mirror of
https://github.com/exo-explore/exo.git
synced 2026-01-20 11:58:57 -05:00
Compare commits
2 Commits
new-bridge
...
leo/test-s
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
67deec88ca | ||
|
|
209d618d5a |
9
dashboard/package-lock.json
generated
9
dashboard/package-lock.json
generated
@@ -863,6 +863,7 @@
|
||||
"integrity": "sha512-oH8tXw7EZnie8FdOWYrF7Yn4IKrqTFHhXvl8YxXxbKwTMcD/5NNCryUSEXRk2ZR4ojnub0P8rNrsVGHXWqIDtA==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@standard-schema/spec": "^1.0.0",
|
||||
"@sveltejs/acorn-typescript": "^1.0.5",
|
||||
@@ -902,6 +903,7 @@
|
||||
"integrity": "sha512-Y1Cs7hhTc+a5E9Va/xwKlAJoariQyHY+5zBgCZg4PFWNYQ1nMN9sjK1zhw1gK69DuqVP++sht/1GZg1aRwmAXQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@sveltejs/vite-plugin-svelte-inspector": "^4.0.1",
|
||||
"debug": "^4.4.1",
|
||||
@@ -1518,6 +1520,7 @@
|
||||
"integrity": "sha512-LCCV0HdSZZZb34qifBsyWlUmok6W7ouER+oQIGBScS8EsZsQbrtFTUrDX4hOl+CS6p7cnNC4td+qrSVGSCTUfQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"undici-types": "~6.21.0"
|
||||
}
|
||||
@@ -1527,6 +1530,7 @@
|
||||
"resolved": "https://registry.npmjs.org/acorn/-/acorn-8.15.0.tgz",
|
||||
"integrity": "sha512-NZyJarBfL7nWwIq+FDL6Zp/yHEhePMNnnJ0y3qfieCrmNvYct8uvtiV41UvlSe6apAfk0fY1FbWx+NwfmpvtTg==",
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"acorn": "bin/acorn"
|
||||
},
|
||||
@@ -1939,6 +1943,7 @@
|
||||
"integrity": "sha512-fmTRWbNMmsmWq6xJV8D19U/gw/bwrHfNXxrIN+HfZgnzqTHp9jOmKMhsTUjXOJnZOdZY9Q28y4yebKzqDKlxlQ==",
|
||||
"dev": true,
|
||||
"license": "ISC",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
}
|
||||
@@ -2646,6 +2651,7 @@
|
||||
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
},
|
||||
@@ -2833,6 +2839,7 @@
|
||||
"resolved": "https://registry.npmjs.org/svelte/-/svelte-5.45.3.tgz",
|
||||
"integrity": "sha512-ngKXNhNvwPzF43QqEhDOue7TQTrG09em1sd4HBxVF0Wr2gopAmdEWan+rgbdgK4fhBtSOTJO8bYU4chUG7VXZQ==",
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@jridgewell/remapping": "^2.3.4",
|
||||
"@jridgewell/sourcemap-codec": "^1.5.0",
|
||||
@@ -2977,6 +2984,7 @@
|
||||
"integrity": "sha512-jl1vZzPDinLr9eUt3J/t7V6FgNEw9QjvBPdysz9KfQDD41fQrC2Y4vKQdiaUpFT4bXlb1RHhLpp8wtm6M5TgSw==",
|
||||
"dev": true,
|
||||
"license": "Apache-2.0",
|
||||
"peer": true,
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
@@ -2998,6 +3006,7 @@
|
||||
"integrity": "sha512-+Oxm7q9hDoLMyJOYfUYBuHQo+dkAloi33apOPP56pzj+vsdJDzr+j1NISE5pyaAuKL4A3UD34qd0lx5+kfKp2g==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"esbuild": "^0.25.0",
|
||||
"fdir": "^6.4.4",
|
||||
|
||||
@@ -71,46 +71,44 @@ export interface Instance {
|
||||
};
|
||||
}
|
||||
|
||||
// Granular node state types from the new state structure
|
||||
interface RawNodeIdentity {
|
||||
interface RawNodeProfile {
|
||||
modelId?: string;
|
||||
chipId?: string;
|
||||
friendlyName?: string;
|
||||
networkInterfaces?: Array<{
|
||||
name?: string;
|
||||
ipAddress?: string;
|
||||
addresses?: Array<{ address?: string } | string>;
|
||||
ipv4?: string;
|
||||
ipv6?: string;
|
||||
ipAddresses?: string[];
|
||||
ips?: string[];
|
||||
}>;
|
||||
memory?: {
|
||||
ramTotal?: { inBytes: number };
|
||||
ramAvailable?: { inBytes: number };
|
||||
swapTotal?: { inBytes: number };
|
||||
swapAvailable?: { inBytes: number };
|
||||
};
|
||||
system?: {
|
||||
gpuUsage?: number;
|
||||
temp?: number;
|
||||
sysPower?: number;
|
||||
};
|
||||
}
|
||||
|
||||
interface RawMemoryUsage {
|
||||
ramTotal?: { inBytes: number };
|
||||
ramAvailable?: { inBytes: number };
|
||||
swapTotal?: { inBytes: number };
|
||||
swapAvailable?: { inBytes: number };
|
||||
}
|
||||
|
||||
interface RawSystemPerformanceProfile {
|
||||
gpuUsage?: number;
|
||||
temp?: number;
|
||||
sysPower?: number;
|
||||
pcpuUsage?: number;
|
||||
ecpuUsage?: number;
|
||||
}
|
||||
|
||||
interface RawNetworkInterfaceInfo {
|
||||
name?: string;
|
||||
ipAddress?: string;
|
||||
addresses?: Array<{ address?: string } | string>;
|
||||
ipv4?: string;
|
||||
ipv6?: string;
|
||||
ipAddresses?: string[];
|
||||
ips?: string[];
|
||||
}
|
||||
|
||||
interface RawNodeNetworkInfo {
|
||||
interfaces?: RawNetworkInterfaceInfo[];
|
||||
interface RawTopologyNode {
|
||||
nodeId: string;
|
||||
nodeProfile?: RawNodeProfile;
|
||||
}
|
||||
|
||||
// New connection edge types from Python SocketConnection/RDMAConnection
|
||||
interface RawSocketConnection {
|
||||
sinkMultiaddr?: {
|
||||
address?: string;
|
||||
// Multiaddr uses snake_case (no camelCase alias)
|
||||
ip_address?: string;
|
||||
ipAddress?: string; // fallback in case it changes
|
||||
address_type?: string;
|
||||
port?: number;
|
||||
};
|
||||
@@ -127,10 +125,14 @@ type RawConnectionEdge = RawSocketConnection | RawRDMAConnection;
|
||||
type RawConnectionsMap = Record<string, Record<string, RawConnectionEdge[]>>;
|
||||
|
||||
interface RawTopology {
|
||||
nodes: string[];
|
||||
// nodes can be array of strings (node IDs) or array of objects with nodeId/nodeProfile
|
||||
nodes: (string | RawTopologyNode)[];
|
||||
// New nested mapping format
|
||||
connections?: RawConnectionsMap;
|
||||
}
|
||||
|
||||
type RawNodeProfiles = Record<string, RawNodeProfile>;
|
||||
|
||||
export interface DownloadProgress {
|
||||
totalBytes: number;
|
||||
downloadedBytes: number;
|
||||
@@ -185,11 +187,7 @@ interface RawStateResponse {
|
||||
>;
|
||||
runners?: Record<string, unknown>;
|
||||
downloads?: Record<string, unknown[]>;
|
||||
// New granular node state fields
|
||||
nodeIdentities?: Record<string, RawNodeIdentity>;
|
||||
nodeMemory?: Record<string, RawMemoryUsage>;
|
||||
nodeSystem?: Record<string, RawSystemPerformanceProfile>;
|
||||
nodeNetwork?: Record<string, RawNodeNetworkInfo>;
|
||||
nodeProfiles?: RawNodeProfiles;
|
||||
}
|
||||
|
||||
export interface MessageAttachment {
|
||||
@@ -224,69 +222,65 @@ export interface Conversation {
|
||||
|
||||
const STORAGE_KEY = "exo-conversations";
|
||||
|
||||
interface GranularNodeState {
|
||||
nodeIdentities?: Record<string, RawNodeIdentity>;
|
||||
nodeMemory?: Record<string, RawMemoryUsage>;
|
||||
nodeSystem?: Record<string, RawSystemPerformanceProfile>;
|
||||
nodeNetwork?: Record<string, RawNodeNetworkInfo>;
|
||||
}
|
||||
|
||||
function transformNetworkInterface(iface: RawNetworkInterfaceInfo): {
|
||||
name?: string;
|
||||
addresses: string[];
|
||||
} {
|
||||
const addresses: string[] = [];
|
||||
if (iface.ipAddress && typeof iface.ipAddress === "string") {
|
||||
addresses.push(iface.ipAddress);
|
||||
}
|
||||
if (Array.isArray(iface.addresses)) {
|
||||
for (const addr of iface.addresses) {
|
||||
if (typeof addr === "string") addresses.push(addr);
|
||||
else if (addr && typeof addr === "object" && addr.address)
|
||||
addresses.push(addr.address);
|
||||
}
|
||||
}
|
||||
if (Array.isArray(iface.ipAddresses)) {
|
||||
addresses.push(
|
||||
...iface.ipAddresses.filter((a): a is string => typeof a === "string"),
|
||||
);
|
||||
}
|
||||
if (Array.isArray(iface.ips)) {
|
||||
addresses.push(
|
||||
...iface.ips.filter((a): a is string => typeof a === "string"),
|
||||
);
|
||||
}
|
||||
if (iface.ipv4 && typeof iface.ipv4 === "string") addresses.push(iface.ipv4);
|
||||
if (iface.ipv6 && typeof iface.ipv6 === "string") addresses.push(iface.ipv6);
|
||||
|
||||
return {
|
||||
name: iface.name,
|
||||
addresses: Array.from(new Set(addresses)),
|
||||
};
|
||||
}
|
||||
|
||||
function transformTopology(
|
||||
raw: RawTopology,
|
||||
granularState: GranularNodeState,
|
||||
profiles?: RawNodeProfiles,
|
||||
): TopologyData {
|
||||
const nodes: Record<string, NodeInfo> = {};
|
||||
const edges: TopologyEdge[] = [];
|
||||
|
||||
for (const nodeId of raw.nodes || []) {
|
||||
// Handle nodes - can be array of strings (node IDs) or array of objects with nodeId/nodeProfile
|
||||
for (const node of raw.nodes || []) {
|
||||
// Determine the node ID - could be a string or an object with nodeId property
|
||||
const nodeId = typeof node === "string" ? node : node.nodeId;
|
||||
if (!nodeId) continue;
|
||||
|
||||
// Get data from granular state mappings
|
||||
const identity = granularState.nodeIdentities?.[nodeId];
|
||||
const memory = granularState.nodeMemory?.[nodeId];
|
||||
const system = granularState.nodeSystem?.[nodeId];
|
||||
const network = granularState.nodeNetwork?.[nodeId];
|
||||
// Get the profile - from the separate profiles map or from the node object itself
|
||||
const profileFromMap = profiles?.[nodeId];
|
||||
const profileFromNode =
|
||||
typeof node === "object" ? node.nodeProfile : undefined;
|
||||
const profile = { ...(profileFromNode ?? {}), ...(profileFromMap ?? {}) };
|
||||
|
||||
const ramTotal = memory?.ramTotal?.inBytes ?? 0;
|
||||
const ramAvailable = memory?.ramAvailable?.inBytes ?? 0;
|
||||
const ramTotal = profile?.memory?.ramTotal?.inBytes ?? 0;
|
||||
const ramAvailable = profile?.memory?.ramAvailable?.inBytes ?? 0;
|
||||
const ramUsage = Math.max(ramTotal - ramAvailable, 0);
|
||||
|
||||
const rawInterfaces = network?.interfaces || [];
|
||||
const networkInterfaces = rawInterfaces.map(transformNetworkInterface);
|
||||
const networkInterfaces = (profile?.networkInterfaces || []).map(
|
||||
(iface) => {
|
||||
const addresses: string[] = [];
|
||||
if (iface.ipAddress && typeof iface.ipAddress === "string") {
|
||||
addresses.push(iface.ipAddress);
|
||||
}
|
||||
if (Array.isArray(iface.addresses)) {
|
||||
for (const addr of iface.addresses) {
|
||||
if (typeof addr === "string") addresses.push(addr);
|
||||
else if (addr && typeof addr === "object" && addr.address)
|
||||
addresses.push(addr.address);
|
||||
}
|
||||
}
|
||||
if (Array.isArray(iface.ipAddresses)) {
|
||||
addresses.push(
|
||||
...iface.ipAddresses.filter(
|
||||
(a): a is string => typeof a === "string",
|
||||
),
|
||||
);
|
||||
}
|
||||
if (Array.isArray(iface.ips)) {
|
||||
addresses.push(
|
||||
...iface.ips.filter((a): a is string => typeof a === "string"),
|
||||
);
|
||||
}
|
||||
if (iface.ipv4 && typeof iface.ipv4 === "string")
|
||||
addresses.push(iface.ipv4);
|
||||
if (iface.ipv6 && typeof iface.ipv6 === "string")
|
||||
addresses.push(iface.ipv6);
|
||||
|
||||
return {
|
||||
name: iface.name,
|
||||
addresses: Array.from(new Set(addresses)),
|
||||
};
|
||||
},
|
||||
);
|
||||
|
||||
const ipToInterface: Record<string, string> = {};
|
||||
for (const iface of networkInterfaces) {
|
||||
@@ -297,8 +291,8 @@ function transformTopology(
|
||||
|
||||
nodes[nodeId] = {
|
||||
system_info: {
|
||||
model_id: identity?.modelId ?? "Unknown",
|
||||
chip: identity?.chipId,
|
||||
model_id: profile?.modelId ?? "Unknown",
|
||||
chip: profile?.chipId,
|
||||
memory: ramTotal,
|
||||
},
|
||||
network_interfaces: networkInterfaces,
|
||||
@@ -309,15 +303,17 @@ function transformTopology(
|
||||
ram_total: ramTotal,
|
||||
},
|
||||
temp:
|
||||
system?.temp !== undefined
|
||||
? { gpu_temp_avg: system.temp }
|
||||
profile?.system?.temp !== undefined
|
||||
? { gpu_temp_avg: profile.system.temp }
|
||||
: undefined,
|
||||
gpu_usage:
|
||||
system?.gpuUsage !== undefined ? [0, system.gpuUsage] : undefined,
|
||||
sys_power: system?.sysPower,
|
||||
profile?.system?.gpuUsage !== undefined
|
||||
? [0, profile.system.gpuUsage]
|
||||
: undefined,
|
||||
sys_power: profile?.system?.sysPower,
|
||||
},
|
||||
last_macmon_update: Date.now() / 1000,
|
||||
friendly_name: identity?.friendlyName,
|
||||
friendly_name: profile?.friendlyName,
|
||||
};
|
||||
}
|
||||
|
||||
@@ -329,15 +325,19 @@ function transformTopology(
|
||||
for (const [sink, edgeList] of Object.entries(sinks)) {
|
||||
if (!Array.isArray(edgeList)) continue;
|
||||
for (const edge of edgeList) {
|
||||
// Extract IP from SocketConnection (uses snake_case: ip_address)
|
||||
let sendBackIp: string | undefined;
|
||||
if (edge && typeof edge === "object" && "sinkMultiaddr" in edge) {
|
||||
const multiaddr = edge.sinkMultiaddr;
|
||||
if (multiaddr) {
|
||||
// Try both snake_case (actual) and camelCase (in case it changes)
|
||||
sendBackIp =
|
||||
multiaddr.ip_address ||
|
||||
multiaddr.ipAddress ||
|
||||
extractIpFromMultiaddr(multiaddr.address);
|
||||
}
|
||||
}
|
||||
// RDMAConnection (sourceRdmaIface/sinkRdmaIface) has no IP - edge just shows connection exists
|
||||
|
||||
if (nodes[source] && nodes[sink] && source !== sink) {
|
||||
edges.push({ source, target: sink, sendBackIp });
|
||||
@@ -898,12 +898,7 @@ class AppStore {
|
||||
const data: RawStateResponse = await response.json();
|
||||
|
||||
if (data.topology) {
|
||||
this.topologyData = transformTopology(data.topology, {
|
||||
nodeIdentities: data.nodeIdentities,
|
||||
nodeMemory: data.nodeMemory,
|
||||
nodeSystem: data.nodeSystem,
|
||||
nodeNetwork: data.nodeNetwork,
|
||||
});
|
||||
this.topologyData = transformTopology(data.topology, data.nodeProfiles);
|
||||
}
|
||||
if (data.instances) {
|
||||
this.instances = data.instances;
|
||||
|
||||
@@ -434,8 +434,8 @@ function toggleInstanceDownloadDetails(nodeId: string): void {
|
||||
const shardData = shardObj[shardKeys[0]] as Record<string, unknown>;
|
||||
if (!shardData) return null;
|
||||
|
||||
// Model meta is nested: shard.model_card.model_id
|
||||
const modelMeta = shardData.model_card ?? shardData.modelCard;
|
||||
// Model meta is nested: shard.model_meta.model_id
|
||||
const modelMeta = shardData.model_meta ?? shardData.modelMeta;
|
||||
if (!modelMeta || typeof modelMeta !== 'object') return null;
|
||||
|
||||
const meta = modelMeta as Record<string, unknown>;
|
||||
|
||||
@@ -98,7 +98,7 @@
|
||||
const shardData = shardObj[shardKeys[0]] as Record<string, unknown>;
|
||||
if (!shardData) return null;
|
||||
|
||||
const modelMeta = shardData.model_card ?? shardData.modelCard;
|
||||
const modelMeta = shardData.model_meta ?? shardData.modelMeta;
|
||||
if (!modelMeta || typeof modelMeta !== 'object') return null;
|
||||
|
||||
const meta = modelMeta as Record<string, unknown>;
|
||||
@@ -190,7 +190,7 @@
|
||||
const shardKeys = Object.keys(shardObj);
|
||||
if (shardKeys.length !== 1) return null;
|
||||
const shardData = shardObj[shardKeys[0]] as Record<string, unknown>;
|
||||
const modelMeta = shardData?.model_card ?? shardData?.modelCard;
|
||||
const modelMeta = shardData?.model_meta ?? shardData?.modelMeta;
|
||||
if (!modelMeta || typeof modelMeta !== 'object') return null;
|
||||
const meta = modelMeta as Record<string, unknown>;
|
||||
return (meta.prettyName as string) ?? null;
|
||||
|
||||
@@ -17,8 +17,8 @@ dependencies = [
|
||||
"loguru>=0.7.3",
|
||||
"exo_pyo3_bindings", # rust bindings
|
||||
"anyio==4.11.0",
|
||||
"mlx==0.30.3; sys_platform == 'darwin'",
|
||||
"mlx[cpu]==0.30.3; sys_platform == 'linux'",
|
||||
"mlx==0.30.1; sys_platform == 'darwin'",
|
||||
"mlx[cpu]==0.30.1; sys_platform == 'linux'",
|
||||
"mlx-lm @ git+https://github.com/AlexCheema/mlx-lm.git@fix-transformers-5.0.0rc2",
|
||||
"tiktoken>=0.12.0", # required for kimi k2 tokenizer
|
||||
"hypercorn>=0.18.0",
|
||||
|
||||
@@ -19,8 +19,8 @@ from exo.master.placement import place_instance as get_instance_placements
|
||||
from exo.shared.apply import apply
|
||||
from exo.shared.election import ElectionMessage
|
||||
from exo.shared.logging import InterceptLogger
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
|
||||
from exo.shared.models.model_meta import get_model_card
|
||||
from exo.shared.models.model_cards import MODEL_CARDS
|
||||
from exo.shared.models.model_meta import get_model_meta
|
||||
from exo.shared.types.api import (
|
||||
BenchChatCompletionResponse,
|
||||
BenchChatCompletionTaskParams,
|
||||
@@ -59,6 +59,7 @@ from exo.shared.types.events import (
|
||||
IndexedEvent,
|
||||
)
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.state import State
|
||||
from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
@@ -86,12 +87,12 @@ def chunk_to_response(
|
||||
)
|
||||
|
||||
|
||||
async def resolve_model_card(model_id: str) -> ModelCard:
|
||||
async def resolve_model_meta(model_id: str) -> ModelMetadata:
|
||||
if model_id in MODEL_CARDS:
|
||||
model_card = MODEL_CARDS[model_id]
|
||||
return model_card
|
||||
return model_card.metadata
|
||||
else:
|
||||
return await get_model_card(model_id)
|
||||
return await get_model_meta(model_id)
|
||||
|
||||
|
||||
class API:
|
||||
@@ -196,7 +197,7 @@ class API:
|
||||
|
||||
async def place_instance(self, payload: PlaceInstanceParams):
|
||||
command = PlaceInstance(
|
||||
model_card=await resolve_model_card(payload.model_id),
|
||||
model_meta=await resolve_model_meta(payload.model_id),
|
||||
sharding=payload.sharding,
|
||||
instance_meta=payload.instance_meta,
|
||||
min_nodes=payload.min_nodes,
|
||||
@@ -206,15 +207,15 @@ class API:
|
||||
return CreateInstanceResponse(
|
||||
message="Command received.",
|
||||
command_id=command.command_id,
|
||||
model_card=command.model_card,
|
||||
model_meta=command.model_meta,
|
||||
)
|
||||
|
||||
async def create_instance(
|
||||
self, payload: CreateInstanceParams
|
||||
) -> CreateInstanceResponse:
|
||||
instance = payload.instance
|
||||
model_card = await resolve_model_card(instance.shard_assignments.model_id)
|
||||
required_memory = model_card.storage_size
|
||||
model_meta = await resolve_model_meta(instance.shard_assignments.model_id)
|
||||
required_memory = model_meta.storage_size
|
||||
available_memory = self._calculate_total_available_memory()
|
||||
|
||||
if required_memory > available_memory:
|
||||
@@ -231,7 +232,7 @@ class API:
|
||||
return CreateInstanceResponse(
|
||||
message="Command received.",
|
||||
command_id=command.command_id,
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
)
|
||||
|
||||
async def get_placement(
|
||||
@@ -241,18 +242,17 @@ class API:
|
||||
instance_meta: InstanceMeta = InstanceMeta.MlxRing,
|
||||
min_nodes: int = 1,
|
||||
) -> Instance:
|
||||
model_card = await resolve_model_card(model_id)
|
||||
model_meta = await resolve_model_meta(model_id)
|
||||
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
PlaceInstance(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
min_nodes=min_nodes,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
node_profiles=self.state.node_profiles,
|
||||
topology=self.state.topology,
|
||||
current_instances=self.state.instances,
|
||||
)
|
||||
@@ -279,7 +279,7 @@ class API:
|
||||
if len(list(self.state.topology.list_nodes())) == 0:
|
||||
return PlacementPreviewResponse(previews=[])
|
||||
|
||||
cards = [card for card in MODEL_CARDS.values() if card.model_id == model_id]
|
||||
cards = [card for card in MODEL_CARDS.values() if card.short_id == model_id]
|
||||
if not cards:
|
||||
raise HTTPException(status_code=404, detail=f"Model {model_id} not found")
|
||||
|
||||
@@ -297,33 +297,33 @@ class API:
|
||||
# TODO: PDD
|
||||
# instance_combinations.append((Sharding.PrefillDecodeDisaggregation, InstanceMeta.MlxRing, 1))
|
||||
|
||||
for model_card in cards:
|
||||
for card in cards:
|
||||
model_meta = card.metadata
|
||||
for sharding, instance_meta, min_nodes in instance_combinations:
|
||||
try:
|
||||
placements = get_instance_placements(
|
||||
PlaceInstance(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
min_nodes=min_nodes,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
node_profiles=self.state.node_profiles,
|
||||
topology=self.state.topology,
|
||||
current_instances=self.state.instances,
|
||||
)
|
||||
except ValueError as exc:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
if (card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
model_id=card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error=str(exc),
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
seen.add((card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
current_ids = set(self.state.instances.keys())
|
||||
@@ -334,17 +334,17 @@ class API:
|
||||
]
|
||||
|
||||
if len(new_instances) != 1:
|
||||
if (model_card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
if (card.model_id, sharding, instance_meta, 0) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
model_id=card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=None,
|
||||
error="Expected exactly one new instance from placement",
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, 0))
|
||||
seen.add((card.model_id, sharding, instance_meta, 0))
|
||||
continue
|
||||
|
||||
instance = new_instances[0]
|
||||
@@ -353,7 +353,7 @@ class API:
|
||||
|
||||
memory_delta_by_node: dict[str, int] = {}
|
||||
if node_ids:
|
||||
total_bytes = model_card.storage_size.in_bytes
|
||||
total_bytes = model_meta.storage_size.in_bytes
|
||||
per_node = total_bytes // len(node_ids)
|
||||
remainder = total_bytes % len(node_ids)
|
||||
for index, node_id in enumerate(sorted(node_ids, key=str)):
|
||||
@@ -361,14 +361,14 @@ class API:
|
||||
memory_delta_by_node[str(node_id)] = per_node + extra
|
||||
|
||||
if (
|
||||
model_card.model_id,
|
||||
card.model_id,
|
||||
sharding,
|
||||
instance_meta,
|
||||
len(node_ids),
|
||||
) not in seen:
|
||||
previews.append(
|
||||
PlacementPreview(
|
||||
model_id=model_card.model_id,
|
||||
model_id=card.model_id,
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
instance=instance,
|
||||
@@ -376,7 +376,7 @@ class API:
|
||||
error=None,
|
||||
)
|
||||
)
|
||||
seen.add((model_card.model_id, sharding, instance_meta, len(node_ids)))
|
||||
seen.add((card.model_id, sharding, instance_meta, len(node_ids)))
|
||||
|
||||
return PlacementPreviewResponse(previews=previews)
|
||||
|
||||
@@ -551,8 +551,8 @@ class API:
|
||||
self, payload: ChatCompletionTaskParams
|
||||
) -> ChatCompletionResponse | StreamingResponse:
|
||||
"""Handle chat completions, supporting both streaming and non-streaming responses."""
