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=instance,
|
||||
memory_delta_by_node=memory_delta_by_node or None,
|
||||
error=None,
|
||||
)
|
||||
)
|
||||
seen.add(
|
||||
(
|
||||
model_card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(placement_node_ids),
|
||||
)
|
||||
)
|
||||
|
||||
return PlacementPreviewResponse(previews=previews)
|
||||
|
||||
@@ -683,7 +651,7 @@ class API:
|
||||
self, payload: ChatCompletionTaskParams
|
||||
) -> ChatCompletionResponse | StreamingResponse:
|
||||
"""Handle chat completions, supporting both streaming and non-streaming responses."""
|
||||
model_card = await resolve_model_card(ModelId(payload.model))
|
||||
model_card = await ModelCard.load(ModelId(payload.model))
|
||||
payload.model = model_card.model_id
|
||||
|
||||
if not any(
|
||||
@@ -710,7 +678,7 @@ class API:
|
||||
async def bench_chat_completions(
|
||||
self, payload: BenchChatCompletionTaskParams
|
||||
) -> BenchChatCompletionResponse:
|
||||
model_card = await resolve_model_card(ModelId(payload.model))
|
||||
model_card = await ModelCard.load(ModelId(payload.model))
|
||||
payload.model = model_card.model_id
|
||||
|
||||
if not any(
|
||||
@@ -735,7 +703,7 @@ class API:
|
||||
|
||||
Raises HTTPException 404 if no instance is found for the model.
|
||||
"""
|
||||
model_card = await resolve_model_card(ModelId(model))
|
||||
model_card = await ModelCard.load(ModelId(model))
|
||||
resolved_model = model_card.model_id
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == resolved_model
|
||||
@@ -782,9 +750,6 @@ class API:
|
||||
with SSE-formatted events for partial and final images.
|
||||
"""
|
||||
payload.model = await self._validate_image_model(payload.model)
|
||||
payload = payload.model_copy(
|
||||
update={"advanced_params": _ensure_seed(payload.advanced_params)}
|
||||
)
|
||||
|
||||
command = ImageGeneration(
|
||||
request_params=payload,
|
||||
@@ -1033,9 +998,6 @@ class API:
|
||||
|
||||
payload.stream = False
|
||||
payload.partial_images = 0
|
||||
payload = payload.model_copy(
|
||||
update={"advanced_params": _ensure_seed(payload.advanced_params)}
|
||||
)
|
||||
|
||||
command = ImageGeneration(
|
||||
request_params=payload,
|
||||
@@ -1067,7 +1029,6 @@ class API:
|
||||
) -> ImageEdits:
|
||||
"""Prepare and send an image edits command with chunked image upload."""
|
||||
resolved_model = await self._validate_image_model(model)
|
||||
advanced_params = _ensure_seed(advanced_params)
|
||||
|
||||
image_content = await image.read()
|
||||
image_data = base64.b64encode(image_content).decode("utf-8")
|
||||
@@ -1248,7 +1209,7 @@ class API:
|
||||
supports_tensor=card.supports_tensor,
|
||||
tasks=[task.value for task in card.tasks],
|
||||
)
|
||||
for card in MODEL_CARDS.values()
|
||||
for card in await get_model_cards()
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -94,35 +94,20 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
|
||||
node_to_runner: dict[NodeId, RunnerId] = {}
|
||||
|
||||
# Determine CFG parallelism topology
|
||||
# CFG parallel only for even node counts with CFG models (2+ nodes)
|
||||
use_cfg_parallel = model_card.uses_cfg and world_size >= 2 and world_size % 2 == 0
|
||||
cfg_world_size = 2 if use_cfg_parallel else 1
|
||||
pipeline_world_size = world_size // cfg_world_size
|
||||
|
||||
# For CFG parallel, we only need to allocate layers for one pipeline group
|
||||
# (both CFG groups run the same layers). Use the first pipeline group's nodes.
|
||||
pipeline_node_ids = cycle.node_ids[:pipeline_world_size]
|
||||
pipeline_memory = sum(
|
||||
(node_memory[node_id].ram_available for node_id in pipeline_node_ids),
|
||||
start=Memory(),
|
||||
)
|
||||
|
||||
layer_allocations = allocate_layers_proportionally(
|
||||
total_layers=total_layers,
|
||||
memory_fractions=[
|
||||
node_memory[node_id].ram_available.in_bytes / pipeline_memory.in_bytes
|
||||
for node_id in pipeline_node_ids
|
||||
node_memory[node_id].ram_available.in_bytes / cycle_memory.in_bytes
|
||||
for node_id in cycle.node_ids
|
||||
],
|
||||
)
|
||||
|
||||
# Validate each pipeline node has sufficient memory for its assigned layers
|
||||
# Use integer arithmetic to avoid floating point precision issues
|
||||
total_storage_bytes = model_card.storage_size.in_bytes
|
||||
for i, node_id in enumerate(pipeline_node_ids):
|
||||
node_layers = layer_allocations[i]
|
||||
# Integer division then multiply to get conservative estimate
|
||||
required_memory = (total_storage_bytes * node_layers) // total_layers
|
||||
# Validate each node has sufficient memory for its assigned layers
|
||||
memory_per_layer = model_card.storage_size.in_bytes / total_layers
|
||||
for i, (node_id, node_layers) in enumerate(
|
||||
zip(cycle.node_ids, layer_allocations, strict=True)
|
||||
):
|
||||
required_memory = node_layers * memory_per_layer
|
||||
available_memory = node_memory[node_id].ram_available.in_bytes
|
||||
if required_memory > available_memory:
|
||||
raise ValueError(
|
||||
@@ -131,69 +116,24 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
f"but only has {available_memory / (1024**3):.2f} GB available"
|
||||
)
|
||||
|
||||
# CFG group 0: pipeline ranks in ascending order (0, 1, 2, ...)
|
||||
# CFG group 1: pipeline ranks in descending order (reversed)
|
||||
# This places both "last stages" as ring neighbors for CFG exchange.
|
||||
position_to_cfg_pipeline = [(0, r) for r in range(pipeline_world_size)] + [
|
||||
(1, r) for r in reversed(range(pipeline_world_size))
|
||||
]
|
||||
|
||||
cfg_pipeline_to_device: dict[tuple[int, int], int] = {
|
||||
(cfg_rank, pipeline_rank): i
|
||||
for i, (cfg_rank, pipeline_rank) in enumerate(position_to_cfg_pipeline)
|
||||
}
|
||||
|
||||
for i, node_id in enumerate(cycle.node_ids):
|
||||
cfg_rank, pipeline_rank = position_to_cfg_pipeline[i]
|
||||
|
||||
layers_before = sum(layer_allocations[:pipeline_rank])
|
||||
node_layers = layer_allocations[pipeline_rank]
|
||||
|
||||
is_first_stage = pipeline_rank == 0
|
||||
is_last_stage = pipeline_rank == pipeline_world_size - 1
|
||||
|
||||
if is_last_stage:
|
||||
next_pipeline_device = None
|
||||
else:
|
||||
next_pipeline_device = cfg_pipeline_to_device[(cfg_rank, pipeline_rank + 1)]
|
||||
|
||||
if is_first_stage:
|
||||
prev_pipeline_device = None
|
||||
else:
|
||||
prev_pipeline_device = cfg_pipeline_to_device[(cfg_rank, pipeline_rank - 1)]
|
||||
|
||||
if is_last_stage and use_cfg_parallel:
|
||||
other_cfg_rank = 1 - cfg_rank
|
||||
cfg_peer_device = cfg_pipeline_to_device[(other_cfg_rank, pipeline_rank)]
|
||||
else:
|
||||
cfg_peer_device = None
|
||||
|
||||
first_pipeline_device = cfg_pipeline_to_device[(cfg_rank, 0)]
|
||||
last_pipeline_device = cfg_pipeline_to_device[
|
||||
(cfg_rank, pipeline_world_size - 1)
|
||||
]
|
||||
|
||||
layers_assigned = 0
|
||||
for i, (node_id, node_layers) in enumerate(
|
||||
zip(cycle.node_ids, layer_allocations, strict=True)
|
||||
):
|
||||
runner_id = RunnerId()
|
||||
|
||||
shard = PipelineShardMetadata(
|
||||
model_card=model_card,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=layers_before,
|
||||
end_layer=layers_before + node_layers,
|
||||
start_layer=layers_assigned,
|
||||
end_layer=layers_assigned + node_layers,
|
||||
n_layers=total_layers,
|
||||
cfg_rank=cfg_rank,
|
||||
cfg_world_size=cfg_world_size,
|
||||
explicit_pipeline_rank=pipeline_rank,
|
||||
next_pipeline_device=next_pipeline_device,
|
||||
prev_pipeline_device=prev_pipeline_device,
|
||||
cfg_peer_device=cfg_peer_device,
|
||||
first_pipeline_device=first_pipeline_device,
|
||||
last_pipeline_device=last_pipeline_device,
|
||||
)
|
||||
|
||||
runner_to_shard[runner_id] = shard
|
||||
node_to_runner[node_id] = runner_id
|
||||
layers_assigned += node_layers
|
||||
|
||||
shard_assignments = ShardAssignments(
|
||||
model_id=model_card.model_id,
|
||||
|
||||
@@ -5,7 +5,6 @@ from exo.master.placement_utils import (
|
||||
filter_cycles_by_memory,
|
||||
get_mlx_jaccl_coordinators,
|
||||
get_shard_assignments,
|
||||
get_shard_assignments_for_pipeline_parallel,
|
||||
get_smallest_cycles,
|
||||
)
|
||||
from exo.master.tests.conftest import (
|
||||
@@ -21,7 +20,7 @@ from exo.shared.types.profiling import (
|
||||
NodeNetworkInfo,
|
||||
)
|
||||
from exo.shared.types.topology import Connection, SocketConnection
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, Sharding
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
|
||||
|
||||
def test_filter_cycles_by_memory():
|
||||
@@ -488,195 +487,3 @@ def test_get_shard_assignments_insufficient_memory_raises():
|
||||
get_shard_assignments(
|
||||
model_card, selected_cycle, Sharding.Pipeline, node_memory
|
||||
)
|
||||
|
||||
|
||||
class TestCfgParallelPlacement:
|
||||
def _create_ring_topology(self, node_ids: list[NodeId]) -> Topology:
|
||||
topology = Topology()
|
||||
for node_id in node_ids:
|
||||
topology.add_node(node_id)
|
||||
|
||||
for i, node_id in enumerate(node_ids):
|
||||
next_node = node_ids[(i + 1) % len(node_ids)]
|
||||
conn = Connection(
|
||||
source=node_id,
|
||||
sink=next_node,
|
||||
edge=create_socket_connection(i + 1),
|
||||
)
|
||||
topology.add_connection(conn)
|
||||
|
||||
return topology
|
||||
|
||||
def test_two_nodes_cfg_model_uses_cfg_parallel(self):
|
||||
"""Two nodes with CFG model should use CFG parallel (no pipeline)."""
