Compare commits

..

7 Commits

Author SHA1 Message Date
Evan
92b24196c3 wrrg 2026-01-20 11:14:20 +00:00
Evan
3bf7770988 add model cards 2026-01-20 10:56:29 +00:00
Evan
8392463a70 introduce resources folder 2026-01-20 10:56:29 +00:00
Evan
9c1f6224b0 Merge branch 'main' into simplify-model-cards 2026-01-20 10:56:29 +00:00
Evan
f370dbd1e0 Merge branch 'main' into simplify-model-cards
merge fix
2026-01-20 10:56:17 +00:00
rltakashige
6a38f9efba Merge branch 'main' into simplify-model-cards 2026-01-19 17:43:59 +00:00
Evan
0475de6431 wuff 2026-01-19 17:07:03 +00:00
43 changed files with 507 additions and 431 deletions

View File

@@ -10,6 +10,7 @@ PROJECT_ROOT = Path.cwd()
SOURCE_ROOT = PROJECT_ROOT / "src"
ENTRYPOINT = SOURCE_ROOT / "exo" / "__main__.py"
DASHBOARD_DIR = PROJECT_ROOT / "dashboard" / "build"
RESOURCES_DIR = PROJECT_ROOT / "resources"
EXO_SHARED_MODELS_DIR = SOURCE_ROOT / "exo" / "shared" / "models"
if not ENTRYPOINT.is_file():
@@ -18,6 +19,9 @@ if not ENTRYPOINT.is_file():
if not DASHBOARD_DIR.is_dir():
raise SystemExit(f"Dashboard assets are missing: {DASHBOARD_DIR}")
if not RESOURCES_DIR.is_dir():
raise SystemExit(f"Resources are missing: {RESOURCES_DIR}")
if not EXO_SHARED_MODELS_DIR.is_dir():
raise SystemExit(f"Shared model assets are missing: {EXO_SHARED_MODELS_DIR}")
@@ -58,6 +62,7 @@ HIDDEN_IMPORTS = sorted(
DATAS: list[tuple[str, str]] = [
(str(DASHBOARD_DIR), "dashboard"),
(str(RESOURCES_DIR), "resources"),
(str(MLX_LIB_DIR), "mlx/lib"),
(str(EXO_SHARED_MODELS_DIR), "exo/shared/models"),
]

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/DeepSeek-V3.1-4bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 405874409472

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/DeepSeek-V3.1-8bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 765577920512

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.5-Air-8bit"
n_layers = 46
hidden_size = 4096
supports_tensor = false
[storage_size]
in_bytes = 122406567936

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.5-Air-bf16"
n_layers = 46
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 229780750336

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.7-4bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[storage_size]
in_bytes = 198556925568

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.7-6bit"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[storage_size]
in_bytes = 286737579648

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/GLM-4.7-8bit-gs32"
n_layers = 91
hidden_size = 5120
supports_tensor = true
[storage_size]
in_bytes = 396963397248

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Kimi-K2-Instruct-4bit"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 620622774272

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Kimi-K2-Thinking"
n_layers = 61
hidden_size = 7168
supports_tensor = true
[storage_size]
in_bytes = 706522120192

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.2-1B-Instruct-4bit"
n_layers = 16
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 729808896

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.2-3B-Instruct-4bit"
n_layers = 28
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 1863319552

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.2-3B-Instruct-8bit"
n_layers = 28
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 3501195264

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.3-70B-Instruct-4bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 40652242944

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Llama-3.3-70B-Instruct-8bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 76799803392

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 40652242944

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 4637851648

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 8954839040

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
n_layers = 32
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 16882073600

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/MiniMax-M2.1-3bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 100086644736

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/MiniMax-M2.1-8bit"
n_layers = 61
hidden_size = 3072
supports_tensor = true
[storage_size]
in_bytes = 242986745856

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-0.6B-4bit"
n_layers = 28
hidden_size = 1024
supports_tensor = false
[storage_size]
in_bytes = 342884352

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-0.6B-8bit"
n_layers = 28
hidden_size = 1024
supports_tensor = false
[storage_size]
in_bytes = 698351616

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
n_layers = 94
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 141733920768

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
n_layers = 94
hidden_size = 4096
supports_tensor = true
[storage_size]
in_bytes = 268435456000

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-30B-A3B-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 17612931072

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-30B-A3B-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 33279705088