|
||||
model_card = await resolve_model_card(payload.model)
|
||||
payload.model = model_card.model_id
|
||||
model_meta = await resolve_model_meta(payload.model)
|
||||
payload.model = model_meta.model_id
|
||||
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == payload.model
|
||||
@@ -578,8 +578,8 @@ class API:
|
||||
async def bench_chat_completions(
|
||||
self, payload: BenchChatCompletionTaskParams
|
||||
) -> BenchChatCompletionResponse:
|
||||
model_card = await resolve_model_card(payload.model)
|
||||
payload.model = model_card.model_id
|
||||
model_meta = await resolve_model_meta(payload.model)
|
||||
payload.model = model_meta.model_id
|
||||
|
||||
if not any(
|
||||
instance.shard_assignments.model_id == payload.model
|
||||
@@ -602,8 +602,8 @@ class API:
|
||||
"""Calculate total available memory across all nodes in bytes."""
|
||||
total_available = Memory()
|
||||
|
||||
for memory in self.state.node_memory.values():
|
||||
total_available += memory.ram_available
|
||||
for profile in self.state.node_profiles.values():
|
||||
total_available += profile.memory.ram_available
|
||||
|
||||
return total_available
|
||||
|
||||
@@ -612,13 +612,13 @@ class API:
|
||||
return ModelList(
|
||||
data=[
|
||||
ModelListModel(
|
||||
id=card.model_id,
|
||||
id=card.short_id,
|
||||
hugging_face_id=card.model_id,
|
||||
name=card.model_id.short(),
|
||||
description="",
|
||||
tags=[],
|
||||
storage_size_megabytes=int(card.storage_size.in_mb),
|
||||
supports_tensor=card.supports_tensor,
|
||||
name=card.name,
|
||||
description=card.description,
|
||||
tags=card.tags,
|
||||
storage_size_megabytes=int(card.metadata.storage_size.in_mb),
|
||||
supports_tensor=card.metadata.supports_tensor,
|
||||
)
|
||||
for card in MODEL_CARDS.values()
|
||||
]
|
||||
|
||||
@@ -159,8 +159,7 @@ class Master:
|
||||
command,
|
||||
self.state.topology,
|
||||
self.state.instances,
|
||||
self.state.node_memory,
|
||||
self.state.node_network,
|
||||
self.state.node_profiles,
|
||||
)
|
||||
transition_events = get_transition_events(
|
||||
self.state.instances, placement
|
||||
|
||||
@@ -14,7 +14,6 @@ from exo.master.placement_utils import (
|
||||
get_shard_assignments,
|
||||
get_smallest_cycles,
|
||||
)
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.commands import (
|
||||
CreateInstance,
|
||||
@@ -24,7 +23,8 @@ from exo.shared.types.commands import (
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.events import Event, InstanceCreated, InstanceDeleted
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.profiling import MemoryUsage, NodeNetworkInfo
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.profiling import NodePerformanceProfile
|
||||
from exo.shared.types.worker.instances import (
|
||||
Instance,
|
||||
InstanceId,
|
||||
@@ -54,33 +54,32 @@ def place_instance(
|
||||
command: PlaceInstance,
|
||||
topology: Topology,
|
||||
current_instances: Mapping[InstanceId, Instance],
|
||||
node_memory: Mapping[NodeId, MemoryUsage],
|
||||
node_network: Mapping[NodeId, NodeNetworkInfo],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
) -> dict[InstanceId, Instance]:
|
||||
cycles = topology.get_cycles()
|
||||
candidate_cycles = list(filter(lambda it: len(it) >= command.min_nodes, cycles))
|
||||
cycles_with_sufficient_memory = filter_cycles_by_memory(
|
||||
candidate_cycles, node_memory, command.model_card.storage_size
|
||||
candidate_cycles, node_profiles, command.model_meta.storage_size
|
||||
)
|
||||
if len(cycles_with_sufficient_memory) == 0:
|
||||
raise ValueError("No cycles found with sufficient memory")
|
||||
|
||||
if command.sharding == Sharding.Tensor:
|
||||
if not command.model_card.supports_tensor:
|
||||
if not command.model_meta.supports_tensor:
|
||||
raise ValueError(
|
||||
f"Requested Tensor sharding but this model does not support tensor parallelism: {command.model_card.model_id}"
|
||||
f"Requested Tensor sharding but this model does not support tensor parallelism: {command.model_meta.model_id}"
|
||||
)
|
||||
# TODO: the condition here for tensor parallel is not correct, but it works good enough for now.
|
||||
cycles_with_sufficient_memory = [
|
||||
cycle
|
||||
for cycle in cycles_with_sufficient_memory
|
||||
if command.model_card.hidden_size % len(cycle) == 0
|
||||
if command.model_meta.hidden_size % len(cycle) == 0
|
||||
]
|
||||
if not cycles_with_sufficient_memory:
|
||||
raise ValueError(
|
||||
f"No tensor sharding found for model with hidden_size {command.model_card.hidden_size} candidate cycles"
|
||||
f"No tensor sharding found for model with hidden_size {command.model_meta.hidden_size} candidate cycles"
|
||||
)
|
||||
if command.sharding == Sharding.Pipeline and command.model_card.model_id == ModelId(
|
||||
if command.sharding == Sharding.Pipeline and command.model_meta.model_id == ModelId(
|
||||
"mlx-community/DeepSeek-V3.1-8bit"
|
||||
):
|
||||
raise ValueError(
|
||||
@@ -105,13 +104,13 @@ def place_instance(
|
||||
selected_cycle = max(
|
||||
cycles_with_leaf_nodes if cycles_with_leaf_nodes != [] else smallest_cycles,
|
||||
key=lambda cycle: sum(
|
||||
(node_memory[node_id].ram_available for node_id in cycle),
|
||||
(node_profiles[node_id].memory.ram_available for node_id in cycle),
|
||||
start=Memory(),
|
||||
),
|
||||
)
|
||||
|
||||
shard_assignments = get_shard_assignments(
|
||||
command.model_card, selected_cycle, command.sharding, node_memory
|
||||
command.model_meta, selected_cycle, command.sharding, node_profiles
|
||||
)
|
||||
|
||||
cycle_digraph: Topology = topology.get_subgraph_from_nodes(selected_cycle.node_ids)
|
||||
@@ -137,7 +136,7 @@ def place_instance(
|
||||
coordinator=selected_cycle.node_ids[0],
|
||||
coordinator_port=random_ephemeral_port(),
|
||||
cycle_digraph=cycle_digraph,
|
||||
node_network=node_network,
|
||||
node_profiles=node_profiles,
|
||||
)
|
||||
target_instances[instance_id] = MlxJacclInstance(
|
||||
instance_id=instance_id,
|
||||
@@ -151,7 +150,7 @@ def place_instance(
|
||||
selected_cycle=selected_cycle,
|
||||
cycle_digraph=cycle_digraph,
|
||||
ephemeral_port=ephemeral_port,
|
||||
node_network=node_network,
|
||||
node_profiles=node_profiles,
|
||||
)
|
||||
target_instances[instance_id] = MlxRingInstance(
|
||||
instance_id=instance_id,
|
||||
|
||||
@@ -2,11 +2,11 @@ from collections.abc import Generator, Mapping
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.common import Host, NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.profiling import MemoryUsage, NodeNetworkInfo
|
||||
from exo.shared.types.models import ModelMetadata
|
||||
from exo.shared.types.profiling import NodePerformanceProfile
|
||||
from exo.shared.types.topology import Cycle, RDMAConnection, SocketConnection
|
||||
from exo.shared.types.worker.runners import RunnerId, ShardAssignments
|
||||
from exo.shared.types.worker.shards import (
|
||||
@@ -19,16 +19,16 @@ from exo.shared.types.worker.shards import (
|
||||
|
||||
def filter_cycles_by_memory(
|
||||
cycles: list[Cycle],
|
||||
node_memory: Mapping[NodeId, MemoryUsage],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
required_memory: Memory,
|
||||
) -> list[Cycle]:
|
||||
filtered_cycles: list[Cycle] = []
|
||||
for cycle in cycles:
|
||||
if not all(node in node_memory for node in cycle):
|
||||
if not all(node in node_profiles for node in cycle):
|
||||
continue
|
||||
|
||||
total_mem = sum(
|
||||
(node_memory[node_id].ram_available for node_id in cycle.node_ids),
|
||||
(node_profiles[node_id].memory.ram_available for node_id in cycle.node_ids),
|
||||
start=Memory(),
|
||||
)
|
||||
if total_mem >= required_memory:
|
||||
@@ -75,21 +75,22 @@ def allocate_layers_proportionally(
|
||||
|
||||
|
||||
def get_shard_assignments_for_pipeline_parallel(
|
||||
model_card: ModelCard,
|
||||
model_meta: ModelMetadata,
|
||||
cycle: Cycle,
|
||||
node_memory: Mapping[NodeId, MemoryUsage],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
):
|
||||
if not cycle.node_ids:
|
||||
raise ValueError("Cannot create shard assignments for empty node cycle")
|
||||
|
||||
cycle_memory = sum(
|
||||
(node_memory[node_id].ram_available for node_id in cycle.node_ids),
|
||||
(node_profiles[node_id].memory.ram_available for node_id in cycle.node_ids),
|
||||
start=Memory(),
|
||||
)
|
||||
|
||||
if cycle_memory.in_bytes == 0:
|
||||
raise ValueError("Cannot create shard assignments: total available memory is 0")
|
||||
|
||||
total_layers = model_card.n_layers
|
||||
total_layers = model_meta.n_layers
|
||||
world_size = len(cycle)
|
||||
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
|
||||
node_to_runner: dict[NodeId, RunnerId] = {}
|
||||
@@ -97,18 +98,18 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
layer_allocations = allocate_layers_proportionally(
|
||||
total_layers=total_layers,
|
||||
memory_fractions=[
|
||||
node_memory[node_id].ram_available.in_bytes / cycle_memory.in_bytes
|
||||
node_profiles[node_id].memory.ram_available.in_bytes / cycle_memory.in_bytes
|
||||
for node_id in cycle.node_ids
|
||||
],
|
||||
)
|
||||
|
||||
# Validate each node has sufficient memory for its assigned layers
|
||||
memory_per_layer = model_card.storage_size.in_bytes / total_layers
|
||||
memory_per_layer = model_meta.storage_size.in_bytes / total_layers
|
||||
for i, (node_id, node_layers) in enumerate(
|
||||
zip(cycle.node_ids, layer_allocations, strict=True)
|
||||
):
|
||||
required_memory = node_layers * memory_per_layer
|
||||
available_memory = node_memory[node_id].ram_available.in_bytes
|
||||
available_memory = node_profiles[node_id].memory.ram_available.in_bytes
|
||||
if required_memory > available_memory:
|
||||
raise ValueError(
|
||||
f"Node {i} ({node_id}) has insufficient memory: "
|
||||
@@ -123,7 +124,7 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
runner_id = RunnerId()
|
||||
|
||||
shard = PipelineShardMetadata(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=layers_assigned,
|
||||
@@ -136,7 +137,7 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
layers_assigned += node_layers
|
||||
|
||||
shard_assignments = ShardAssignments(
|
||||
model_id=model_card.model_id,
|
||||
model_id=model_meta.model_id,
|
||||
runner_to_shard=runner_to_shard,
|
||||
node_to_runner=node_to_runner,
|
||||
)
|
||||
@@ -145,17 +146,17 @@ def get_shard_assignments_for_pipeline_parallel(