|
||||
node_a = NodeId()
|
||||
node_b = NodeId()
|
||||
|
||||
topology = self._create_ring_topology([node_a, node_b])
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 2]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {
|
||||
node_a: create_node_memory(1000 * 1024),
|
||||
node_b: create_node_memory(1000 * 1024),
|
||||
}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("qwen-image-test"),
|
||||
n_layers=60,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=True,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 2
|
||||
|
||||
# Both nodes should have all layers (no pipeline split)
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
assert shard.start_layer == 0
|
||||
assert shard.end_layer == 60
|
||||
assert shard.cfg_world_size == 2
|
||||
|
||||
cfg_ranks = sorted(
|
||||
s.cfg_rank for s in shards if isinstance(s, PipelineShardMetadata)
|
||||
)
|
||||
assert cfg_ranks == [0, 1]
|
||||
|
||||
def test_four_nodes_cfg_model_uses_hybrid(self):
|
||||
"""Four nodes with CFG model should use 2 CFG groups x 2 pipeline stages."""
|
||||
nodes = [NodeId() for _ in range(4)]
|
||||
|
||||
topology = self._create_ring_topology(nodes)
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 4]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {n: create_node_memory(1000 * 1024) for n in nodes}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("qwen-image-test"),
|
||||
n_layers=60,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=True,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 4
|
||||
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
assert shard.cfg_world_size == 2
|
||||
assert shard.pipeline_world_size == 2
|
||||
|
||||
# Check we have 2 nodes in each CFG group
|
||||
cfg_0_shards = [
|
||||
s
|
||||
for s in shards
|
||||
if isinstance(s, PipelineShardMetadata) and s.cfg_rank == 0
|
||||
]
|
||||
cfg_1_shards = [
|
||||
s
|
||||
for s in shards
|
||||
if isinstance(s, PipelineShardMetadata) and s.cfg_rank == 1
|
||||
]
|
||||
assert len(cfg_0_shards) == 2
|
||||
assert len(cfg_1_shards) == 2
|
||||
|
||||
# Both CFG groups should have the same layer assignments
|
||||
cfg_0_layers = [(s.start_layer, s.end_layer) for s in cfg_0_shards]
|
||||
cfg_1_layers = [(s.start_layer, s.end_layer) for s in cfg_1_shards]
|
||||
assert sorted(cfg_0_layers) == sorted(cfg_1_layers)
|
||||
|
||||
def test_three_nodes_cfg_model_uses_sequential_cfg(self):
|
||||
"""Three nodes (odd) with CFG model should use sequential CFG."""
|
||||
nodes = [NodeId() for _ in range(3)]
|
||||
|
||||
topology = self._create_ring_topology(nodes)
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 3]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {n: create_node_memory(1000 * 1024) for n in nodes}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("qwen-image-test"),
|
||||
n_layers=60,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=True,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 3
|
||||
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
# cfg_world_size = 1 means sequential CFG
|
||||
assert shard.cfg_world_size == 1
|
||||
assert shard.cfg_rank == 0
|
||||
|
||||
def test_two_nodes_non_cfg_model_uses_pipeline(self):
|
||||
"""Two nodes with non-CFG model should use pure pipeline."""
|
||||
node_a = NodeId()
|
||||
node_b = NodeId()
|
||||
|
||||
topology = self._create_ring_topology([node_a, node_b])
|
||||
cycles = [c for c in topology.get_cycles() if len(c) == 2]
|
||||
cycle = cycles[0]
|
||||
|
||||
node_memory = {
|
||||
node_a: create_node_memory(1000 * 1024),
|
||||
node_b: create_node_memory(1000 * 1024),
|
||||
}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_id=ModelId("flux-test"),
|
||||
n_layers=57,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
uses_cfg=False, # Non-CFG model
|
||||
tasks=[ModelTask.TextToImage],
|
||||
)
|
||||
|
||||
assignments = get_shard_assignments_for_pipeline_parallel(
|
||||
model_card, cycle, node_memory
|
||||
)
|
||||
|
||||
shards = list(assignments.runner_to_shard.values())
|
||||
assert len(shards) == 2
|
||||
|
||||
for shard in shards:
|
||||
assert isinstance(shard, PipelineShardMetadata)
|
||||
# cfg_world_size = 1 means no CFG parallel
|
||||
assert shard.cfg_world_size == 1
|
||||
assert shard.cfg_rank == 0
|
||||
|
||||
# Should have actual layer sharding (pipeline)
|
||||
layer_ranges = sorted(
|
||||
(s.start_layer, s.end_layer)
|
||||
for s in shards
|
||||
if isinstance(s, PipelineShardMetadata)
|
||||
)
|
||||
# First shard starts at 0, last shard ends at 57
|
||||
assert layer_ranges[0][0] == 0
|
||||
assert layer_ranges[-1][1] == 57
|
||||
|
||||
@@ -2,6 +2,8 @@ import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from exo.utils.dashboard_path import find_dashboard, find_resources
|
||||
|
||||
_EXO_HOME_ENV = os.environ.get("EXO_HOME", None)
|
||||
|
||||
|
||||
@@ -31,6 +33,14 @@ EXO_MODELS_DIR = (
|
||||
if _EXO_MODELS_DIR_ENV is None
|
||||
else Path.home() / _EXO_MODELS_DIR_ENV
|
||||
)
|
||||
_RESOURCES_DIR_ENV = os.environ.get("EXO_RESOURCES_DIR", None)
|
||||
RESOURCES_DIR = (
|
||||
find_resources() if _RESOURCES_DIR_ENV is None else Path.home() / _RESOURCES_DIR_ENV
|
||||
)
|
||||
_DASHBOARD_DIR_ENV = os.environ.get("EXO_DASHBOARD_DIR", None)
|
||||
DASHBOARD_DIR = (
|
||||
find_dashboard() if _RESOURCES_DIR_ENV is None else Path.home() / _RESOURCES_DIR_ENV
|
||||
)
|
||||
|
||||
# Log files (data/logs or cache)
|
||||
EXO_LOG = EXO_CACHE_HOME / "exo.log"
|
||||
|
||||
@@ -12,16 +12,42 @@ from pydantic import (
|
||||
BaseModel,
|
||||
Field,
|
||||
PositiveInt,
|
||||
ValidationError,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
from tomlkit.exceptions import TOMLKitError
|
||||
|
||||
from exo.shared.constants import EXO_ENABLE_IMAGE_MODELS
|
||||
from exo.shared.constants import EXO_ENABLE_IMAGE_MODELS, RESOURCES_DIR
|
||||
from exo.shared.types.common import ModelId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