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
n_layers = 62
hidden_size = 6144
supports_tensor = true
[storage_size]
in_bytes = 289910292480

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"
n_layers = 62
hidden_size = 6144
supports_tensor = true
[storage_size]
in_bytes = 579820584960

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 46976204800

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
n_layers = 48
hidden_size = 2048
supports_tensor = true
[storage_size]
in_bytes = 88814387200

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/gpt-oss-120b-MXFP4-Q8"
n_layers = 36
hidden_size = 2880
supports_tensor = true
[storage_size]
in_bytes = 70652212224

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/gpt-oss-20b-MXFP4-Q8"
n_layers = 24
hidden_size = 2880
supports_tensor = true
[storage_size]
in_bytes = 12025908224

View File

@@ -0,0 +1,7 @@
model_id = "mlx-community/llama-3.3-70b-instruct-fp16"
n_layers = 80
hidden_size = 8192
supports_tensor = true
[storage_size]
in_bytes = 144383672320

View File

@@ -1,5 +1,6 @@
import time
from collections.abc import AsyncGenerator
from dataclasses import dataclass, field
from http import HTTPStatus
from typing import cast
@@ -19,8 +20,7 @@ from exo.master.placement import place_instance as get_instance_placements
from exo.shared.apply import apply
from exo.shared.election import ElectionMessage
from exo.shared.logging import InterceptLogger
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
from exo.shared.models.model_meta import get_model_card
from exo.shared.models.model_cards import ModelCard, ModelId, get_model_cards
from exo.shared.types.api import (
BenchChatCompletionResponse,
BenchChatCompletionTaskParams,
@@ -65,7 +65,7 @@ from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
from exo.shared.types.worker.shards import Sharding
from exo.utils.banner import print_startup_banner
from exo.utils.channels import Receiver, Sender, channel
from exo.utils.dashboard_path import find_dashboard
from exo.utils.dashboard_path import RuntimeResources, find_directory
from exo.utils.event_buffer import OrderedBuffer
@@ -86,57 +86,52 @@ def chunk_to_response(
)
async def resolve_model_card(model_id: str) -> ModelCard:
if model_id in MODEL_CARDS:
model_card = MODEL_CARDS[model_id]
return model_card
else:
return await get_model_card(model_id)
@dataclass(eq=False)
class API:
def __init__(
self,
node_id: NodeId
session_id: SessionId
port: int
app: FastAPI
global_event_receiver: Receiver[ForwarderEvent]
command_sender: Sender[ForwarderCommand]
election_receiver: Receiver[ElectionMessage]
state = field(init=False, default_factory=State)
_event_log: list[Event] = field(init=False, default_factory=list)
event_buffer: OrderedBuffer[Event] = field(init=False, default_factory=OrderedBuffer)
_chat_completion_queues: dict[CommandId, Sender[TokenChunk]] = field(init=False, default_factory=dict)
_tg: TaskGroup = field(init=False, default_factory=create_task_group)
last_completed_election: int = field(init=False, default=0)
paused: bool = field(init=False, default = False)
paused_ev: anyio.Event = field(init=False, default_factory=anyio.Event)
@classmethod
async def create(
cls,
node_id: NodeId,
session_id: SessionId,
*,
port: int,
# Ideally this would be a MasterForwarderEvent but type system says no :(
global_event_receiver: Receiver[ForwarderEvent],
command_sender: Sender[ForwarderCommand],
# This lets us pause the API if an election is running
election_receiver: Receiver[ElectionMessage],
) -> None:
self.state = State()
self._event_log: list[Event] = []
self.command_sender = command_sender
self.global_event_receiver = global_event_receiver
self.election_receiver = election_receiver
self.event_buffer: OrderedBuffer[Event] = OrderedBuffer[Event]()
self.node_id: NodeId = node_id
self.session_id: SessionId = session_id
self.last_completed_election: int = 0
self.port = port
self.paused: bool = False
self.paused_ev: anyio.Event = anyio.Event()
self.app = FastAPI()
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
self.app.mount(
app = FastAPI()
app.mount(
"/",
StaticFiles(
directory=find_dashboard(),
directory=await find_directory(RuntimeResources.Dashboard),
html=True,
),
name="dashboard",
)
self._chat_completion_queues: dict[CommandId, Sender[TokenChunk]] = {}
self._tg: TaskGroup | None = None
cls(node_id, session_id, port, app, global_event_receiver, command_sender, election_receiver)
def __post_init__(self) -> None:
self._setup_exception_handlers()
self._setup_cors()
self._setup_routes()
def reset(self, new_session_id: SessionId, result_clock: int):
logger.info("Resetting API State")
@@ -213,7 +208,7 @@ class API:
self, payload: CreateInstanceParams
) -> CreateInstanceResponse:
instance = payload.instance
model_card = await resolve_model_card(instance.shard_assignments.model_id)
model_card = await ModelCard.from_hf(instance.shard_assignments.model_id)
required_memory = model_card.storage_size
available_memory = self._calculate_total_available_memory()
@@ -279,7 +274,7 @@ class API:
if len(list(self.state.topology.list_nodes())) == 0:
return PlacementPreviewResponse(previews=[])
cards = [card for card in MODEL_CARDS.values() if card.model_id == model_id]
cards = [card for card in await get_model_cards() if card.short_id == model_id]
if not cards:
raise HTTPException(status_code=404, detail=f"Model {model_id} not found")
@@ -620,7 +615,7 @@ class API:
storage_size_megabytes=int(card.storage_size.in_mb),
supports_tensor=card.supports_tensor,
)
for card in MODEL_CARDS.values()
for card in model_cards()
]
)