|
||||
|
||||
|
||||
def get_shard_assignments_for_tensor_parallel(
|
||||
model_card: ModelCard,
|
||||
model_meta: ModelMetadata,
|
||||
cycle: Cycle,
|
||||
):
|
||||
total_layers = model_card.n_layers
|
||||
total_layers = model_meta.n_layers
|
||||
world_size = len(cycle)
|
||||
runner_to_shard: dict[RunnerId, ShardMetadata] = {}
|
||||
node_to_runner: dict[NodeId, RunnerId] = {}
|
||||
|
||||
for i, node_id in enumerate(cycle):
|
||||
shard = TensorShardMetadata(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=0,
|
||||
@@ -169,7 +170,7 @@ def get_shard_assignments_for_tensor_parallel(
|
||||
node_to_runner[node_id] = runner_id
|
||||
|
||||
shard_assignments = ShardAssignments(
|
||||
model_id=model_card.model_id,
|
||||
model_id=model_meta.model_id,
|
||||
runner_to_shard=runner_to_shard,
|
||||
node_to_runner=node_to_runner,
|
||||
)
|
||||
@@ -178,21 +179,21 @@ def get_shard_assignments_for_tensor_parallel(
|
||||
|
||||
|
||||
def get_shard_assignments(
|
||||
model_card: ModelCard,
|
||||
model_meta: ModelMetadata,
|
||||
cycle: Cycle,
|
||||
sharding: Sharding,
|
||||
node_memory: Mapping[NodeId, MemoryUsage],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
) -> ShardAssignments:
|
||||
match sharding:
|
||||
case Sharding.Pipeline:
|
||||
return get_shard_assignments_for_pipeline_parallel(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
cycle=cycle,
|
||||
node_memory=node_memory,
|
||||
node_profiles=node_profiles,
|
||||
)
|
||||
case Sharding.Tensor:
|
||||
return get_shard_assignments_for_tensor_parallel(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
cycle=cycle,
|
||||
)
|
||||
|
||||
@@ -287,10 +288,10 @@ def _find_connection_ip(
|
||||
|
||||
|
||||
def _find_interface_name_for_ip(
|
||||
ip_address: str, node_network: NodeNetworkInfo
|
||||
ip_address: str, node_profile: NodePerformanceProfile
|
||||
) -> str | None:
|
||||
"""Find the interface name for an IP address on a node (any interface)."""
|
||||
for interface in node_network.interfaces:
|
||||
for interface in node_profile.network_interfaces:
|
||||
if interface.ip_address == ip_address:
|
||||
return interface.name
|
||||
|
||||
@@ -301,7 +302,7 @@ def _find_ip_prioritised(
|
||||
node_id: NodeId,
|
||||
other_node_id: NodeId,
|
||||
cycle_digraph: Topology,
|
||||
node_network: Mapping[NodeId, NodeNetworkInfo],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
) -> str | None:
|
||||
# TODO: Actually prioritize in the correct Ethernet > Wifi > Non-TB > TB order.
|
||||
"""Find an IP address between nodes with prioritization.
|
||||
@@ -315,9 +316,7 @@ def _find_ip_prioritised(
|
||||
ips = list(_find_connection_ip(node_id, other_node_id, cycle_digraph))
|
||||
# We expect a unique iface -> ip mapping
|
||||
iface_map = {
|
||||
_find_interface_name_for_ip(
|
||||
ip, node_network.get(other_node_id, NodeNetworkInfo())
|
||||
): ip
|
||||
_find_interface_name_for_ip(ip, node_profiles[other_node_id]): ip
|
||||
for ip, _ in ips
|
||||
}
|
||||
|
||||
@@ -346,7 +345,7 @@ def get_mlx_ring_hosts_by_node(
|
||||
selected_cycle: Cycle,
|
||||
cycle_digraph: Topology,
|
||||
ephemeral_port: int,
|
||||
node_network: Mapping[NodeId, NodeNetworkInfo],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
) -> dict[NodeId, list[Host]]:
|
||||
"""Generate per-node host lists for MLX ring backend.
|
||||
|
||||
@@ -378,7 +377,7 @@ def get_mlx_ring_hosts_by_node(
|
||||
continue
|
||||
|
||||
connection_ip = _find_ip_prioritised(
|
||||
node_id, other_node_id, cycle_digraph, node_network
|
||||
node_id, other_node_id, cycle_digraph, node_profiles
|
||||
)
|
||||
if connection_ip is None:
|
||||
logger.warning(
|
||||
@@ -399,7 +398,7 @@ def get_mlx_jaccl_coordinators(
|
||||
coordinator: NodeId,
|
||||
coordinator_port: int,
|
||||
cycle_digraph: Topology,
|
||||
node_network: Mapping[NodeId, NodeNetworkInfo],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
) -> dict[NodeId, str]:
|
||||
"""Get the coordinator addresses for MLX JACCL (rank 0 device).
|
||||
|
||||
@@ -412,7 +411,7 @@ def get_mlx_jaccl_coordinators(
|
||||
if n == coordinator:
|
||||
return "0.0.0.0"
|
||||
|
||||
ip = _find_ip_prioritised(n, coordinator, cycle_digraph, node_network)
|
||||
ip = _find_ip_prioritised(n, coordinator, cycle_digraph, node_profiles)
|
||||
if ip is not None:
|
||||
return ip
|
||||
|
||||
|
||||
@@ -2,26 +2,28 @@ from exo.shared.types.multiaddr import Multiaddr
|
||||
from exo.shared.types.profiling import (
|
||||
MemoryUsage,
|
||||
NetworkInterfaceInfo,
|
||||
NodeNetworkInfo,
|
||||
NodePerformanceProfile,
|
||||
SystemPerformanceProfile,
|
||||
)
|
||||
from exo.shared.types.topology import RDMAConnection, SocketConnection
|
||||
|
||||
|
||||
def create_node_memory(memory: int) -> MemoryUsage:
|
||||
return MemoryUsage.from_bytes(
|
||||
ram_total=1000,
|
||||
ram_available=memory,
|
||||
swap_total=1000,
|
||||
swap_available=1000,
|
||||
)
|
||||
|
||||
|
||||
def create_node_network() -> NodeNetworkInfo:
|
||||
return NodeNetworkInfo(
|
||||
interfaces=[
|
||||
def create_node_profile(memory: int) -> NodePerformanceProfile:
|
||||
return NodePerformanceProfile(
|
||||
model_id="test",
|
||||
chip_id="test",
|
||||
friendly_name="test",
|
||||
memory=MemoryUsage.from_bytes(
|
||||
ram_total=1000,
|
||||
ram_available=memory,
|
||||
swap_total=1000,
|
||||
swap_available=1000,
|
||||
),
|
||||
network_interfaces=[
|
||||
NetworkInterfaceInfo(name="en0", ip_address=f"169.254.0.{i}")
|
||||
for i in range(10)
|
||||
]
|
||||
],
|
||||
system=SystemPerformanceProfile(),
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ from loguru import logger
|
||||
|
||||
from exo.master.main import Master
|
||||
from exo.routing.router import get_node_id_keypair
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.api import ChatCompletionMessage, ChatCompletionTaskParams
|
||||
from exo.shared.types.commands import (
|
||||
ChatCompletion,
|
||||
@@ -24,6 +23,7 @@ from exo.shared.types.events import (
|
||||
TaskCreated,
|
||||
)
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.profiling import (
|
||||
MemoryUsage,
|
||||
)
|
||||
@@ -73,8 +73,8 @@ async def test_master():
|
||||
tg.start_soon(master.run)
|
||||
|
||||
sender_node_id = NodeId(f"{keypair.to_peer_id().to_base58()}_sender")
|
||||
# inject a NodeGatheredInfo event
|
||||
logger.info("inject a NodeGatheredInfo event")
|
||||
# inject a NodePerformanceProfile event
|
||||
logger.info("inject a NodePerformanceProfile event")
|
||||
await local_event_sender.send(
|
||||
ForwarderEvent(
|
||||
origin_idx=0,
|
||||
@@ -99,7 +99,7 @@ async def test_master():
|
||||
logger.info("wait for initial topology event")
|
||||
while len(list(master.state.topology.list_nodes())) == 0:
|
||||
await anyio.sleep(0.001)
|
||||
while len(master.state.node_memory) == 0:
|
||||
while len(master.state.node_profiles) == 0:
|
||||
await anyio.sleep(0.001)
|
||||
|
||||
logger.info("inject a CreateInstance Command")
|
||||
@@ -109,8 +109,9 @@ async def test_master():
|
||||
command=(
|
||||
PlaceInstance(
|
||||
command_id=CommandId(),
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("llama-3.2-1b"),
|
||||
pretty_name="Llama 3.2 1B",
|
||||
n_layers=16,
|
||||
storage_size=Memory.from_bytes(678948),
|
||||
hidden_size=7168,
|
||||
@@ -166,8 +167,9 @@ async def test_master():
|
||||
start_layer=0,
|
||||
end_layer=16,
|
||||
n_layers=16,
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("llama-3.2-1b"),
|
||||
pretty_name="Llama 3.2 1B",
|
||||
n_layers=16,
|
||||
storage_size=Memory.from_bytes(678948),
|
||||
hidden_size=7168,
|
||||
|
||||
@@ -5,19 +5,18 @@ from exo.master.placement import (
|
||||
place_instance,
|
||||
)
|
||||
from exo.master.tests.conftest import (
|
||||
create_node_memory,
|
||||
create_node_network,
|
||||
create_node_profile,
|
||||
create_rdma_connection,
|
||||
create_socket_connection,
|
||||
)
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.commands import PlaceInstance
|
||||
from exo.shared.types.common import CommandId, NodeId
|
||||
from exo.shared.types.events import InstanceCreated, InstanceDeleted
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.multiaddr import Multiaddr
|
||||
from exo.shared.types.profiling import NetworkInterfaceInfo, NodeNetworkInfo
|
||||
from exo.shared.types.profiling import NetworkInterfaceInfo
|
||||
from exo.shared.types.topology import Connection, SocketConnection
|
||||
from exo.shared.types.worker.instances import (
|
||||
Instance,
|
||||
@@ -43,20 +42,21 @@ def instance() -> Instance:
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def model_card() -> ModelCard:
|
||||
return ModelCard(
|
||||
def model_meta() -> ModelMetadata:
|
||||
return ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
storage_size=Memory.from_kb(1000),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=30,
|
||||
supports_tensor=True,
|
||||
)
|
||||
|
||||
|
||||
def place_instance_command(model_card: ModelCard) -> PlaceInstance:
|
||||
def place_instance_command(model_meta: ModelMetadata) -> PlaceInstance:
|
||||
return PlaceInstance(
|
||||
command_id=CommandId(),
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
sharding=Sharding.Pipeline,
|
||||
instance_meta=InstanceMeta.MlxRing,
|
||||
min_nodes=1,
|
||||
@@ -75,16 +75,16 @@ def test_get_instance_placements_create_instance(
|
||||
available_memory: tuple[int, int, int],
|
||||
total_layers: int,
|
||||
expected_layers: tuple[int, int, int],
|
||||
model_card: ModelCard,
|
||||
model_meta: ModelMetadata,
|
||||
):
|
||||
# arrange
|
||||
model_card.n_layers = total_layers
|
||||
model_card.storage_size.in_bytes = sum(
|
||||
model_meta.n_layers = total_layers
|
||||
model_meta.storage_size.in_bytes = sum(
|
||||
available_memory
|
||||
) # make it exactly fit across all nodes
|
||||
topology = Topology()
|
||||
|
||||
cic = place_instance_command(model_card)
|
||||
cic = place_instance_command(model_meta)
|
||||
node_id_a = NodeId()
|
||||
node_id_b = NodeId()
|
||||
node_id_c = NodeId()
|
||||
@@ -109,15 +109,10 @@ def test_get_instance_placements_create_instance(
|
||||
source=node_id_b, sink=node_id_a, edge=create_socket_connection(6)
|
||||
)
|
||||
|
||||
node_memory = {
|
||||
node_id_a: create_node_memory(available_memory[0]),
|
||||
node_id_b: create_node_memory(available_memory[1]),