|
||||
_card_cache: dict[str, "ModelCard"] = {}
|
||||
# kinda ugly...
|
||||
# TODO: load search path from config.toml
|
||||
_csp = [Path(RESOURCES_DIR)]
|
||||
if EXO_ENABLE_IMAGE_MODELS:
|
||||
_csp.append(Path(RESOURCES_DIR) / "image_models")
|
||||
|
||||
CARD_SEARCH_PATH = _csp
|
||||
|
||||
_card_cache: dict[ModelId, "ModelCard"] = {}
|
||||
|
||||
|
||||
async def _populate_card_cache():
|
||||
for path in CARD_SEARCH_PATH:
|
||||
async for toml_file in path.rglob("*.toml"):
|
||||
try:
|
||||
card = await ModelCard.load_from_path(toml_file)
|
||||
_card_cache[card.model_id] = card
|
||||
except (ValidationError, TOMLKitError):
|
||||
pass
|
||||
|
||||
|
||||
async def get_model_cards() -> list["ModelCard"]:
|
||||
if len(_card_cache) == 0:
|
||||
await _populate_card_cache()
|
||||
return list(_card_cache.values())
|
||||
|
||||
|
||||
class ModelTask(str, Enum):
|
||||
@@ -47,7 +73,6 @@ class ModelCard(CamelCaseModel):
|
||||
supports_tensor: bool
|
||||
tasks: list[ModelTask]
|
||||
components: list[ComponentInfo] | None = None
|
||||
uses_cfg: bool = False
|
||||
|
||||
@field_validator("tasks", mode="before")
|
||||
@classmethod
|
||||
@@ -56,28 +81,37 @@ class ModelCard(CamelCaseModel):
|
||||
|
||||
async def save(self, path: Path) -> None:
|
||||
async with await open_file(path, "w") as f:
|
||||
py = self.model_dump()
|
||||
py = self.model_dump(exclude_none=True)
|
||||
data = tomlkit.dumps(py) # pyright: ignore[reportUnknownMemberType]
|
||||
await f.write(data)
|
||||
|
||||
async def save_to_default_path(self):
|
||||
await self.save(Path(RESOURCES_DIR) / (self.model_id.normalize() + ".toml"))
|
||||
|
||||
@staticmethod
|
||||
async def load_from_path(path: Path) -> "ModelCard":
|
||||
async with await open_file(path, "r") as f:
|
||||
py = tomlkit.loads(await f.read())
|
||||
return ModelCard.model_validate(py)
|
||||
|
||||
# Is it okay that model card.load defaults to network access if the card doesn't exist? do we want to be more explicit here?
|
||||
@staticmethod
|
||||
async def load(model_id: ModelId) -> "ModelCard":
|
||||
for card in MODEL_CARDS.values():
|
||||
if card.model_id == model_id:
|
||||
return card
|
||||
return await ModelCard.from_hf(model_id)
|
||||
|
||||
@staticmethod
|
||||
async def from_hf(model_id: ModelId) -> "ModelCard":
|
||||
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
|
||||
if len(_card_cache) == 0:
|
||||
await _populate_card_cache()
|
||||
if (mc := _card_cache.get(model_id)) is not None:
|
||||
return mc
|
||||
|
||||
return await ModelCard.fetch_from_hf(model_id)
|
||||
|
||||
@staticmethod
|
||||
async def fetch_from_hf(model_id: ModelId) -> "ModelCard":
|
||||
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
|
||||
if len(_card_cache) == 0:
|
||||
await _populate_card_cache()
|
||||
if (mc := _card_cache.get(model_id)) is not None:
|
||||
return mc
|
||||
# TODO: failure if files do not exist
|
||||
config_data = await get_config_data(model_id)
|
||||
num_layers = config_data.layer_count
|
||||
mem_size_bytes = await get_safetensors_size(model_id)
|
||||
@@ -90,546 +124,13 @@ class ModelCard(CamelCaseModel):
|
||||
supports_tensor=config_data.supports_tensor,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
)
|
||||
await mc.save_to_default_path()
|
||||
_card_cache[model_id] = mc
|
||||
return mc
|
||||
|
||||
|
||||
MODEL_CARDS: dict[str, ModelCard] = {
|
||||
# deepseek v3
|
||||
"deepseek-v3.1-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
|
||||
storage_size=Memory.from_gb(378),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"deepseek-v3.1-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
|
||||
storage_size=Memory.from_gb(713),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# kimi k2
|
||||
"kimi-k2-instruct-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
|
||||
storage_size=Memory.from_gb(578),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"kimi-k2-thinking": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
|
||||
storage_size=Memory.from_gb(658),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"kimi-k2.5": ModelCard(
|
||||
model_id=ModelId("mlx-community/Kimi-K2.5"),
|
||||
storage_size=Memory.from_gb(617),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.1
|
||||
"llama-3.1-8b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(4423),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.1-8b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(8540),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.1-8b-bf16": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
|
||||
storage_size=Memory.from_mb(16100),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.1-70b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.2
|
||||
"llama-3.2-1b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(696),
|
||||
n_layers=16,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.2-3b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(1777),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.2-3b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(3339),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# llama-3.3
|
||||
"llama-3.3-70b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.3-70b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(73242),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"llama-3.3-70b-fp16": ModelCard(
|
||||
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
|
||||
storage_size=Memory.from_mb(137695),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# qwen3
|
||||
"qwen3-0.6b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
|
||||
storage_size=Memory.from_mb(327),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-0.6b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
|
||||
storage_size=Memory.from_mb(666),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-30b": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
|
||||
storage_size=Memory.from_mb(16797),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-30b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
|
||||
storage_size=Memory.from_mb(31738),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(44800),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-235b-a22b-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
|
||||
storage_size=Memory.from_gb(132),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-235b-a22b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
|
||||
storage_size=Memory.from_gb(250),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-coder-480b-a35b-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
|
||||
storage_size=Memory.from_gb(270),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"qwen3-coder-480b-a35b-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
|
||||
storage_size=Memory.from_gb(540),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# gpt-oss
|
||||
"gpt-oss-120b-MXFP4-Q8": ModelCard(
|
||||
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
storage_size=Memory.from_kb(68_996_301),
|
||||
n_layers=36,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"gpt-oss-20b-MXFP4-Q8": ModelCard(
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
|
||||
storage_size=Memory.from_kb(11_744_051),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# glm 4.5
|
||||
"glm-4.5-air-8bit": ModelCard(
|
||||
# Needs to be quantized g32 or g16 to work with tensor parallel
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
storage_size=Memory.from_gb(114),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.5-air-bf16": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
|
||||
storage_size=Memory.from_gb(214),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# glm 4.7
|
||||
"glm-4.7-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
|
||||
storage_size=Memory.from_bytes(198556925568),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-6bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
|
||||
storage_size=Memory.from_bytes(286737579648),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-8bit-gs32": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
|
||||
storage_size=Memory.from_bytes(396963397248),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# glm 4.7 flash
|
||||
"glm-4.7-flash-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
|
||||
storage_size=Memory.from_gb(18),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-flash-5bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-5bit"),
|
||||
storage_size=Memory.from_gb(21),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-flash-6bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-6bit"),
|
||||
storage_size=Memory.from_gb(25),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"glm-4.7-flash-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-8bit"),
|
||||
storage_size=Memory.from_gb(32),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
# minimax-m2
|
||||
"minimax-m2.1-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
|
||||
storage_size=Memory.from_bytes(242986745856),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
"minimax-m2.1-3bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
|
||||
storage_size=Memory.from_bytes(100086644736),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
tasks=[ModelTask.TextGeneration],
|
||||
),
|
||||
}
|
||||
|
||||
_IMAGE_BASE_MODEL_CARDS: dict[str, ModelCard] = {
|
||||
"flux1-schnell": ModelCard(
|
||||
model_id=ModelId("exolabs/FLUX.1-schnell"),
|
||||
storage_size=Memory.from_bytes(23782357120 + 9524621312),
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
component_path="text_encoder_2/",