View File

@@ -1,8 +1,24 @@
from pydantic import PositiveInt
from typing import Annotated
import aiofiles
import aiofiles.os as aios
import tomlkit
from anyio import Path, open_file
from huggingface_hub import model_info
from loguru import logger
from pydantic import BaseModel, Field, PositiveInt, ValidationError
from tomlkit.exceptions import TOMLKitError
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.common import Id
from exo.shared.types.memory import Memory
from exo.utils.dashboard_path import RuntimeResources, find_directory
from exo.utils.pydantic_ext import CamelCaseModel
from exo.worker.download.download_utils import (
ModelSafetensorsIndex,
download_file_with_retry,
ensure_models_dir,
)
class ModelId(Id):
@@ -12,6 +28,7 @@ class ModelId(Id):
def short(self) -> str:
return self.split("/")[-1]
_card_cache: dict[str, ModelCard] = {}
class ModelCard(CamelCaseModel):
model_id: ModelId
@@ -20,249 +37,67 @@ class ModelCard(CamelCaseModel):
hidden_size: PositiveInt
supports_tensor: bool
async def save(self, path: Path) -> None:
async with await open_file(path, "w") as f:
py = self.model_dump()
data = tomlkit.dumps(py) # pyright: ignore[reportUnknownMemberType]
await f.write(data)
async def save_to_default_path(self) -> None:
dir = await find_directory(RuntimeResources.Resources)
await self.save(dir / self.model_id.normalize())
@staticmethod
async def load_from_path(path: Path) -> ModelCard:
async with await open_file(path, "r") as f:
py = tomlkit.loads(await f.read())
return ModelCard.model_validate(py)
@staticmethod
async def load_from_default_path(model_id: ModelId) -> ModelCard:
return await ModelCard.load_from_path(await find_directory(RuntimeResources.Resources) / model_id.normalize())
@staticmethod
async def load(model_id: ModelId) -> ModelCard:
try:
return await ModelCard.load_from_default_path(model_id)
except (ValidationError, TOMLKitError, FileNotFoundError):
return await ModelCard.from_hf(model_id)
@staticmethod
async def from_hf(model_id: ModelId) -> ModelCard:
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
if (mc := _card_cache.get(model_id, None)) is not None:
return mc
config_data = await get_config_data(model_id)
num_layers = config_data.layer_count
mem_size_bytes = await get_safetensors_size(model_id)
mc = ModelCard(
model_id=ModelId(model_id),
storage_size=mem_size_bytes,
n_layers=num_layers,
hidden_size=config_data.hidden_size or 0,
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
supports_tensor=False,
)
_card_cache[model_id] = mc
return mc
# TODO: should we cache this? how do we check for changes
async def get_model_cards() -> list[ModelCard]:
dir = await find_directory(RuntimeResources.Resources)
cards: list[ModelCard] = []
async for file in dir.glob("*.toml"):
try:
cards.append(await ModelCard.load_from_path(file))
except (TOMLKitError, ValidationError):
continue
return cards
MODEL_CARDS: dict[str, ModelCard] = {
# deepseek v3
"deepseek-v3.1-4bit": ModelCard(
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
storage_size=Memory.from_gb(378),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
"deepseek-v3.1-8bit": ModelCard(
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
storage_size=Memory.from_gb(713),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
# kimi k2
"kimi-k2-instruct-4bit": ModelCard(
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
storage_size=Memory.from_gb(578),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
"kimi-k2-thinking": ModelCard(
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
storage_size=Memory.from_gb(658),
n_layers=61,
hidden_size=7168,
supports_tensor=True,
),
# llama-3.1
"llama-3.1-8b": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
storage_size=Memory.from_mb(4423),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
"llama-3.1-8b-8bit": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
storage_size=Memory.from_mb(8540),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
"llama-3.1-8b-bf16": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
storage_size=Memory.from_mb(16100),
n_layers=32,
hidden_size=4096,
supports_tensor=True,
),
"llama-3.1-70b": ModelCard(
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
# llama-3.2
"llama-3.2-1b": ModelCard(
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
storage_size=Memory.from_mb(696),
n_layers=16,
hidden_size=2048,
supports_tensor=True,
),
"llama-3.2-3b": ModelCard(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
storage_size=Memory.from_mb(1777),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
),
"llama-3.2-3b-8bit": ModelCard(
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
storage_size=Memory.from_mb(3339),
n_layers=28,
hidden_size=3072,
supports_tensor=True,
),
# llama-3.3
"llama-3.3-70b": ModelCard(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
storage_size=Memory.from_mb(38769),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
"llama-3.3-70b-8bit": ModelCard(
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
storage_size=Memory.from_mb(73242),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
"llama-3.3-70b-fp16": ModelCard(
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
storage_size=Memory.from_mb(137695),
n_layers=80,
hidden_size=8192,
supports_tensor=True,
),
# qwen3
"qwen3-0.6b": ModelCard(
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
storage_size=Memory.from_mb(327),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
),
"qwen3-0.6b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
storage_size=Memory.from_mb(666),
n_layers=28,
hidden_size=1024,
supports_tensor=False,
),
"qwen3-30b": ModelCard(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
storage_size=Memory.from_mb(16797),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