|
||||
node_id_c: create_node_memory(available_memory[2]),
|
||||
}
|
||||
node_network = {
|
||||
node_id_a: create_node_network(),
|
||||
node_id_b: create_node_network(),
|
||||
node_id_c: create_node_network(),
|
||||
profiles = {
|
||||
node_id_a: create_node_profile(available_memory[0]),
|
||||
node_id_b: create_node_profile(available_memory[1]),
|
||||
node_id_c: create_node_profile(available_memory[2]),
|
||||
}
|
||||
topology.add_node(node_id_a)
|
||||
topology.add_node(node_id_b)
|
||||
@@ -130,13 +125,13 @@ def test_get_instance_placements_create_instance(
|
||||
topology.add_connection(conn_b_a)
|
||||
|
||||
# act
|
||||
placements = place_instance(cic, topology, {}, node_memory, node_network)
|
||||
placements = place_instance(cic, topology, {}, profiles)
|
||||
|
||||
# assert
|
||||
assert len(placements) == 1
|
||||
instance_id = list(placements.keys())[0]
|
||||
instance = placements[instance_id]
|
||||
assert instance.shard_assignments.model_id == model_card.model_id
|
||||
assert instance.shard_assignments.model_id == model_meta.model_id
|
||||
|
||||
runner_id_a = instance.shard_assignments.node_to_runner[node_id_a]
|
||||
runner_id_b = instance.shard_assignments.node_to_runner[node_id_b]
|
||||
@@ -160,18 +155,18 @@ def test_get_instance_placements_one_node_exact_fit() -> None:
|
||||
topology = Topology()
|
||||
node_id = NodeId()
|
||||
topology.add_node(node_id)
|
||||
node_memory = {node_id: create_node_memory(1000 * 1024)}
|
||||
node_network = {node_id: create_node_network()}
|
||||
profiles = {node_id: create_node_profile(1000 * 1024)}
|
||||
cic = place_instance_command(
|
||||
ModelCard(
|
||||
ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
storage_size=Memory.from_kb(1000),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
),
|
||||
)
|
||||
placements = place_instance(cic, topology, {}, node_memory, node_network)
|
||||
placements = place_instance(cic, topology, {}, profiles)
|
||||
|
||||
assert len(placements) == 1
|
||||
instance_id = list(placements.keys())[0]
|
||||
@@ -186,18 +181,18 @@ def test_get_instance_placements_one_node_fits_with_extra_memory() -> None:
|
||||
topology = Topology()
|
||||
node_id = NodeId()
|
||||
topology.add_node(node_id)
|
||||
node_memory = {node_id: create_node_memory(1001 * 1024)}
|
||||
node_network = {node_id: create_node_network()}
|
||||
profiles = {node_id: create_node_profile(1001 * 1024)}
|
||||
cic = place_instance_command(
|
||||
ModelCard(
|
||||
ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
storage_size=Memory.from_kb(1000),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
),
|
||||
)
|
||||
placements = place_instance(cic, topology, {}, node_memory, node_network)
|
||||
placements = place_instance(cic, topology, {}, profiles)
|
||||
|
||||
assert len(placements) == 1
|
||||
instance_id = list(placements.keys())[0]
|
||||
@@ -212,12 +207,12 @@ def test_get_instance_placements_one_node_not_fit() -> None:
|
||||
topology = Topology()
|
||||
node_id = NodeId()
|
||||
topology.add_node(node_id)
|
||||
node_memory = {node_id: create_node_memory(1000 * 1024)}
|
||||
node_network = {node_id: create_node_network()}
|
||||
profiles = {node_id: create_node_profile(1000 * 1024)}
|
||||
cic = place_instance_command(
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
storage_size=Memory.from_kb(1001),
|
||||
pretty_name="Test Model",
|
||||
n_layers=10,
|
||||
hidden_size=1000,
|
||||
supports_tensor=True,
|
||||
@@ -225,7 +220,7 @@ def test_get_instance_placements_one_node_not_fit() -> None:
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="No cycles found with sufficient memory"):
|
||||
place_instance(cic, topology, {}, node_memory, node_network)
|
||||
place_instance(cic, topology, {}, profiles)
|
||||
|
||||
|
||||
def test_get_transition_events_no_change(instance: Instance):
|
||||
@@ -271,31 +266,23 @@ def test_get_transition_events_delete_instance(instance: Instance):
|
||||
|
||||
|
||||
def test_placement_selects_leaf_nodes(
|
||||
model_card: ModelCard,
|
||||
model_meta: ModelMetadata,
|
||||
):
|
||||
# arrange
|
||||
topology = Topology()
|
||||
|
||||
# Model requires more than any single node but fits within a 3-node cycle
|
||||
model_card.storage_size.in_bytes = 1500
|
||||
model_card.n_layers = 12
|
||||
model_meta.storage_size = Memory.from_bytes(1000)
|
||||
|
||||
node_id_a = NodeId()
|
||||
node_id_b = NodeId()
|
||||
node_id_c = NodeId()
|
||||
node_id_d = NodeId()
|
||||
|
||||
node_memory = {
|
||||
node_id_a: create_node_memory(500),
|
||||
node_id_b: create_node_memory(600),
|
||||
node_id_c: create_node_memory(600),
|
||||
node_id_d: create_node_memory(500),
|
||||
}
|
||||
node_network = {
|
||||
node_id_a: create_node_network(),
|
||||
node_id_b: create_node_network(),
|
||||
node_id_c: create_node_network(),
|
||||
node_id_d: create_node_network(),
|
||||
profiles = {
|
||||
node_id_a: create_node_profile(500),
|
||||
node_id_b: create_node_profile(600),
|
||||
node_id_c: create_node_profile(600),
|
||||
node_id_d: create_node_profile(500),
|
||||
}
|
||||
|
||||
topology.add_node(node_id_a)
|
||||
@@ -323,10 +310,10 @@ def test_placement_selects_leaf_nodes(
|
||||
Connection(source=node_id_d, sink=node_id_c, edge=create_socket_connection(1))
|
||||
)
|
||||
|
||||
cic = place_instance_command(model_card=model_card)
|
||||
cic = place_instance_command(model_meta=model_meta)
|
||||
|
||||
# act
|
||||
placements = place_instance(cic, topology, {}, node_memory, node_network)
|
||||
placements = place_instance(cic, topology, {}, profiles)
|
||||
|
||||
# assert
|
||||
assert len(placements) == 1
|
||||
@@ -342,21 +329,21 @@ def test_placement_selects_leaf_nodes(
|
||||
|
||||
|
||||
def test_tensor_rdma_backend_connectivity_matrix(
|
||||
model_card: ModelCard,
|
||||
model_meta: ModelMetadata,
|
||||
):
|
||||
# arrange
|
||||
topology = Topology()
|
||||
model_card.n_layers = 12
|
||||
model_card.storage_size.in_bytes = 1500
|
||||
model_meta.n_layers = 12
|
||||
model_meta.storage_size.in_bytes = 1500
|
||||
|
||||
node_a = NodeId()
|
||||
node_b = NodeId()
|
||||
node_c = NodeId()
|
||||
|
||||
node_memory = {
|
||||
node_a: create_node_memory(500),
|
||||
node_b: create_node_memory(500),
|
||||
node_c: create_node_memory(500),
|
||||
profiles = {
|
||||
node_a: create_node_profile(500),
|
||||
node_b: create_node_profile(500),
|
||||
node_c: create_node_profile(500),
|
||||
}
|
||||
|
||||
ethernet_interface = NetworkInterfaceInfo(
|
||||
@@ -367,11 +354,9 @@ def test_tensor_rdma_backend_connectivity_matrix(
|
||||
sink_multiaddr=Multiaddr(address="/ip4/10.0.0.1/tcp/8000")
|
||||
)
|
||||
|
||||
node_network = {
|
||||
node_a: NodeNetworkInfo(interfaces=[ethernet_interface]),
|
||||
node_b: NodeNetworkInfo(interfaces=[ethernet_interface]),
|
||||
node_c: NodeNetworkInfo(interfaces=[ethernet_interface]),
|
||||
}
|
||||
profiles[node_a].network_interfaces = [ethernet_interface]
|
||||
profiles[node_b].network_interfaces = [ethernet_interface]
|
||||
profiles[node_c].network_interfaces = [ethernet_interface]
|
||||
|
||||
topology.add_node(node_a)
|
||||
topology.add_node(node_b)
|
||||
@@ -409,12 +394,12 @@ def test_tensor_rdma_backend_connectivity_matrix(
|
||||
sharding=Sharding.Tensor,
|
||||
instance_meta=InstanceMeta.MlxJaccl,
|
||||
command_id=CommandId(),
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
min_nodes=1,
|
||||
)
|
||||
|
||||
# act
|
||||
placements = place_instance(cic, topology, {}, node_memory, node_network)
|
||||
placements = place_instance(cic, topology, {}, profiles)
|
||||
|
||||
# assert
|
||||
assert len(placements) == 1
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from copy import copy
|
||||
|
||||
import pytest
|
||||
|
||||
from exo.master.placement_utils import (
|
||||
@@ -8,17 +10,16 @@ from exo.master.placement_utils import (
|
||||
get_shard_assignments,
|
||||
get_smallest_cycles,
|
||||
)
|
||||
from exo.master.tests.conftest import (
|
||||
create_node_memory,
|
||||
create_socket_connection,
|
||||
)
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.master.tests.conftest import create_node_profile, create_socket_connection
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.common import Host, NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.profiling import (
|
||||
MemoryUsage,
|
||||
NetworkInterfaceInfo,
|
||||
NodeNetworkInfo,
|
||||
NodePerformanceProfile,
|
||||
SystemPerformanceProfile,
|
||||
)
|
||||
from exo.shared.types.topology import Connection, SocketConnection
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
@@ -35,9 +36,9 @@ def test_filter_cycles_by_memory():
|
||||
source=node2_id, sink=node1_id, edge=create_socket_connection(2)
|
||||
)
|
||||
|
||||
node1_mem = create_node_memory(1000 * 1024)
|
||||
node2_mem = create_node_memory(1000 * 1024)
|
||||
node_memory = {node1_id: node1_mem, node2_id: node2_mem}
|
||||
node1 = create_node_profile(1000 * 1024)
|
||||
node2 = create_node_profile(1000 * 1024)
|
||||
node_profiles = {node1_id: node1, node2_id: node2}
|
||||
|
||||
topology = Topology()
|
||||
topology.add_node(node1_id)
|
||||
@@ -50,7 +51,9 @@ def test_filter_cycles_by_memory():
|
||||
assert len(cycles[0]) == 2
|
||||
|
||||
# act
|
||||
filtered_cycles = filter_cycles_by_memory(cycles, node_memory, Memory.from_bytes(1))
|
||||
filtered_cycles = filter_cycles_by_memory(
|
||||
cycles, node_profiles, Memory.from_bytes(1)
|
||||
)
|
||||
|
||||
# assert
|
||||
assert len(filtered_cycles) == 1
|
||||
@@ -69,9 +72,9 @@ def test_filter_cycles_by_insufficient_memory():
|
||||
source=node2_id, sink=node1_id, edge=create_socket_connection(2)
|
||||
)
|
||||
|
||||
node1_mem = create_node_memory(1000 * 1024)
|
||||
node2_mem = create_node_memory(1000 * 1024)
|
||||
node_memory = {node1_id: node1_mem, node2_id: node2_mem}
|
||||
node1 = create_node_profile(1000 * 1024)
|
||||
node2 = create_node_profile(1000 * 1024)
|
||||
node_profiles = {node1_id: node1, node2_id: node2}
|
||||
|
||||
topology = Topology()
|
||||
topology.add_node(node1_id)
|
||||
@@ -81,7 +84,7 @@ def test_filter_cycles_by_insufficient_memory():
|
||||
|
||||
# act
|
||||
filtered_cycles = filter_cycles_by_memory(
|
||||
topology.get_cycles(), node_memory, Memory.from_kb(2001)
|
||||
topology.get_cycles(), node_profiles, Memory.from_kb(2001)
|
||||
)
|
||||
|