|
||||
storage_size=Memory.from_bytes(9524621312),
|
||||
n_layers=24,
|
||||
can_shard=False,
|
||||
safetensors_index_filename="model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23782357120),
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"flux1-dev": ModelCard(
|
||||
model_id=ModelId("exolabs/FLUX.1-dev"),
|
||||
storage_size=Memory.from_bytes(23782357120 + 9524621312),
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
component_path="text_encoder_2/",
|
||||
storage_size=Memory.from_bytes(9524621312),
|
||||
n_layers=24,
|
||||
can_shard=False,
|
||||
safetensors_index_filename="model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23802816640),
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"flux1-krea-dev": ModelCard(
|
||||
model_id=ModelId("exolabs/FLUX.1-Krea-dev"),
|
||||
storage_size=Memory.from_bytes(23802816640 + 9524621312), # Same as dev
|
||||
n_layers=57,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="text_encoder_2",
|
||||
component_path="text_encoder_2/",
|
||||
storage_size=Memory.from_bytes(9524621312),
|
||||
n_layers=24,
|
||||
can_shard=False,
|
||||
safetensors_index_filename="model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(23802816640),
|
||||
n_layers=57,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"qwen-image": ModelCard(
|
||||
model_id=ModelId("exolabs/Qwen-Image"),
|
||||
storage_size=Memory.from_bytes(16584333312 + 40860802176),
|
||||
n_layers=60,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.TextToImage],
|
||||
uses_cfg=True,
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_bytes(16584333312),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(40860802176),
|
||||
n_layers=60,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
"qwen-image-edit-2509": ModelCard(
|
||||
model_id=ModelId("exolabs/Qwen-Image-Edit-2509"),
|
||||
storage_size=Memory.from_bytes(16584333312 + 40860802176),
|
||||
n_layers=60,
|
||||
hidden_size=1,
|
||||
supports_tensor=False,
|
||||
tasks=[ModelTask.ImageToImage],
|
||||
uses_cfg=True,
|
||||
components=[
|
||||
ComponentInfo(
|
||||
component_name="text_encoder",
|
||||
component_path="text_encoder/",
|
||||
storage_size=Memory.from_bytes(16584333312),
|
||||
n_layers=12,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="transformer",
|
||||
component_path="transformer/",
|
||||
storage_size=Memory.from_bytes(40860802176),
|
||||
n_layers=60,
|
||||
can_shard=True,
|
||||
safetensors_index_filename="diffusion_pytorch_model.safetensors.index.json",
|
||||
),
|
||||
ComponentInfo(
|
||||
component_name="vae",
|
||||
component_path="vae/",
|
||||
storage_size=Memory.from_kb(0),
|
||||
n_layers=None,
|
||||
can_shard=False,
|
||||
safetensors_index_filename=None,
|
||||
),
|
||||
],
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def _generate_image_model_quant_variants(
|
||||
# TODO: quantizing and dynamically creating model cards
|
||||
def _generate_image_model_quant_variants( # pyright: ignore[reportUnusedFunction]
|
||||
base_name: str,
|
||||
base_card: ModelCard,
|
||||
) -> dict[str, ModelCard]:
|
||||
@@ -684,7 +185,6 @@ def _generate_image_model_quant_variants(
|
||||
hidden_size=base_card.hidden_size,
|
||||
supports_tensor=base_card.supports_tensor,
|
||||
tasks=base_card.tasks,
|
||||
uses_cfg=base_card.uses_cfg,
|
||||
components=with_transformer_size(transformer_bytes),
|
||||
)
|
||||
}
|
||||
@@ -704,22 +204,12 @@ def _generate_image_model_quant_variants(
|
||||
hidden_size=base_card.hidden_size,
|
||||
supports_tensor=base_card.supports_tensor,
|
||||
tasks=base_card.tasks,
|
||||
uses_cfg=base_card.uses_cfg,
|
||||
components=with_transformer_size(quant_transformer_bytes),
|
||||
)
|
||||
|
||||
return variants
|
||||
|
||||
|
||||
_image_model_cards: dict[str, ModelCard] = {}
|
||||
for _base_name, _base_card in _IMAGE_BASE_MODEL_CARDS.items():
|
||||
_image_model_cards |= _generate_image_model_quant_variants(_base_name, _base_card)
|
||||
_IMAGE_MODEL_CARDS = _image_model_cards
|
||||
|
||||
if EXO_ENABLE_IMAGE_MODELS:
|
||||
MODEL_CARDS.update(_IMAGE_MODEL_CARDS)
|
||||
|
||||
|
||||
class ConfigData(BaseModel):
|
||||
model_config = {"extra": "ignore"} # Allow unknown fields
|
||||
|
||||
|
||||
@@ -57,62 +57,8 @@ class PipelineShardMetadata(BaseShardMetadata):
|
||||
|
||||
Layers are represented as a half-open interval [start_layer, end_layer),
|
||||
where start_layer is inclusive and end_layer is exclusive.
|
||||
|
||||
CFG parallelism fields:
|
||||
- cfg_rank: 0 = positive branch, 1 = negative branch (or 0 if no CFG parallel)
|
||||
- cfg_world_size: 1 = sequential CFG, 2 = parallel CFG
|
||||
|
||||
Communication rank fields (explicit to support ring topology):
|
||||
- next_pipeline_device: device to send to in pipeline forward pass
|
||||
- prev_pipeline_device: device to receive from in pipeline forward pass
|
||||
- cfg_peer_device: device for CFG exchange (last stage only)
|
||||
- first_pipeline_device: device of first stage in same CFG group (for latent return)
|
||||
"""
|
||||
|
||||
cfg_rank: int = 0
|
||||
cfg_world_size: int = 1
|
||||
|
||||
# Explicit pipeline position (CFG group 1 uses reversed pipeline order)
|
||||
explicit_pipeline_rank: int | None = None
|
||||
|
||||
next_pipeline_device: int | None = None
|
||||
prev_pipeline_device: int | None = None
|
||||
cfg_peer_device: int | None = None
|
||||
first_pipeline_device: int | None = None
|
||||
last_pipeline_device: int | None = None
|
||||
|
||||
@property
|
||||
def pipeline_world_size(self) -> int:
|
||||
return self.world_size // self.cfg_world_size
|
||||
|
||||
@property
|
||||
def pipeline_rank(self) -> int:
|
||||
if self.explicit_pipeline_rank is not None:
|
||||
return self.explicit_pipeline_rank
|
||||
return self.device_rank % self.pipeline_world_size
|
||||
|
||||
@property
|
||||
def is_pipeline_first(self) -> bool:
|
||||
return self.pipeline_rank == 0
|
||||
|
||||
@property
|
||||
def is_pipeline_last(self) -> bool:
|
||||
return self.pipeline_rank == self.pipeline_world_size - 1
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(
|
||||
(
|
||||
self.model_card.model_id,
|
||||
self.start_layer,
|
||||
self.end_layer,
|
||||
self.n_layers,
|
||||
self.device_rank,
|
||||
self.world_size,
|
||||
self.cfg_rank,
|
||||
self.cfg_world_size,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class TensorShardMetadata(BaseShardMetadata):
|
||||
pass
|
||||
|
||||
@@ -1,31 +1,45 @@
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import cast
|
||||
|
||||
|
||||
def find_resources() -> Path:
|
||||
resources = _find_resources_in_repo() or _find_resources_in_bundle()
|
||||
if resources is None:
|
||||
raise FileNotFoundError(
|
||||
"Unable to locate resources. Did you clone the repo properly?"
|
||||
)
|
||||
return resources
|
||||
|
||||
|
||||
def _find_resources_in_repo() -> Path | None:
|
||||
current_module = Path(__file__).resolve()
|
||||
for parent in current_module.parents:
|
||||
build = parent / "resources"
|
||||
if build.is_dir():
|
||||
return build
|
||||
return None
|
||||
|
||||
|
||||
def _find_resources_in_bundle() -> Path | None:
|
||||
frozen_root = cast(str | None, getattr(sys, "_MEIPASS", None))
|
||||
if frozen_root is None:
|
||||
return None
|
||||
candidate = Path(frozen_root) / "resources"
|
||||
if candidate.is_dir():
|
||||
return candidate
|
||||
return None
|
||||
|
||||
|
||||
def find_dashboard() -> Path:
|
||||
dashboard = (
|
||||
_find_dashboard_in_env()
|
||||
or _find_dashboard_in_repo()
|
||||
or _find_dashboard_in_bundle()
|
||||
)
|
||||
dashboard = _find_dashboard_in_repo() or _find_dashboard_in_bundle()
|
||||
if not dashboard:
|
||||
raise FileNotFoundError(
|
||||
"Unable to locate dashboard assets - make sure the dashboard has been built, or export DASHBOARD_DIR if you've built the dashboard elsewhere."
|
||||
"Unable to locate dashboard assets - you probably forgot to run `cd dashboard && npm install && npm run build && cd ..`"
|
||||
)
|
||||
return dashboard
|
||||
|
||||
|
||||
def _find_dashboard_in_env() -> Path | None:
|
||||
env = os.environ.get("DASHBOARD_DIR")
|
||||
if not env:
|
||||
return None
|
||||
resolved_env = Path(env).expanduser().resolve()
|
||||
|
||||
return resolved_env
|
||||
|
||||
|
||||
def _find_dashboard_in_repo() -> Path | None:
|
||||
current_module = Path(__file__).resolve()
|
||||
for parent in current_module.parents:
|
||||
|
||||
@@ -37,12 +37,7 @@ class DistributedImageModel:
|
||||
config = get_config_for_model(model_id)
|
||||
adapter = create_adapter_for_model(config, model_id, local_path, quantize)
|
||||
|
||||
has_layer_sharding = (
|
||||
shard_metadata.start_layer != 0
|
||||
or shard_metadata.end_layer != shard_metadata.n_layers
|
||||
)
|
||||
|
||||
if group is not None and has_layer_sharding:
|
||||
if group is not None:
|
||||
adapter.slice_transformer_blocks(
|
||||
start_layer=shard_metadata.start_layer,
|
||||
end_layer=shard_metadata.end_layer,
|
||||
|
||||
@@ -98,8 +98,8 @@ def generate_image(
|
||||
|
||||
partial_images = (
|
||||
task.partial_images
|
||||
if task.partial_images is not None and task.stream is not None and task.stream
|
||||
else 0
|
||||
if task.partial_images is not None
|
||||
else (3 if task.stream else 0)
|
||||
)
|
||||
|
||||
image_path: Path | None = None
|
||||
|
||||
@@ -86,27 +86,6 @@ class PromptData(ABC):
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
"""Get embeddings for a single CFG branch (positive or negative).
|
||||
|
||||
Used for sequential CFG and CFG parallel modes where we process
|
||||
one branch at a time instead of batching.