"qwen3-30b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
storage_size=Memory.from_mb(31738),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
"qwen3-80b-a3B-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
storage_size=Memory.from_mb(44800),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
"qwen3-80b-a3B-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
"qwen3-80b-a3B-thinking-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
"qwen3-80b-a3B-thinking-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
storage_size=Memory.from_mb(84700),
n_layers=48,
hidden_size=2048,
supports_tensor=True,
),
"qwen3-235b-a22b-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
storage_size=Memory.from_gb(132),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
),
"qwen3-235b-a22b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
storage_size=Memory.from_gb(250),
n_layers=94,
hidden_size=4096,
supports_tensor=True,
),
"qwen3-coder-480b-a35b-4bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
storage_size=Memory.from_gb(270),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
),
"qwen3-coder-480b-a35b-8bit": ModelCard(
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
storage_size=Memory.from_gb(540),
n_layers=62,
hidden_size=6144,
supports_tensor=True,
),
# gpt-oss
"gpt-oss-120b-MXFP4-Q8": ModelCard(
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
storage_size=Memory.from_kb(68_996_301),
n_layers=36,
hidden_size=2880,
supports_tensor=True,
),
"gpt-oss-20b-MXFP4-Q8": ModelCard(
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
storage_size=Memory.from_kb(11_744_051),
n_layers=24,
hidden_size=2880,
supports_tensor=True,
),
# glm 4.5
"glm-4.5-air-8bit": ModelCard(
# Needs to be quantized g32 or g16 to work with tensor parallel
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
storage_size=Memory.from_gb(114),
n_layers=46,
hidden_size=4096,
supports_tensor=False,
),
"glm-4.5-air-bf16": ModelCard(
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
storage_size=Memory.from_gb(214),
n_layers=46,
hidden_size=4096,
supports_tensor=True,
),
# glm 4.7
"glm-4.7-4bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
storage_size=Memory.from_bytes(198556925568),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
"glm-4.7-6bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
storage_size=Memory.from_bytes(286737579648),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
"glm-4.7-8bit-gs32": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
storage_size=Memory.from_bytes(396963397248),
n_layers=91,
hidden_size=5120,
supports_tensor=True,
),
# glm 4.7 flash
"glm-4.7-flash-4bit": ModelCard(
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
@@ -292,19 +127,83 @@ MODEL_CARDS: dict[str, ModelCard] = {
hidden_size=2048,
supports_tensor=True,
),
# minimax-m2
"minimax-m2.1-8bit": ModelCard(
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
storage_size=Memory.from_bytes(242986745856),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
"minimax-m2.1-3bit": ModelCard(
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
storage_size=Memory.from_bytes(100086644736),
n_layers=61,
hidden_size=3072,
supports_tensor=True,
),
}
class ConfigData(BaseModel):
model_config = {"extra": "ignore"} # Allow unknown fields
# Common field names for number of layers across different architectures
num_hidden_layers: Annotated[int, Field(ge=0)] | None = None
num_layers: Annotated[int, Field(ge=0)] | None = None
n_layer: Annotated[int, Field(ge=0)] | None = None
n_layers: Annotated[int, Field(ge=0)] | None = None # Sometimes used
num_decoder_layers: Annotated[int, Field(ge=0)] | None = None # Transformer models
decoder_layers: Annotated[int, Field(ge=0)] | None = None # Some architectures
hidden_size: Annotated[int, Field(ge=0)] | None = None
@property
def layer_count(self) -> int:
# Check common field names for layer count
layer_fields = [
self.num_hidden_layers,
self.num_layers,
self.n_layer,
self.n_layers,
self.num_decoder_layers,
self.decoder_layers,
]
for layer_count in layer_fields:
if layer_count is not None:
return layer_count
raise ValueError(
f"No layer count found in config.json: {self.model_dump_json()}"
)
async def get_config_data(model_id: ModelId) -> ConfigData:
"""Downloads and parses config.json for a model."""
target_dir = (await ensure_models_dir()) / model_id.normalize()
await aios.makedirs(target_dir, exist_ok=True)
config_path = await download_file_with_retry(
str(model_id),
"main",
"config.json",
target_dir,
lambda curr_bytes, total_bytes, is_renamed: logger.info(
f"Downloading config.json for {model_id}: {curr_bytes}/{total_bytes} ({is_renamed=})"
),
)
async with aiofiles.open(config_path, "r") as f:
return ConfigData.model_validate_json(await f.read())
async def get_safetensors_size(model_id: ModelId) -> Memory:
"""Gets model size from safetensors index or falls back to HF API."""
target_dir = (await ensure_models_dir()) / model_id.normalize()
await aios.makedirs(target_dir, exist_ok=True)
index_path = await download_file_with_retry(
str(model_id),
"main",
"model.safetensors.index.json",
target_dir,
lambda curr_bytes, total_bytes, is_renamed: logger.info(
f"Downloading model.safetensors.index.json for {model_id}: {curr_bytes}/{total_bytes} ({is_renamed=})"
),
)
async with aiofiles.open(index_path, "r") as f:
index_data = ModelSafetensorsIndex.model_validate_json(await f.read())
metadata = index_data.metadata
if metadata is not None:
return Memory.from_bytes(metadata.total_size)
info = model_info(model_id)
if info.safetensors is None:
raise ValueError(f"No safetensors info found for {model_id}")
return Memory.from_bytes(info.safetensors.total)