||||
# assert
|
||||
@@ -106,13 +109,13 @@ def test_filter_multiple_cycles_by_memory():
|
||||
source=node_c_id, sink=node_b_id, edge=create_socket_connection(4)
|
||||
)
|
||||
|
||||
node_a_mem = create_node_memory(500 * 1024)
|
||||
node_b_mem = create_node_memory(500 * 1024)
|
||||
node_c_mem = create_node_memory(1000 * 1024)
|
||||
node_memory = {
|
||||
node_a_id: node_a_mem,
|
||||
node_b_id: node_b_mem,
|
||||
node_c_id: node_c_mem,
|
||||
node_a = create_node_profile(500 * 1024)
|
||||
node_b = create_node_profile(500 * 1024)
|
||||
node_c = create_node_profile(1000 * 1024)
|
||||
node_profiles = {
|
||||
node_a_id: node_a,
|
||||
node_b_id: node_b,
|
||||
node_c_id: node_c,
|
||||
}
|
||||
|
||||
topology = Topology()
|
||||
@@ -127,7 +130,9 @@ def test_filter_multiple_cycles_by_memory():
|
||||
cycles = topology.get_cycles()
|
||||
|
||||
# act
|
||||
filtered_cycles = filter_cycles_by_memory(cycles, node_memory, Memory.from_kb(1500))
|
||||
filtered_cycles = filter_cycles_by_memory(
|
||||
cycles, node_profiles, Memory.from_kb(1500)
|
||||
)
|
||||
|
||||
# assert
|
||||
assert len(filtered_cycles) == 1
|
||||
@@ -223,17 +228,18 @@ def test_get_shard_assignments(
|
||||
topology.add_connection(connection3)
|
||||
topology.add_connection(connection4)
|
||||
|
||||
node_a_mem = create_node_memory(available_memory[0] * 1024)
|
||||
node_b_mem = create_node_memory(available_memory[1] * 1024)
|
||||
node_c_mem = create_node_memory(available_memory[2] * 1024)
|
||||
node_memory = {
|
||||
node_a_id: node_a_mem,
|
||||
node_b_id: node_b_mem,
|
||||
node_c_id: node_c_mem,
|
||||
node_a = create_node_profile(available_memory[0] * 1024)
|
||||
node_b = create_node_profile(available_memory[1] * 1024)
|
||||
node_c = create_node_profile(available_memory[2] * 1024)
|
||||
node_profiles = {
|
||||
node_a_id: node_a,
|
||||
node_b_id: node_b,
|
||||
node_c_id: node_c,
|
||||
}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_meta = ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
pretty_name="Test Model",
|
||||
n_layers=total_layers,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1000,
|
||||
@@ -247,7 +253,7 @@ def test_get_shard_assignments(
|
||||
|
||||
# act
|
||||
shard_assignments = get_shard_assignments(
|
||||
model_card, selected_cycle, Sharding.Pipeline, node_memory=node_memory
|
||||
model_meta, selected_cycle, Sharding.Pipeline, node_profiles=node_profiles
|
||||
)
|
||||
|
||||
# assert
|
||||
@@ -337,28 +343,38 @@ def test_get_mlx_jaccl_coordinators():
|
||||
source=node_a_id, sink=node_c_id, edge=create_socket_connection(6)
|
||||
)
|
||||
|
||||
network_a = NodeNetworkInfo(
|
||||
interfaces=[
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.5"),
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.2"),
|
||||
]
|
||||
npp = NodePerformanceProfile(
|
||||
model_id="test",
|
||||
chip_id="test",
|
||||
friendly_name="test",
|
||||
memory=MemoryUsage.from_bytes(
|
||||
ram_total=0,
|
||||
ram_available=0,
|
||||
swap_total=0,
|
||||
swap_available=0,
|
||||
),
|
||||
network_interfaces=[],
|
||||
system=SystemPerformanceProfile(),
|
||||
)
|
||||
network_b = NodeNetworkInfo(
|
||||
interfaces=[
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.1"),
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.4"),
|
||||
]
|
||||
)
|
||||
network_c = NodeNetworkInfo(
|
||||
interfaces=[
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.3"),
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.6"),
|
||||
]
|
||||
)
|
||||
node_network = {
|
||||
node_a_id: network_a,
|
||||
node_b_id: network_b,
|
||||
node_c_id: network_c,
|
||||
npp_a = copy(npp)
|
||||
npp_a.network_interfaces = [
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.5"),
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.2"),
|
||||
]
|
||||
npp_b = copy(npp)
|
||||
npp_b.network_interfaces = [
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.1"),
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.4"),
|
||||
]
|
||||
npp_c = copy(npp)
|
||||
npp_c.network_interfaces = [
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.3"),
|
||||
NetworkInterfaceInfo(name="en0", ip_address="169.254.0.6"),
|
||||
]
|
||||
node_profiles = {
|
||||
node_a_id: npp_a,
|
||||
node_b_id: npp_b,
|
||||
node_c_id: npp_c,
|
||||
}
|
||||
|
||||
topology = Topology()
|
||||
@@ -378,7 +394,7 @@ def test_get_mlx_jaccl_coordinators():
|
||||
node_a_id,
|
||||
coordinator_port=5000,
|
||||
cycle_digraph=topology,
|
||||
node_network=node_network,
|
||||
node_profiles=node_profiles,
|
||||
)
|
||||
|
||||
# assert
|
||||
@@ -480,9 +496,9 @@ def test_get_shard_assignments_insufficient_memory_raises():
|
||||
topology = Topology()
|
||||
|
||||
# Node C has only 10 KB but would need 50 KB for 1 layer (1000 KB / 20 layers)
|
||||
node_a_mem = create_node_memory(900 * 1024)
|
||||
node_b_mem = create_node_memory(50 * 1024)
|
||||
node_c_mem = create_node_memory(10 * 1024) # Insufficient memory
|
||||
node_a = create_node_profile(900 * 1024)
|
||||
node_b = create_node_profile(50 * 1024)
|
||||
node_c = create_node_profile(10 * 1024) # Insufficient memory
|
||||
|
||||
topology.add_node(node_a_id)
|
||||
topology.add_node(node_b_id)
|
||||
@@ -505,14 +521,15 @@ def test_get_shard_assignments_insufficient_memory_raises():
|
||||
topology.add_connection(conn_c_a)
|
||||
topology.add_connection(conn_b_a)
|
||||
|
||||
node_memory = {
|
||||
node_a_id: node_a_mem,
|
||||
node_b_id: node_b_mem,
|
||||
node_c_id: node_c_mem,
|
||||
profiles = {
|
||||
node_a_id: node_a,
|
||||
node_b_id: node_b,
|
||||
node_c_id: node_c,
|
||||
}
|
||||
|
||||
model_card = ModelCard(
|
||||
model_meta = ModelMetadata(
|
||||
model_id=ModelId("test-model"),
|
||||
pretty_name="Test Model",
|
||||
n_layers=20,
|
||||
storage_size=Memory.from_kb(1000),
|
||||
hidden_size=1000,
|
||||
@@ -522,6 +539,4 @@ def test_get_shard_assignments_insufficient_memory_raises():
|
||||
selected_cycle = cycles[0]
|
||||
|
||||
with pytest.raises(ValueError, match="insufficient memory"):
|
||||
get_shard_assignments(
|
||||
model_card, selected_cycle, Sharding.Pipeline, node_memory
|
||||
)
|
||||
get_shard_assignments(model_meta, selected_cycle, Sharding.Pipeline, profiles)
|
||||
|
||||
@@ -3,6 +3,11 @@ import pytest
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.multiaddr import Multiaddr
|
||||
from exo.shared.types.profiling import (
|
||||
MemoryUsage,
|
||||
NodePerformanceProfile,
|
||||
SystemPerformanceProfile,
|
||||
)
|
||||
from exo.shared.types.topology import Connection, SocketConnection
|
||||
|
||||
|
||||
@@ -18,6 +23,22 @@ def socket_connection() -> SocketConnection:
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def node_profile() -> NodePerformanceProfile:
|
||||
memory_profile = MemoryUsage.from_bytes(
|
||||
ram_total=1000, ram_available=1000, swap_total=1000, swap_available=1000
|
||||
)
|
||||
system_profile = SystemPerformanceProfile()
|
||||
return NodePerformanceProfile(
|
||||
model_id="test",
|
||||
chip_id="test",
|
||||
friendly_name="test",
|
||||
memory=memory_profile,
|
||||
network_interfaces=[],
|
||||
system=system_profile,
|
||||
)
|
||||
|
||||
|
||||
def test_add_node(topology: Topology):
|
||||
# arrange
|
||||
node_id = NodeId()
|
||||
|
||||
@@ -25,11 +25,7 @@ from exo.shared.types.events import (
|
||||
TopologyEdgeCreated,
|
||||
TopologyEdgeDeleted,
|
||||
)
|
||||
from exo.shared.types.profiling import (
|
||||
NodeIdentity,
|
||||
NodeNetworkInfo,
|
||||
NodeThunderboltInfo,
|
||||
)
|
||||
from exo.shared.types.profiling import NodePerformanceProfile
|
||||
from exo.shared.types.state import State
|
||||
from exo.shared.types.tasks import Task, TaskId, TaskStatus
|
||||
from exo.shared.types.topology import Connection, RDMAConnection
|
||||
@@ -197,43 +193,22 @@ def apply_runner_deleted(event: RunnerDeleted, state: State) -> State:
|
||||
|
||||
def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
|
||||
topology = copy.deepcopy(state.topology)
|
||||
topology.remove_node(event.node_id)
|
||||
state.topology.remove_node(event.node_id)
|
||||
node_profiles = {
|
||||
key: value for key, value in state.node_profiles.items() if key != event.node_id
|
||||
}
|
||||
last_seen = {
|
||||
key: value for key, value in state.last_seen.items() if key != event.node_id
|
||||
}
|
||||
downloads = {
|
||||
key: value for key, value in state.downloads.items() if key != event.node_id
|
||||
}
|
||||
# Clean up all granular node mappings
|
||||
node_identities = {
|
||||
key: value
|
||||
for key, value in state.node_identities.items()
|
||||
if key != event.node_id
|
||||
}
|
||||
node_memory = {
|
||||
key: value for key, value in state.node_memory.items() if key != event.node_id
|
||||
}
|
||||
node_system = {
|
||||
key: value for key, value in state.node_system.items() if key != event.node_id
|
||||
}
|
||||
node_network = {
|
||||
key: value for key, value in state.node_network.items() if key != event.node_id
|
||||
}
|
||||
node_thunderbolt = {
|
||||
key: value
|
||||
for key, value in state.node_thunderbolt.items()
|
||||
if key != event.node_id
|
||||
}
|
||||
return state.model_copy(
|
||||
update={
|
||||
"downloads": downloads,
|
||||
"topology": topology,
|
||||
"node_profiles": node_profiles,
|
||||
"last_seen": last_seen,
|
||||
"node_identities": node_identities,
|
||||
"node_memory": node_memory,
|
||||
"node_system": node_system,
|
||||
"node_network": node_network,
|
||||
"node_thunderbolt": node_thunderbolt,
|
||||
}
|
||||
)
|
||||
|
||||
@@ -242,60 +217,29 @@ def apply_node_gathered_info(event: NodeGatheredInfo, state: State) -> State:
|
||||
topology = copy.deepcopy(state.topology)
|
||||
topology.add_node(event.node_id)
|
||||
info = event.info
|
||||
|
||||
# Build update dict with only the mappings that change
|
||||
update: dict[str, object] = {
|
||||
"last_seen": {
|
||||
**state.last_seen,
|
||||
event.node_id: datetime.fromisoformat(event.when),
|
||||
},
|
||||
"topology": topology,
|
||||
}
|
||||
|
||||
profile = state.node_profiles.get(event.node_id, NodePerformanceProfile())
|
||||
match info:
|
||||
case MacmonMetrics():
|
||||
update["node_system"] = {
|
||||
**state.node_system,
|
||||
event.node_id: info.system_profile,
|
||||
}
|
||||
update["node_memory"] = {**state.node_memory, event.node_id: info.memory}
|
||||