|
||||
|
||||
Args:
|
||||
positive: True for positive prompt, False for negative prompt
|
||||
|
||||
Returns:
|
||||
Tuple of:
|
||||
- embeds: [1, seq, hidden] prompt embeddings
|
||||
- mask: [1, seq] attention mask or None
|
||||
- pooled: [1, hidden] pooled embeddings or None
|
||||
- conditioning_latents: [1, latent_seq, latent_dim] or None
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class ModelAdapter(ABC, Generic[ModelT, TransformerT]):
|
||||
_config: ImageModelConfig
|
||||
|
||||
@@ -64,12 +64,6 @@ class FluxPromptData(PromptData):
|
||||
) -> tuple[mx.array, mx.array, mx.array | None, mx.array | None] | None:
|
||||
return None
|
||||
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
"""Flux doesn't use CFG, but we return positive data for compatibility."""
|
||||
return (self._prompt_embeds, None, self._pooled_prompt_embeds, None)
|
||||
|
||||
|
||||
class FluxModelAdapter(ModelAdapter[Flux1, Transformer]):
|
||||
def __init__(
|
||||
|
||||
@@ -133,24 +133,6 @@ class QwenPromptData(PromptData):
|
||||
|
||||
return batched_embeds, batched_mask, None, cond_latents
|
||||
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
if positive:
|
||||
return (
|
||||
self._prompt_embeds,
|
||||
self._prompt_mask,
|
||||
None,
|
||||
self.conditioning_latents,
|
||||
)
|
||||
else:
|
||||
return (
|
||||
self._negative_prompt_embeds,
|
||||
self._negative_prompt_mask,
|
||||
None,
|
||||
self.conditioning_latents,
|
||||
)
|
||||
|
||||
|
||||
class QwenModelAdapter(ModelAdapter[QwenImage, QwenTransformer]):
|
||||
"""Adapter for Qwen-Image model.
|
||||
|
||||
@@ -153,24 +153,6 @@ class QwenEditPromptData(PromptData):
|
||||
|
||||
return batched_embeds, batched_mask, None, batched_cond_latents
|
||||
|
||||
def get_cfg_branch_data(
|
||||
self, positive: bool
|
||||
) -> tuple[mx.array, mx.array | None, mx.array | None, mx.array | None]:
|
||||
if positive:
|
||||
return (
|
||||
self._prompt_embeds,
|
||||
self._prompt_mask,
|
||||
None,
|
||||
self._conditioning_latents,
|
||||
)
|
||||
else:
|
||||
return (
|
||||
self._negative_prompt_embeds,
|
||||
self._negative_prompt_mask,
|
||||
None,
|
||||
self._conditioning_latents,
|
||||
)
|
||||
|
||||
|
||||
class QwenEditModelAdapter(ModelAdapter[QwenImageEdit, QwenTransformer]):
|
||||
"""Adapter for Qwen-Image-Edit model.
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
from collections.abc import Iterator
|
||||
from dataclasses import dataclass
|
||||
from math import ceil
|
||||
from typing import Any, Optional, final
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
from mflux.models.common.config.config import Config
|
||||
@@ -22,16 +20,6 @@ from exo.worker.engines.image.pipeline.block_wrapper import (
|
||||
)
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class CfgBranch:
|
||||
positive: bool
|
||||
embeds: mx.array
|
||||
mask: mx.array | None
|
||||
pooled: mx.array | None
|
||||
cond_latents: mx.array | None
|
||||
|
||||
|
||||
def calculate_patch_heights(
|
||||
latent_height: int, num_patches: int
|
||||
) -> tuple[list[int], int]:
|
||||
@@ -84,11 +72,22 @@ class DiffusionRunner:
|
||||
self.adapter = adapter
|
||||
self.group = group
|
||||
|
||||
self._init_cfg_topology(shard_metadata)
|
||||
if group is None:
|
||||
self.rank = 0
|
||||
self.world_size = 1
|
||||
self.next_rank = 0
|
||||
self.prev_rank = 0
|
||||
self.start_layer = 0
|
||||
self.end_layer = config.total_blocks
|
||||
else:
|
||||
self.rank = shard_metadata.device_rank
|
||||
self.world_size = shard_metadata.world_size
|
||||
self.next_rank = (self.rank + 1) % self.world_size
|
||||
self.prev_rank = (self.rank - 1 + self.world_size) % self.world_size
|
||||
self.start_layer = shard_metadata.start_layer
|
||||
self.end_layer = shard_metadata.end_layer
|
||||
|
||||
self.num_patches = (
|
||||
num_patches if num_patches else max(1, self.pipeline_world_size)
|
||||
)
|
||||
self.num_patches = num_patches if num_patches else max(1, self.world_size)
|
||||
|
||||
self.total_joint = config.joint_block_count
|
||||
self.total_single = config.single_block_count
|
||||
@@ -98,48 +97,6 @@ class DiffusionRunner:
|
||||
|
||||
self._compute_assigned_blocks()
|
||||
|
||||
def _init_cfg_topology(self, shard_metadata: PipelineShardMetadata) -> None:
|
||||
"""Initialize CFG and pipeline topology from shard metadata."""
|
||||
if self.group is None:
|
||||
self.rank = 0
|
||||
self.world_size = 1
|
||||
self.start_layer = 0
|
||||
self.end_layer = self.config.total_blocks
|
||||
|
||||
self.cfg_rank = 0
|
||||
self.cfg_world_size = 1
|
||||
self.cfg_parallel = False
|
||||
|
||||
self.pipeline_world_size = 1
|
||||
self.pipeline_rank = 0
|
||||
|
||||
self.next_pipeline_rank: int | None = None
|
||||
self.prev_pipeline_rank: int | None = None
|
||||
self.cfg_peer_rank: int | None = None
|
||||
self.first_pipeline_rank: int = 0
|
||||
self.last_pipeline_rank: int = 0
|
||||
else:
|
||||
self.rank = shard_metadata.device_rank
|
||||
self.world_size = shard_metadata.world_size
|
||||
self.start_layer = shard_metadata.start_layer
|
||||
self.end_layer = shard_metadata.end_layer
|
||||
|
||||
self.cfg_rank = shard_metadata.cfg_rank
|
||||
self.cfg_world_size = shard_metadata.cfg_world_size
|
||||
self.cfg_parallel = self.cfg_world_size > 1
|
||||
|
||||
self.pipeline_world_size = shard_metadata.pipeline_world_size
|
||||
self.pipeline_rank = shard_metadata.pipeline_rank
|
||||
|
||||
self.next_pipeline_rank = shard_metadata.next_pipeline_device
|
||||
self.prev_pipeline_rank = shard_metadata.prev_pipeline_device
|
||||
self.cfg_peer_rank = shard_metadata.cfg_peer_device
|
||||
|
||||
assert shard_metadata.first_pipeline_device is not None
|
||||
assert shard_metadata.last_pipeline_device is not None
|
||||
self.first_pipeline_rank = shard_metadata.first_pipeline_device
|
||||
self.last_pipeline_rank = shard_metadata.last_pipeline_device
|
||||
|
||||
def _compute_assigned_blocks(self) -> None:
|
||||
"""Determine which joint/single blocks this stage owns."""
|
||||
start = self.start_layer
|
||||
@@ -176,11 +133,11 @@ class DiffusionRunner:
|
||||
|
||||
@property
|
||||
def is_first_stage(self) -> bool:
|
||||
return self.pipeline_rank == 0
|
||||
return self.rank == 0
|
||||
|
||||
@property
|
||||
def is_last_stage(self) -> bool:
|
||||
return self.pipeline_rank == self.pipeline_world_size - 1
|
||||
return self.rank == self.world_size - 1
|
||||
|
||||
@property
|
||||
def is_distributed(self) -> bool:
|
||||
@@ -191,97 +148,6 @@ class DiffusionRunner:
|
||||
return self._guidance_override
|
||||
return self.config.guidance_scale
|
||||
|
||||
def _get_cfg_branches(self, prompt_data: PromptData) -> Iterator[CfgBranch]:
|
||||
"""Yield the CFG branches this node should process.