View File

@@ -6,7 +6,7 @@ from huggingface_hub import model_info
from loguru import logger
from pydantic import BaseModel, Field
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
from exo.shared.models.model_cards import ModelCard, ModelId
from exo.shared.types.memory import Memory
from exo.worker.download.download_utils import (
ModelSafetensorsIndex,
@@ -90,33 +90,23 @@ async def get_safetensors_size(model_id: str) -> Memory:
raise ValueError(f"No safetensors info found for {model_id}")
return Memory.from_bytes(info.safetensors.total)
_model_card_cache: dict[str, ModelCard] = {}
async def get_model_card(model_id: str) -> ModelCard:
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
if model_id in _model_card_cache:
return _model_card_cache[model_id]
model_card = await _get_model_card(model_id)
_model_card_cache[model_id] = model_card
return model_card
async def _get_model_card(model_id: str) -> ModelCard:
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
config_data = await get_config_data(model_id)
num_layers = config_data.layer_count
mem_size_bytes = await get_safetensors_size(model_id)
model_card = next(
(card for card in MODEL_CARDS.values() if card.model_id == ModelId(model_id)),
None,
)
return ModelCard(
mc = ModelCard(
model_id=ModelId(model_id),
storage_size=mem_size_bytes,
n_layers=num_layers,
hidden_size=config_data.hidden_size or 0,
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
supports_tensor=model_card.supports_tensor if model_card is not None else False,
supports_tensor=False,
)
_model_card_cache[model_id] = mc
return mc