profile.system = info.system_profile
|
||||
profile.memory = info.memory
|
||||
case MemoryUsage():
|
||||
update["node_memory"] = {**state.node_memory, event.node_id: info}
|
||||
profile.memory = info
|
||||
case NodeConfig():
|
||||
pass
|
||||
case MiscData():
|
||||
current_identity = state.node_identities.get(event.node_id, NodeIdentity())
|
||||
new_identity = current_identity.model_copy(
|
||||
update={"friendly_name": info.friendly_name}
|
||||
)
|
||||
update["node_identities"] = {
|
||||
**state.node_identities,
|
||||
event.node_id: new_identity,
|
||||
}
|
||||
profile.friendly_name = info.friendly_name
|
||||
case StaticNodeInformation():
|
||||
current_identity = state.node_identities.get(event.node_id, NodeIdentity())
|
||||
new_identity = current_identity.model_copy(
|
||||
update={"model_id": info.model, "chip_id": info.chip}
|
||||
)
|
||||
update["node_identities"] = {
|
||||
**state.node_identities,
|
||||
event.node_id: new_identity,
|
||||
}
|
||||
profile.model_id = info.model
|
||||
profile.chip_id = info.chip
|
||||
case NodeNetworkInterfaces():
|
||||
update["node_network"] = {
|
||||
**state.node_network,
|
||||
event.node_id: NodeNetworkInfo(interfaces=info.ifaces),
|
||||
}
|
||||
profile.network_interfaces = info.ifaces
|
||||
case MacThunderboltIdentifiers():
|
||||
update["node_thunderbolt"] = {
|
||||
**state.node_thunderbolt,
|
||||
event.node_id: NodeThunderboltInfo(interfaces=info.idents),
|
||||
}
|
||||
profile.tb_interfaces = info.idents
|
||||
case MacThunderboltConnections():
|
||||
conn_map = {
|
||||
tb_ident.domain_uuid: (nid, tb_ident.rdma_interface)
|
||||
for nid in state.node_thunderbolt
|
||||
for tb_ident in state.node_thunderbolt[nid].interfaces
|
||||
for nid in state.node_profiles
|
||||
for tb_ident in state.node_profiles[nid].tb_interfaces
|
||||
}
|
||||
as_rdma_conns = [
|
||||
Connection(
|
||||
@@ -312,7 +256,15 @@ def apply_node_gathered_info(event: NodeGatheredInfo, state: State) -> State:
|
||||
]
|
||||
topology.replace_all_out_rdma_connections(event.node_id, as_rdma_conns)
|
||||
|
||||
return state.model_copy(update=update)
|
||||
last_seen = {**state.last_seen, event.node_id: datetime.fromisoformat(event.when)}
|
||||
new_profiles = {**state.node_profiles, event.node_id: profile}
|
||||
return state.model_copy(
|
||||
update={
|
||||
"node_profiles": new_profiles,
|
||||
"last_seen": last_seen,
|
||||
"topology": topology,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def apply_topology_edge_created(event: TopologyEdgeCreated, state: State) -> State:
|
||||
|
||||
@@ -1,310 +1,552 @@
|
||||
from pydantic import PositiveInt
|
||||
|
||||
from exo.shared.types.common import Id
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
|
||||
|
||||
class ModelId(Id):
|
||||
def normalize(self) -> str:
|
||||
return self.replace("/", "--")
|
||||
|
||||
def short(self) -> str:
|
||||
return self.split("/")[-1]
|
||||
|
||||
|
||||
class ModelCard(CamelCaseModel):
|
||||
short_id: str
|
||||
model_id: ModelId
|
||||
storage_size: Memory
|
||||
n_layers: PositiveInt
|
||||
hidden_size: PositiveInt
|
||||
supports_tensor: bool
|
||||
name: str
|
||||
description: str
|
||||
tags: list[str]
|
||||
metadata: ModelMetadata
|
||||
|
||||
|
||||
MODEL_CARDS: dict[str, ModelCard] = {
|
||||
# deepseek v3
|
||||
"deepseek-v3.1-4bit": ModelCard(
|
||||
short_id="deepseek-v3.1-4bit",
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
|
||||
storage_size=Memory.from_gb(378),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
name="DeepSeek V3.1 (4-bit)",
|
||||
description="""DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-4bit"),
|
||||
pretty_name="DeepSeek V3.1 (4-bit)",
|
||||
storage_size=Memory.from_gb(378),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"deepseek-v3.1-8bit": ModelCard(
|
||||
short_id="deepseek-v3.1-8bit",
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
|
||||
storage_size=Memory.from_gb(713),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
name="DeepSeek V3.1 (8-bit)",
|
||||
description="""DeepSeek V3.1 is a large language model trained on the DeepSeek V3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/DeepSeek-V3.1-8bit"),
|
||||
pretty_name="DeepSeek V3.1 (8-bit)",
|
||||
storage_size=Memory.from_gb(713),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# kimi k2
|
||||
"kimi-k2-instruct-4bit": ModelCard(
|
||||
short_id="kimi-k2-instruct-4bit",
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
|
||||
storage_size=Memory.from_gb(578),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
name="Kimi K2 Instruct (4-bit)",
|
||||
description="""Kimi K2 is a large language model trained on the Kimi K2 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Instruct-4bit"),
|
||||
pretty_name="Kimi K2 Instruct (4-bit)",
|
||||
storage_size=Memory.from_gb(578),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"kimi-k2-thinking": ModelCard(
|
||||
short_id="kimi-k2-thinking",
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
|
||||
storage_size=Memory.from_gb(658),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
name="Kimi K2 Thinking (4-bit)",
|
||||
description="""Kimi K2 Thinking is the latest, most capable version of open-source thinking model.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Kimi-K2-Thinking"),
|
||||
pretty_name="Kimi K2 Thinking (4-bit)",
|
||||
storage_size=Memory.from_gb(658),
|
||||
n_layers=61,
|
||||
hidden_size=7168,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# llama-3.1
|
||||
"llama-3.1-8b": ModelCard(
|
||||
short_id="llama-3.1-8b",
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(4423),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.1 8B (4-bit)",
|
||||
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"),
|
||||
pretty_name="Llama 3.1 8B (4-bit)",
|
||||
storage_size=Memory.from_mb(4423),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.1-8b-8bit": ModelCard(
|
||||
short_id="llama-3.1-8b-8bit",
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(8540),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.1 8B (8-bit)",
|
||||
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"),
|
||||
pretty_name="Llama 3.1 8B (8-bit)",
|
||||
storage_size=Memory.from_mb(8540),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.1-8b-bf16": ModelCard(
|
||||
short_id="llama-3.1-8b-bf16",
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
|
||||
storage_size=Memory.from_mb(16100),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.1 8B (BF16)",
|
||||
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"),
|
||||
pretty_name="Llama 3.1 8B (BF16)",
|
||||
storage_size=Memory.from_mb(16100),
|
||||
n_layers=32,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.1-70b": ModelCard(
|
||||
short_id="llama-3.1-70b",
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.1 70B (4-bit)",
|
||||
description="""Llama 3.1 is a large language model trained on the Llama 3.1 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"),
|
||||
pretty_name="Llama 3.1 70B (4-bit)",
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# llama-3.2
|
||||
"llama-3.2-1b": ModelCard(
|
||||
short_id="llama-3.2-1b",
|
||||
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(696),
|
||||
n_layers=16,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.2 1B (4-bit)",
|
||||
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-1B-Instruct-4bit"),
|
||||
pretty_name="Llama 3.2 1B (4-bit)",
|
||||
storage_size=Memory.from_mb(696),
|
||||
n_layers=16,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.2-3b": ModelCard(
|
||||
short_id="llama-3.2-3b",
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(1777),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.2 3B (4-bit)",
|
||||
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-4bit"),
|
||||
pretty_name="Llama 3.2 3B (4-bit)",
|
||||
storage_size=Memory.from_mb(1777),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.2-3b-8bit": ModelCard(
|
||||
short_id="llama-3.2-3b-8bit",
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(3339),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.2 3B (8-bit)",
|
||||
description="""Llama 3.2 is a large language model trained on the Llama 3.2 dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Llama-3.2-3B-Instruct-8bit"),
|
||||
pretty_name="Llama 3.2 3B (8-bit)",
|
||||
storage_size=Memory.from_mb(3339),
|
||||
n_layers=28,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# llama-3.3
|
||||
"llama-3.3-70b": ModelCard(
|
||||
short_id="llama-3.3-70b",
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.3 70B (4-bit)",
|
||||
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-4bit"),
|
||||
pretty_name="Llama 3.3 70B",
|
||||
storage_size=Memory.from_mb(38769),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.3-70b-8bit": ModelCard(
|
||||
short_id="llama-3.3-70b-8bit",
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(73242),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.3 70B (8-bit)",
|
||||
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Llama-3.3-70B-Instruct-8bit"),
|
||||
pretty_name="Llama 3.3 70B (8-bit)",
|
||||
storage_size=Memory.from_mb(73242),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"llama-3.3-70b-fp16": ModelCard(
|
||||
short_id="llama-3.3-70b-fp16",
|
||||
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
|
||||
storage_size=Memory.from_mb(137695),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
name="Llama 3.3 70B (FP16)",
|
||||
description="""The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out)""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/llama-3.3-70b-instruct-fp16"),
|
||||
pretty_name="Llama 3.3 70B (FP16)",
|
||||
storage_size=Memory.from_mb(137695),
|
||||
n_layers=80,
|
||||
hidden_size=8192,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# qwen3
|
||||
"qwen3-0.6b": ModelCard(
|
||||
short_id="qwen3-0.6b",
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
|
||||
storage_size=Memory.from_mb(327),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
name="Qwen3 0.6B (4-bit)",
|
||||
description="""Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-4bit"),
|
||||
pretty_name="Qwen3 0.6B (4-bit)",
|
||||
storage_size=Memory.from_mb(327),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
),
|
||||
),
|
||||