|
||||
|
||||
- No CFG: yields one branch (positive)
|
||||
- CFG parallel: yields one branch (our assigned branch)
|
||||
- Sequential CFG: yields two branches (positive, then negative)
|
||||
"""
|
||||
if not self.adapter.needs_cfg:
|
||||
embeds, mask, pooled, cond = prompt_data.get_cfg_branch_data(positive=True)
|
||||
yield CfgBranch(
|
||||
positive=True,
|
||||
embeds=embeds,
|
||||
mask=mask,
|
||||
pooled=pooled,
|
||||
cond_latents=cond,
|
||||
)
|
||||
elif self.cfg_parallel:
|
||||
positive = self.cfg_rank == 0
|
||||
embeds, mask, pooled, cond = prompt_data.get_cfg_branch_data(positive)
|
||||
yield CfgBranch(
|
||||
positive=positive,
|
||||
embeds=embeds,
|
||||
mask=mask,
|
||||
pooled=pooled,
|
||||
cond_latents=cond,
|
||||
)
|
||||
else:
|
||||
pos_embeds, pos_mask, pos_pooled, pos_cond = (
|
||||
prompt_data.get_cfg_branch_data(positive=True)
|
||||
)
|
||||
yield CfgBranch(
|
||||
positive=True,
|
||||
embeds=pos_embeds,
|
||||
mask=pos_mask,
|
||||
pooled=pos_pooled,
|
||||
cond_latents=pos_cond,
|
||||
)
|
||||
neg_embeds, neg_mask, neg_pooled, neg_cond = (
|
||||
prompt_data.get_cfg_branch_data(positive=False)
|
||||
)
|
||||
yield CfgBranch(
|
||||
positive=False,
|
||||
embeds=neg_embeds,
|
||||
mask=neg_mask,
|
||||
pooled=neg_pooled,
|
||||
cond_latents=neg_cond,
|
||||
)
|
||||
|
||||
def _combine_cfg_results(self, results: list[tuple[bool, mx.array]]) -> mx.array:
|
||||
if len(results) == 1:
|
||||
positive, noise = results[0]
|
||||
if self.cfg_parallel and self.is_last_stage:
|
||||
# TODO(ciaran): try to remove
|
||||
mx.eval(noise)
|
||||
return self._exchange_and_apply_guidance(noise, positive)
|
||||
return noise
|
||||
|
||||
noise_neg = next(n for p, n in results if not p)
|
||||
noise_pos = next(n for p, n in results if p)
|
||||
return self._apply_guidance(noise_pos, noise_neg)
|
||||
|
||||
def _exchange_and_apply_guidance(
|
||||
self, noise: mx.array, is_positive: bool
|
||||
) -> mx.array:
|
||||
assert self.group is not None
|
||||
assert self.cfg_peer_rank is not None
|
||||
|
||||
if is_positive:
|
||||
noise = mx.distributed.send(noise, self.cfg_peer_rank, group=self.group)
|
||||
mx.async_eval(noise)
|
||||
noise_neg = mx.distributed.recv_like(
|
||||
noise, self.cfg_peer_rank, group=self.group
|
||||
)
|
||||
mx.eval(noise_neg)
|
||||
noise_pos = noise
|
||||
else:
|
||||
noise_pos = mx.distributed.recv_like(
|
||||
noise, self.cfg_peer_rank, group=self.group
|
||||
)
|
||||
mx.eval(noise_pos)
|
||||
noise = mx.distributed.send(noise, self.cfg_peer_rank, group=self.group)
|
||||
mx.async_eval(noise)
|
||||
noise_neg = noise
|
||||
|
||||
return self._apply_guidance(noise_pos, noise_neg)
|
||||
|
||||
def _apply_guidance(self, noise_pos: mx.array, noise_neg: mx.array) -> mx.array:
|
||||
scale = self._get_effective_guidance_scale()
|
||||
assert scale is not None
|
||||
return self.adapter.apply_guidance(noise_pos, noise_neg, scale)
|
||||
|
||||
def _ensure_wrappers(
|
||||
self,
|
||||
text_seq_len: int,
|
||||
@@ -482,7 +348,6 @@ class DiffusionRunner:
|
||||
ctx.in_loop( # pyright: ignore[reportAny]
|
||||
t=t,
|
||||
latents=latents,
|
||||
time_steps=time_steps,
|
||||
)
|
||||
|
||||
mx.eval(latents)
|
||||
@@ -598,9 +463,7 @@ class DiffusionRunner:
|
||||
) -> mx.array:
|
||||
if self.group is None:
|
||||
return self._single_node_step(t, config, latents, prompt_data)
|
||||
elif (
|
||||
self.pipeline_world_size == 1 or t < config.init_time_step + num_sync_steps
|
||||
):
|
||||
elif t < config.init_time_step + num_sync_steps:
|
||||
return self._sync_pipeline_step(
|
||||
t,
|
||||
config,
|
||||
@@ -624,29 +487,42 @@ class DiffusionRunner:
|
||||
prompt_data: PromptData,
|
||||
) -> mx.array:
|
||||
cond_image_grid = prompt_data.cond_image_grid
|
||||
results: list[tuple[bool, mx.array]] = []
|
||||
|
||||
for branch in self._get_cfg_branches(prompt_data):
|
||||
# Reset caches before each branch to ensure no state contamination
|
||||
self._reset_all_caches()
|
||||
needs_cfg = self.adapter.needs_cfg
|
||||
|
||||
if needs_cfg:
|
||||
batched_data = prompt_data.get_batched_cfg_data()
|
||||
assert batched_data is not None, "CFG model must provide batched data"
|
||||
prompt_embeds, encoder_mask, batched_pooled, cond_latents = batched_data
|
||||
pooled_embeds = (
|
||||
branch.pooled if branch.pooled is not None else branch.embeds
|
||||
batched_pooled if batched_pooled is not None else prompt_embeds
|
||||
)
|
||||
step_latents = mx.concatenate([latents, latents], axis=0)
|
||||
else:
|
||||
prompt_embeds = prompt_data.prompt_embeds
|
||||
pooled_embeds = prompt_data.pooled_prompt_embeds
|
||||
encoder_mask = prompt_data.get_encoder_hidden_states_mask(positive=True)
|
||||
cond_latents = prompt_data.conditioning_latents
|
||||
step_latents = latents
|
||||
|
||||
noise = self._forward_pass(
|
||||
step_latents,
|
||||
prompt_embeds,
|
||||
pooled_embeds,
|
||||
t=t,
|
||||
config=config,
|
||||
encoder_hidden_states_mask=encoder_mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
conditioning_latents=cond_latents,
|
||||
)
|
||||
|
||||
if needs_cfg:
|
||||
noise_pos, noise_neg = mx.split(noise, 2, axis=0)
|
||||
guidance_scale = self._get_effective_guidance_scale()
|
||||
assert guidance_scale is not None
|
||||
noise = self.adapter.apply_guidance(
|
||||
noise_pos, noise_neg, guidance_scale=guidance_scale
|
||||
)
|
||||
|
||||
noise = self._forward_pass(
|
||||
latents,
|
||||
branch.embeds,
|
||||
pooled_embeds,
|
||||
t=t,
|
||||
config=config,
|
||||
encoder_hidden_states_mask=branch.mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
conditioning_latents=branch.cond_latents,
|
||||
)
|
||||
results.append((branch.positive, noise))
|
||||
|
||||
noise = self._combine_cfg_results(results)
|
||||
return config.scheduler.step(noise=noise, timestep=t, latents=latents) # pyright: ignore[reportAny]
|
||||
|
||||
def _create_patches(
|
||||
@@ -697,7 +573,7 @@ class DiffusionRunner:
|
||||
)
|
||||
|
||||
text_embeddings = self.adapter.compute_text_embeddings(
|
||||
t, config, pooled_prompt_embeds, hidden_states=hidden_states
|
||||
t, config, pooled_prompt_embeds
|
||||
)
|
||||
image_rotary_embeddings = self.adapter.compute_rotary_embeddings(
|
||||
prompt_embeds,
|
||||
@@ -709,17 +585,16 @@ class DiffusionRunner:
|
||||
|
||||
if self.has_joint_blocks:
|
||||
if not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.recv(
|
||||
(batch_size, num_img_tokens, hidden_dim),
|
||||
dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
encoder_hidden_states = mx.distributed.recv(
|
||||
(batch_size, text_seq_len, hidden_dim),
|
||||
dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(hidden_states, encoder_hidden_states)
|
||||
@@ -744,30 +619,27 @@ class DiffusionRunner:
|
||||
if self.has_single_blocks or self.is_last_stage:
|
||||
hidden_states = concatenated
|
||||
else:
|
||||
assert self.next_pipeline_rank is not None
|
||||
concatenated = mx.distributed.send(
|
||||
concatenated, self.next_pipeline_rank, group=self.group
|
||||
concatenated, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(concatenated)
|
||||
|
||||
elif self.has_joint_blocks and not self.is_last_stage:
|
||||
assert encoder_hidden_states is not None
|
||||
assert self.next_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.send(
|
||||
hidden_states, self.next_pipeline_rank, group=self.group
|
||||
hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
encoder_hidden_states = mx.distributed.send(
|
||||
encoder_hidden_states, self.next_pipeline_rank, group=self.group
|
||||
encoder_hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(hidden_states, encoder_hidden_states)
|
||||
|
||||
if self.has_single_blocks:
|
||||
if not self.owns_concat_stage and not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.recv(
|
||||
(batch_size, text_seq_len + num_img_tokens, hidden_dim),
|
||||
dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(hidden_states)
|
||||
@@ -782,9 +654,8 @@ class DiffusionRunner:
|
||||
)
|
||||
|
||||
if not self.is_last_stage:
|
||||
assert self.next_pipeline_rank is not None
|
||||
hidden_states = mx.distributed.send(
|
||||
hidden_states, self.next_pipeline_rank, group=self.group
|
||||
hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(hidden_states)
|