View File

@@ -1,45 +1,72 @@
import enum
import os
import sys
from pathlib import Path
from typing import cast
from anyio import Path
def find_dashboard() -> Path:
dashboard = (
_find_dashboard_in_env()
or _find_dashboard_in_repo()
or _find_dashboard_in_bundle()
class RuntimeResources(enum.Enum):
Dashboard = enum.auto
Resources = enum.auto
_dir_cache: dict[RuntimeResources, Path]
async def find_directory(rr: RuntimeResources) -> Path:
dir = (
_dir_cache.get(rr, None)
or await _find_in_env(rr)
or await _find_in_repo(rr)
or await _find_in_bundle(rr)
)
if not dashboard:
if not dir:
raise FileNotFoundError(
"Unable to locate dashboard assets - make sure the dashboard has been built, or export DASHBOARD_DIR if you've built the dashboard elsewhere."
"Unable to locate directory - make sure the dashboard has been built and the runtime resources (model cards) exist."
)
return dashboard
_dir_cache[rr] = dir
return dir
def _find_dashboard_in_env() -> Path | None:
env = os.environ.get("DASHBOARD_DIR")
async def _find_in_env(rr: RuntimeResources) -> Path | None:
match rr:
case RuntimeResources.Dashboard:
env = os.environ.get("DASHBOARD_DIR")
case RuntimeResources.Resources:
env = os.environ.get("RESOURCES_DIR")
if not env:
return None
resolved_env = Path(env).expanduser().resolve()
resolved_env = await (await Path(env).expanduser()).resolve()
return resolved_env
def _find_dashboard_in_repo() -> Path | None:
current_module = Path(__file__).resolve()
async def _find_in_repo(rr: RuntimeResources) -> Path | None:
current_module = await Path(__file__).resolve()
for parent in current_module.parents:
build = parent / "dashboard" / "build"
if build.is_dir() and (build / "index.html").exists():
return build
match rr:
case RuntimeResources.Dashboard:
build = parent / "dashboard" / "build"
if await build.is_dir() and await (build / "index.html").exists():
return build
case RuntimeResources.Resources:
res = parent / "resources"
if await res.is_dir():
return res
return None
def _find_dashboard_in_bundle() -> Path | None:
async def _find_in_bundle(rr: RuntimeResources) -> Path | None:
frozen_root = cast(str | None, getattr(sys, "_MEIPASS", None))
if frozen_root is None:
return None
candidate = Path(frozen_root) / "dashboard"
if candidate.is_dir():
return candidate
match rr:
case RuntimeResources.Dashboard:
candidate = Path(frozen_root) / "dashboard"
if await candidate.is_dir():
return candidate
case RuntimeResources.Resources:
candidate = Path(frozen_root) / "resources"
if await candidate.is_dir():
return candidate
return None

View File

@@ -3,8 +3,7 @@ from collections.abc import Awaitable
from pathlib import Path
from typing import AsyncIterator, Callable
from exo.shared.models.model_cards import MODEL_CARDS
from exo.shared.models.model_meta import get_model_card
from exo.shared.models.model_cards import ModelCard, get_model_cards
from exo.shared.types.worker.shards import (
PipelineShardMetadata,
ShardMetadata,
@@ -20,7 +19,7 @@ def exo_shard_downloader(max_parallel_downloads: int = 8) -> ShardDownloader:
async def build_base_shard(model_id: str) -> ShardMetadata:
model_card = await get_model_card(model_id)
model_card = await ModelCard.from_hf(model_id)
return PipelineShardMetadata(
model_card=model_card,
device_rank=0,
@@ -159,7 +158,7 @@ class ResumableShardDownloader(ShardDownloader):
# Kick off download status coroutines concurrently
tasks = [
asyncio.create_task(_status_for_model(model_card.model_id))
for model_card in MODEL_CARDS.values()
for model_card in await get_model_cards()
]
for task in asyncio.as_completed(tasks):