||||
|
||||
@@ -807,65 +678,75 @@ class DiffusionRunner:
|
||||
kontext_image_ids: mx.array | None = None,
|
||||
) -> mx.array:
|
||||
prev_latents = hidden_states
|
||||
needs_cfg = self.adapter.needs_cfg
|
||||
cond_image_grid = prompt_data.cond_image_grid
|
||||
|
||||
scaled_hidden_states = config.scheduler.scale_model_input(hidden_states, t) # pyright: ignore[reportAny]
|
||||
original_latent_tokens: int = scaled_hidden_states.shape[1] # pyright: ignore[reportAny]
|
||||
|
||||
results: list[tuple[bool, mx.array]] = []
|
||||
|
||||
for branch in self._get_cfg_branches(prompt_data):
|
||||
if needs_cfg:
|
||||
batched_data = prompt_data.get_batched_cfg_data()
|
||||
assert batched_data is not None, "CFG model must provide batched data"
|
||||
prompt_embeds, encoder_mask, batched_pooled, cond_latents = batched_data
|
||||
pooled_embeds = (
|
||||
branch.pooled if branch.pooled is not None else branch.embeds
|
||||
batched_pooled if batched_pooled is not None else prompt_embeds
|
||||
)
|
||||
|
||||
cond_latents = branch.cond_latents
|
||||
if cond_latents is not None:
|
||||
num_img_tokens: int = original_latent_tokens + cond_latents.shape[1]
|
||||
else:
|
||||
num_img_tokens = original_latent_tokens
|
||||
|
||||
step_latents: mx.array = scaled_hidden_states # pyright: ignore[reportAny]
|
||||
if self.is_first_stage and cond_latents is not None:
|
||||
step_latents = mx.concatenate([step_latents, cond_latents], axis=1)
|
||||
|
||||
text_seq_len = branch.embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, branch.mask)
|
||||
|
||||
noise = self._run_sync_pass(
|
||||
t,
|
||||
config,
|
||||
step_latents,
|
||||
branch.embeds,
|
||||
pooled_embeds,
|
||||
branch.mask,
|
||||
cond_image_grid,
|
||||
kontext_image_ids,
|
||||
num_img_tokens,
|
||||
original_latent_tokens,
|
||||
cond_latents,
|
||||
step_latents = mx.concatenate(
|
||||
[scaled_hidden_states, scaled_hidden_states], axis=0
|
||||
)
|
||||
else:
|
||||
prompt_embeds = prompt_data.prompt_embeds
|
||||
pooled_embeds = prompt_data.pooled_prompt_embeds
|
||||
encoder_mask = prompt_data.get_encoder_hidden_states_mask(positive=True)
|
||||
cond_latents = prompt_data.conditioning_latents
|
||||
step_latents = scaled_hidden_states # pyright: ignore[reportAny]
|
||||
|
||||
if self.is_last_stage:
|
||||
assert noise is not None
|
||||
results.append((branch.positive, noise))
|
||||
if cond_latents is not None:
|
||||
num_img_tokens: int = original_latent_tokens + cond_latents.shape[1]
|
||||
else:
|
||||
num_img_tokens = original_latent_tokens
|
||||
|
||||
if self.is_first_stage and cond_latents is not None:
|
||||
step_latents = mx.concatenate([step_latents, cond_latents], axis=1)
|
||||
|
||||
text_seq_len = prompt_embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, encoder_mask)
|
||||
|
||||
noise = self._run_sync_pass(
|
||||
t,
|
||||
config,
|
||||
step_latents,
|
||||
prompt_embeds,
|
||||
pooled_embeds,
|
||||
encoder_mask,
|
||||
cond_image_grid,
|
||||
kontext_image_ids,
|
||||
num_img_tokens,
|
||||
original_latent_tokens,
|
||||
cond_latents,
|
||||
)
|
||||
|
||||
if self.is_last_stage:
|
||||
noise = self._combine_cfg_results(results)
|
||||
assert noise is not None
|
||||
if needs_cfg:
|
||||
noise_pos, noise_neg = mx.split(noise, 2, axis=0)
|
||||
guidance_scale = self._get_effective_guidance_scale()
|
||||
assert guidance_scale is not None
|
||||
noise = self.adapter.apply_guidance(
|
||||
noise_pos, noise_neg, guidance_scale
|
||||
)
|
||||
|
||||
hidden_states = config.scheduler.step( # pyright: ignore[reportAny]
|
||||
noise=noise, timestep=t, latents=prev_latents
|
||||
)
|
||||
|
||||
if not self.is_first_stage:
|
||||
hidden_states = mx.distributed.send(
|
||||
hidden_states, self.first_pipeline_rank, group=self.group
|
||||
)
|
||||
hidden_states = mx.distributed.send(hidden_states, 0, group=self.group)
|
||||
mx.async_eval(hidden_states)
|
||||
|
||||
elif self.is_first_stage:
|
||||
hidden_states = mx.distributed.recv_like(
|
||||
prev_latents, src=self.last_pipeline_rank, group=self.group
|
||||
prev_latents, src=self.world_size - 1, group=self.group
|
||||
)
|
||||
mx.eval(hidden_states)
|
||||
|
||||
@@ -884,10 +765,39 @@ class DiffusionRunner:
|
||||
kontext_image_ids: mx.array | None = None,
|
||||
) -> mx.array:
|
||||
patch_latents, token_indices = self._create_patches(latents, config)
|
||||
needs_cfg = self.adapter.needs_cfg
|
||||
cond_image_grid = prompt_data.cond_image_grid
|
||||
|
||||
prev_patch_latents = [p for p in patch_latents]
|
||||
if needs_cfg:
|
||||
batched_data = prompt_data.get_batched_cfg_data()
|
||||
assert batched_data is not None, "CFG model must provide batched data"
|
||||
prompt_embeds, encoder_mask, batched_pooled, _ = batched_data
|
||||
pooled_embeds = (
|
||||
batched_pooled if batched_pooled is not None else prompt_embeds
|
||||
)
|
||||
else:
|
||||
prompt_embeds = prompt_data.prompt_embeds
|
||||
pooled_embeds = prompt_data.pooled_prompt_embeds
|
||||
encoder_mask = prompt_data.get_encoder_hidden_states_mask(positive=True)
|
||||
|
||||
text_seq_len = prompt_embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, encoder_mask)
|
||||
self._set_text_seq_len(text_seq_len)
|
||||
|
||||
if self.joint_block_wrappers:
|
||||
for wrapper in self.joint_block_wrappers:
|
||||
wrapper.set_encoder_mask(encoder_mask)
|
||||
|
||||
text_embeddings = self.adapter.compute_text_embeddings(t, config, pooled_embeds)
|
||||
image_rotary_embeddings = self.adapter.compute_rotary_embeddings(
|
||||
prompt_embeds,
|
||||
config,
|
||||
encoder_hidden_states_mask=encoder_mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
kontext_image_ids=kontext_image_ids,
|
||||
)
|
||||
|
||||
prev_patch_latents = [p for p in patch_latents]
|
||||
encoder_hidden_states: mx.array | None = None
|
||||
|
||||
for patch_idx in range(len(patch_latents)):
|
||||
@@ -899,52 +809,31 @@ class DiffusionRunner:
|
||||
and not is_first_async_step
|
||||
):
|
||||
patch = mx.distributed.recv_like(
|
||||
patch, src=self.last_pipeline_rank, group=self.group
|
||||
patch, src=self.prev_rank, group=self.group
|
||||
)
|
||||
mx.eval(patch)
|
||||
|
||||
results: list[tuple[bool, mx.array]] = []
|
||||
step_patch = mx.concatenate([patch, patch], axis=0) if needs_cfg else patch
|
||||
|
||||
for branch in self._get_cfg_branches(prompt_data):
|
||||
pooled_embeds = (
|
||||
branch.pooled if branch.pooled is not None else branch.embeds
|
||||
)
|
||||
|
||||
text_seq_len = branch.embeds.shape[1]
|
||||
self._ensure_wrappers(text_seq_len, branch.mask)
|
||||
self._set_text_seq_len(text_seq_len)
|
||||
|
||||
if self.joint_block_wrappers:
|
||||
for wrapper in self.joint_block_wrappers:
|
||||
wrapper.set_encoder_mask(branch.mask)
|
||||
|
||||
text_embeddings = self.adapter.compute_text_embeddings(
|
||||
t, config, pooled_embeds
|
||||
)
|
||||
image_rotary_embeddings = self.adapter.compute_rotary_embeddings(
|
||||
branch.embeds,
|
||||
config,
|
||||
encoder_hidden_states_mask=branch.mask,
|
||||
cond_image_grid=cond_image_grid,
|
||||
kontext_image_ids=kontext_image_ids,
|
||||
)
|
||||
|
||||
noise, encoder_hidden_states = self._run_single_patch_pass(
|
||||
patch=patch,
|
||||
patch_idx=patch_idx,
|
||||
token_indices=token_indices[patch_idx],
|
||||
prompt_embeds=branch.embeds,
|
||||
text_embeddings=text_embeddings,
|
||||
image_rotary_embeddings=image_rotary_embeddings,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
|
||||
if self.is_last_stage:
|
||||
assert noise is not None
|
||||
results.append((branch.positive, noise))
|
||||
noise, encoder_hidden_states = self._run_single_patch_pass(
|
||||
patch=step_patch,
|
||||
patch_idx=patch_idx,
|
||||
token_indices=token_indices[patch_idx],
|
||||
prompt_embeds=prompt_embeds,
|
||||
text_embeddings=text_embeddings,
|
||||
image_rotary_embeddings=image_rotary_embeddings,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
|
||||
if self.is_last_stage:
|
||||
noise = self._combine_cfg_results(results)
|
||||
assert noise is not None
|
||||
if needs_cfg:
|
||||
noise_pos, noise_neg = mx.split(noise, 2, axis=0)
|
||||
guidance_scale = self._get_effective_guidance_scale()
|
||||
assert guidance_scale is not None
|
||||
noise = self.adapter.apply_guidance(
|
||||
noise_pos, noise_neg, guidance_scale
|
||||
)
|
||||
|
||||
patch_latents[patch_idx] = config.scheduler.step( # pyright: ignore[reportAny]
|
||||
noise=noise,
|
||||
@@ -954,9 +843,7 @@ class DiffusionRunner:
|
||||
|
||||
if not self.is_first_stage and t != config.num_inference_steps - 1:
|
||||
patch_latents[patch_idx] = mx.distributed.send(
|
||||
patch_latents[patch_idx],
|
||||
self.first_pipeline_rank,
|
||||
group=self.group,
|
||||
patch_latents[patch_idx], self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(patch_latents[patch_idx])
|
||||
|
||||
@@ -996,12 +883,11 @@ class DiffusionRunner:
|
||||
|
||||
if self.has_joint_blocks:
|
||||
if not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
patch_len = patch.shape[1]
|
||||
patch = mx.distributed.recv(
|
||||
(batch_size, patch_len, hidden_dim),
|
||||
patch.dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(patch)
|
||||
@@ -1010,7 +896,7 @@ class DiffusionRunner:
|
||||
encoder_hidden_states = mx.distributed.recv(
|
||||
(batch_size, text_seq_len, hidden_dim),
|
||||
patch.dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(encoder_hidden_states)
|
||||
@@ -1038,34 +924,29 @@ class DiffusionRunner:
|
||||
if self.has_single_blocks or self.is_last_stage:
|
||||
patch = patch_concat
|
||||
else:
|
||||
assert self.next_pipeline_rank is not None
|
||||
patch_concat = mx.distributed.send(
|
||||
patch_concat, self.next_pipeline_rank, group=self.group
|
||||
patch_concat, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(patch_concat)
|
||||
|
||||
elif self.has_joint_blocks and not self.is_last_stage:
|
||||
assert self.next_pipeline_rank is not None
|
||||
patch = mx.distributed.send(
|
||||
patch, self.next_pipeline_rank, group=self.group
|
||||
)
|
||||
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
|
||||
mx.async_eval(patch)
|
||||
|
||||
if patch_idx == 0:
|
||||
assert encoder_hidden_states is not None
|
||||
encoder_hidden_states = mx.distributed.send(
|
||||
encoder_hidden_states, self.next_pipeline_rank, group=self.group
|
||||
encoder_hidden_states, self.next_rank, group=self.group
|
||||
)
|
||||
mx.async_eval(encoder_hidden_states)
|
||||
|
||||
if self.has_single_blocks:
|
||||
if not self.owns_concat_stage and not self.is_first_stage:
|
||||
assert self.prev_pipeline_rank is not None
|
||||
patch_len = patch.shape[1]
|
||||
patch = mx.distributed.recv(
|
||||
(batch_size, text_seq_len + patch_len, hidden_dim),
|
||||
patch.dtype,
|
||||
self.prev_pipeline_rank,
|
||||
self.prev_rank,
|
||||
group=self.group,
|
||||
)
|
||||
mx.eval(patch)
|
||||
@@ -1080,10 +961,7 @@ class DiffusionRunner:
|
||||
)
|
||||
|
||||
if not self.is_last_stage:
|
||||
assert self.next_pipeline_rank is not None
|
||||
patch = mx.distributed.send(
|
||||
patch, self.next_pipeline_rank, group=self.group
|
||||
)
|
||||
patch = mx.distributed.send(patch, self.next_rank, group=self.group)
|
||||
mx.async_eval(patch)
|
||||
|
||||
noise: mx.array | None = None
|
||||
|
||||
@@ -201,9 +201,6 @@ def pipeline_auto_parallel(
|
||||
device_rank, world_size = model_shard_meta.device_rank, model_shard_meta.world_size
|
||||
|
||||
layers = layers[start_layer:end_layer]
|
||||
for layer in layers:
|
||||
mx.eval(layer) # type: ignore
|
||||
|
||||
layers[0] = PipelineFirstLayer(layers[0], device_rank, group=group)
|
||||
layers[-1] = PipelineLastLayer(
|
||||
layers[-1],
|
||||
|
||||
@@ -61,7 +61,7 @@ from exo.shared.types.worker.runners import (
|
||||
RunnerStatus,
|
||||
RunnerWarmingUp,
|
||||
)
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, ShardMetadata
|
||||
from exo.shared.types.worker.shards import ShardMetadata
|
||||
from exo.utils.channels import MpReceiver, MpSender
|
||||
from exo.worker.engines.image import (
|
||||
DistributedImageModel,
|
||||
@@ -360,9 +360,8 @@ def main(
|
||||
image_index = 0
|
||||
for response in generate_image(model=model, task=task_params):
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
shard_metadata.device_rank
|
||||
== shard_metadata.world_size - 1
|
||||
):
|
||||
match response:
|
||||
case PartialImageResponse():
|
||||
@@ -388,11 +387,7 @@ def main(
|
||||
image_index += 1
|
||||
# can we make this more explicit?
|
||||
except Exception as e:
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
):
|
||||
if shard_metadata.device_rank == shard_metadata.world_size - 1:
|
||||
event_sender.send(
|
||||
ChunkGenerated(
|
||||
command_id=command_id,
|
||||
@@ -424,9 +419,8 @@ def main(
|
||||
image_index = 0
|
||||
for response in generate_image(model=model, task=task_params):
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
shard_metadata.device_rank
|
||||
== shard_metadata.world_size - 1
|
||||
):
|
||||
match response:
|
||||
case PartialImageResponse():
|
||||
@@ -451,11 +445,7 @@ def main(
|
||||
)
|
||||
image_index += 1
|
||||
except Exception as e:
|
||||
if (
|
||||
isinstance(shard_metadata, PipelineShardMetadata)
|
||||
and shard_metadata.is_pipeline_last
|
||||
and shard_metadata.cfg_rank == 0
|
||||
):
|
||||
if shard_metadata.device_rank == shard_metadata.world_size - 1:
|
||||
event_sender.send(
|
||||
ChunkGenerated(
|
||||
command_id=command_id,
|
||||
|
||||
@@ -16,7 +16,7 @@ from exo.download.download_utils import (
|
||||
ensure_models_dir,
|
||||
fetch_file_list_with_cache,
|
||||
)
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
get_eos_token_ids_for_model,
|
||||
load_tokenizer_for_model_id,
|
||||
@@ -76,7 +76,7 @@ def get_test_models() -> list[ModelCard]:
|
||||
"""Get a representative sample of models to test."""
|
||||
# Pick one model from each family to test
|
||||
families: dict[str, ModelCard] = {}
|
||||
for card in MODEL_CARDS.values():
|
||||
for card in asyncio.run(get_model_cards()):
|
||||
# Extract family name (e.g., "llama-3.1" from "llama-3.1-8b")
|
||||
parts = card.model_id.short().split("-")
|
||||
family = "-".join(parts[:2]) if len(parts) >= 2 else parts[0]
|
||||
@@ -296,7 +296,7 @@ async def test_tokenizer_special_tokens(model_card: ModelCard) -> None:
|
||||
async def test_kimi_tokenizer_specifically():
|
||||
"""Test Kimi tokenizer with its specific patches and quirks."""
|
||||
kimi_models = [
|
||||
card for card in MODEL_CARDS.values() if "kimi" in card.model_id.lower()
|
||||
card for card in await get_model_cards() if "kimi" in card.model_id.lower()
|
||||
]
|
||||
|
||||
if not kimi_models:
|
||||
@@ -343,7 +343,7 @@ async def test_kimi_tokenizer_specifically():
|
||||
async def test_glm_tokenizer_specifically():
|
||||
"""Test GLM tokenizer with its specific EOS tokens."""
|
||||
glm_model_cards = [
|
||||
card for card in MODEL_CARDS.values() if "glm" in card.model_id.lower()
|
||||
card for card in await get_model_cards() if "glm" in card.model_id.lower()
|
||||
]
|
||||
|
||||
if not glm_model_cards:
|
||||
|
||||
@@ -16,7 +16,7 @@ from exo.download.impl_shard_downloader import (
|
||||
exo_shard_downloader,
|
||||
)
|
||||
from exo.shared.logging import InterceptLogger, logger_setup
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelId
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
|
||||
from exo.shared.types.commands import CommandId
|
||||
from exo.shared.types.common import Host, NodeId
|
||||
@@ -89,22 +89,26 @@ async def tb_detection():
|
||||
|
||||
async def assert_downloads():
|
||||
sd = exo_shard_downloader()
|
||||
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
|
||||
)
|
||||
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
|
||||
await build_full_shard(ModelId("mlx-community/Qwen3-0.6B-4bit"))
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
|
||||
await build_full_shard(ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"))
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
|
||||
await build_full_shard(ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"))
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
|
||||
await build_full_shard(ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"))
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"))
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(ModelId("mlx-community/GLM-4.7-8bit-gs32"))
|
||||
)
|
||||
await sd.ensure_shard(
|
||||
await build_full_shard(ModelId("mlx-community/MiniMax-M2.1-8bit"))
|
||||
)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user