View File

@@ -12,7 +12,7 @@ from loguru import logger
from pydantic import BaseModel
from exo.shared.logging import InterceptLogger, logger_setup
from exo.shared.models.model_cards import MODEL_CARDS, ModelId
from exo.shared.models.model_cards import ModelId
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
from exo.shared.types.commands import CommandId
from exo.shared.types.common import Host, NodeId
@@ -89,22 +89,22 @@ async def tb_detection():
async def assert_downloads():
sd = exo_shard_downloader()
# await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-0.6b"].model_id))
# await sd.ensure_shard(ModelId("mlx-community/Qwen3-0.6B-8bit")))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["llama-3.1-8b-bf16"].model_id)
await build_full_shard(ModelId("mlx-community/Llama-3.1-8b-bf16"))
)
await sd.ensure_shard(await build_full_shard(MODEL_CARDS["qwen3-30b"].model_id))
await sd.ensure_shard(await build_full_shard(ModelId("mlx-community/Qwen3-30b-A3B")))
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-120b-MXFP4-Q8"].model_id)
await build_full_shard(ModelId("mlx-commmunity/gpt-oss-120b-MXFP4-Q8"))
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["gpt-oss-20b-4bit"].model_id)
await build_full_shard(ModelId("mlx-community/gpt-oss-20b-4bit"))
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["glm-4.7-8bit-gs32"].model_id)
await build_full_shard(ModelId("mlx-community/GLM-4.7-8bit-gs32"))
)
await sd.ensure_shard(
await build_full_shard(MODEL_CARDS["minimax-m2.1-8bit"].model_id)
await build_full_shard(ModelId("mlx-community/MiniMax-M2.1-8bit"))
)

View File

@@ -1,84 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
PREFS="${PREFS:-/Library/Preferences/SystemConfiguration/preferences.plist}"
tmpdir="$(mktemp -d)"
trap 'rm -rf "$tmpdir"' EXIT
injson="$tmpdir/in.json"
outjson="$tmpdir/out.json"
plutil -convert json -o "$injson" "$PREFS"
perl -Mstrict -Mwarnings -MJSON::PP -e '
my ($in, $out) = @ARGV;
open my $fh, "<", $in or die "open $in: $!";
local $/;
my $txt = <$fh>;
close $fh;
my $json = JSON::PP->new->utf8->relaxed(1);
my $d = $json->decode($txt);
if (ref($d->{VirtualNetworkInterfaces}) eq "HASH"
&& ref($d->{VirtualNetworkInterfaces}{Bridge}) eq "HASH") {
delete $d->{VirtualNetworkInterfaces}{Bridge}{bridge0};
}
my @bridge_svcs;
if (ref($d->{NetworkServices}) eq "HASH") {
for my $k (keys %{ $d->{NetworkServices} }) {
my $svc = $d->{NetworkServices}{$k};
next unless ref($svc) eq "HASH";
my $iface = $svc->{Interface};
next unless ref($iface) eq "HASH";
my $dev = $iface->{DeviceName};
if (defined $dev && $dev eq "bridge0") {
push @bridge_svcs, $k;
}
}
delete @{ $d->{NetworkServices} }{ @bridge_svcs } if @bridge_svcs;
}
my %is_bridge = map { $_ => 1 } @bridge_svcs;
if (ref($d->{Sets}) eq "HASH") {
for my $setk (keys %{ $d->{Sets} }) {
my $set = $d->{Sets}{$setk};
next unless ref($set) eq "HASH";
my $net = $set->{Network};
next unless ref($net) eq "HASH";
if (ref($net->{Interface}) eq "HASH") {
delete $net->{Interface}{bridge0};
}
if (ref($net->{Service}) eq "HASH" && @bridge_svcs) {
for my $svc (@bridge_svcs) {
delete $net->{Service}{$svc};
}
}
my $g = $net->{Global};
if (ref($g) eq "HASH"
&& ref($g->{IPv4}) eq "HASH"
&& ref($g->{IPv4}{ServiceOrder}) eq "ARRAY"
&& @bridge_svcs) {
my @so = @{ $g->{IPv4}{ServiceOrder} };
@so = grep { !defined($_) || !$is_bridge{$_} } @so;
$g->{IPv4}{ServiceOrder} = \@so;
}
}
}
open my $oh, ">", $out or die "open $out: $!";
print $oh JSON::PP->new->utf8->canonical(1)->pretty(1)->encode($d);
close $oh;
' "$injson" "$outjson"
# Convert JSON -> plist (write back as binary1; change to xml1 if you prefer)
plutil -convert xml1 -o "$PREFS" "$outjson"
# Ask configd to reload SystemConfiguration state
killall -HUP configd 2>/dev/null || true