"qwen3-0.6b-8bit": ModelCard(
|
||||
short_id="qwen3-0.6b-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
|
||||
storage_size=Memory.from_mb(666),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
name="Qwen3 0.6B (8-bit)",
|
||||
description="""Qwen3 0.6B is a large language model trained on the Qwen3 0.6B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-0.6B-8bit"),
|
||||
pretty_name="Qwen3 0.6B (8-bit)",
|
||||
storage_size=Memory.from_mb(666),
|
||||
n_layers=28,
|
||||
hidden_size=1024,
|
||||
supports_tensor=False,
|
||||
),
|
||||
),
|
||||
"qwen3-30b": ModelCard(
|
||||
short_id="qwen3-30b",
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
|
||||
storage_size=Memory.from_mb(16797),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 30B A3B (4-bit)",
|
||||
description="""Qwen3 30B is a large language model trained on the Qwen3 30B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-4bit"),
|
||||
pretty_name="Qwen3 30B A3B (4-bit)",
|
||||
storage_size=Memory.from_mb(16797),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-30b-8bit": ModelCard(
|
||||
short_id="qwen3-30b-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
|
||||
storage_size=Memory.from_mb(31738),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 30B A3B (8-bit)",
|
||||
description="""Qwen3 30B is a large language model trained on the Qwen3 30B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-30B-A3B-8bit"),
|
||||
pretty_name="Qwen3 30B A3B (8-bit)",
|
||||
storage_size=Memory.from_mb(31738),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-4bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-4bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
|
||||
storage_size=Memory.from_mb(44800),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 80B A3B (4-bit)",
|
||||
description="""Qwen3 80B""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"),
|
||||
pretty_name="Qwen3 80B A3B (4-bit)",
|
||||
storage_size=Memory.from_mb(44800),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-8bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 80B A3B (8-bit)",
|
||||
description="""Qwen3 80B""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"),
|
||||
pretty_name="Qwen3 80B A3B (8-bit)",
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-4bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-thinking-4bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 80B A3B Thinking (4-bit)",
|
||||
description="""Qwen3 80B Reasoning model""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"),
|
||||
pretty_name="Qwen3 80B A3B (4-bit)",
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-80b-a3B-thinking-8bit": ModelCard(
|
||||
short_id="qwen3-80b-a3B-thinking-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 80B A3B Thinking (8-bit)",
|
||||
description="""Qwen3 80B Reasoning model""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"),
|
||||
pretty_name="Qwen3 80B A3B (8-bit)",
|
||||
storage_size=Memory.from_mb(84700),
|
||||
n_layers=48,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-235b-a22b-4bit": ModelCard(
|
||||
short_id="qwen3-235b-a22b-4bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
|
||||
storage_size=Memory.from_gb(132),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 235B A22B (4-bit)",
|
||||
description="""Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"),
|
||||
pretty_name="Qwen3 235B A22B (4-bit)",
|
||||
storage_size=Memory.from_gb(132),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-235b-a22b-8bit": ModelCard(
|
||||
short_id="qwen3-235b-a22b-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
|
||||
storage_size=Memory.from_gb(250),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 235B A22B (8-bit)",
|
||||
description="""Qwen3 235B (Active 22B) is a large language model trained on the Qwen3 235B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"),
|
||||
pretty_name="Qwen3 235B A22B (8-bit)",
|
||||
storage_size=Memory.from_gb(250),
|
||||
n_layers=94,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-coder-480b-a35b-4bit": ModelCard(
|
||||
short_id="qwen3-coder-480b-a35b-4bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
|
||||
storage_size=Memory.from_gb(270),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 Coder 480B A35B (4-bit)",
|
||||
description="""Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"),
|
||||
pretty_name="Qwen3 Coder 480B A35B (4-bit)",
|
||||
storage_size=Memory.from_gb(270),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"qwen3-coder-480b-a35b-8bit": ModelCard(
|
||||
short_id="qwen3-coder-480b-a35b-8bit",
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
|
||||
storage_size=Memory.from_gb(540),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
name="Qwen3 Coder 480B A35B (8-bit)",
|
||||
description="""Qwen3 Coder 480B (Active 35B) is a large language model trained on the Qwen3 Coder 480B dataset.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/Qwen3-Coder-480B-A35B-Instruct-8bit"),
|
||||
pretty_name="Qwen3 Coder 480B A35B (8-bit)",
|
||||
storage_size=Memory.from_gb(540),
|
||||
n_layers=62,
|
||||
hidden_size=6144,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# gpt-oss
|
||||
"gpt-oss-120b-MXFP4-Q8": ModelCard(
|
||||
short_id="gpt-oss-120b-MXFP4-Q8",
|
||||
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
storage_size=Memory.from_kb(68_996_301),
|
||||
n_layers=36,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
name="GPT-OSS 120B (MXFP4-Q8, MLX)",
|
||||
description="""OpenAI's GPT-OSS 120B is a 117B-parameter Mixture-of-Experts model designed for high-reasoning and general-purpose use; this variant is a 4-bit MLX conversion for Apple Silicon.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/gpt-oss-120b-MXFP4-Q8"),
|
||||
pretty_name="GPT-OSS 120B (MXFP4-Q8, MLX)",
|
||||
storage_size=Memory.from_kb(68_996_301),
|
||||
n_layers=36,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"gpt-oss-20b-MXFP4-Q8": ModelCard(
|
||||
short_id="gpt-oss-20b-MXFP4-Q8",
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
|
||||
storage_size=Memory.from_kb(11_744_051),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
name="GPT-OSS 20B (MXFP4-Q8, MLX)",
|
||||
description="""OpenAI's GPT-OSS 20B is a medium-sized MoE model for lower-latency and local or specialized use cases; this variant is a 4-bit MLX conversion for Apple Silicon.""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/gpt-oss-20b-MXFP4-Q8"),
|
||||
pretty_name="GPT-OSS 20B (MXFP4-Q8, MLX)",
|
||||
storage_size=Memory.from_kb(11_744_051),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# glm 4.5
|
||||
"glm-4.5-air-8bit": ModelCard(
|
||||
# Needs to be quantized g32 or g16 to work with tensor parallel
|
||||
short_id="glm-4.5-air-8bit",
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
storage_size=Memory.from_gb(114),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=False,
|
||||
name="GLM 4.5 Air 8bit",
|
||||
description="""GLM 4.5 Air 8bit""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-8bit"),
|
||||
pretty_name="GLM 4.5 Air 8bit",
|
||||
storage_size=Memory.from_gb(114),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=False,
|
||||
),
|
||||
),
|
||||
"glm-4.5-air-bf16": ModelCard(
|
||||
short_id="glm-4.5-air-bf16",
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
|
||||
storage_size=Memory.from_gb(214),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
name="GLM 4.5 Air bf16",
|
||||
description="""GLM 4.5 Air bf16""",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.5-Air-bf16"),
|
||||
pretty_name="GLM 4.5 Air bf16",
|
||||
storage_size=Memory.from_gb(214),
|
||||
n_layers=46,
|
||||
hidden_size=4096,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# glm 4.7
|
||||
"glm-4.7-4bit": ModelCard(
|
||||
short_id="glm-4.7-4bit",
|
||||
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
|
||||
storage_size=Memory.from_bytes(198556925568),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
name="GLM 4.7 4bit",
|
||||
description="GLM 4.7 4bit",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-4bit"),
|
||||
pretty_name="GLM 4.7 4bit",
|
||||
storage_size=Memory.from_bytes(198556925568),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"glm-4.7-6bit": ModelCard(
|
||||
short_id="glm-4.7-6bit",
|
||||
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
|
||||
storage_size=Memory.from_bytes(286737579648),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
name="GLM 4.7 6bit",
|
||||
description="GLM 4.7 6bit",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-6bit"),
|
||||
pretty_name="GLM 4.7 6bit",
|
||||
storage_size=Memory.from_bytes(286737579648),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"glm-4.7-8bit-gs32": ModelCard(
|
||||
short_id="glm-4.7-8bit-gs32",
|
||||
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
|
||||
storage_size=Memory.from_bytes(396963397248),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
),
|
||||
# glm 4.7 flash
|
||||
"glm-4.7-flash-4bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-4bit"),
|
||||
storage_size=Memory.from_gb(18),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
"glm-4.7-flash-5bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-5bit"),
|
||||
storage_size=Memory.from_gb(21),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
"glm-4.7-flash-6bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-6bit"),
|
||||
storage_size=Memory.from_gb(25),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
),
|
||||
"glm-4.7-flash-8bit": ModelCard(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-Flash-8bit"),
|
||||
storage_size=Memory.from_gb(32),
|
||||
n_layers=47,
|
||||
hidden_size=2048,
|
||||
supports_tensor=True,
|
||||
name="GLM 4.7 8bit (gs32)",
|
||||
description="GLM 4.7 8bit (gs32)",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/GLM-4.7-8bit-gs32"),
|
||||
pretty_name="GLM 4.7 8bit (gs32)",
|
||||
storage_size=Memory.from_bytes(396963397248),
|
||||
n_layers=91,
|
||||
hidden_size=5120,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
# minimax-m2
|
||||
"minimax-m2.1-8bit": ModelCard(
|
||||
short_id="minimax-m2.1-8bit",
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
|
||||
storage_size=Memory.from_bytes(242986745856),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
name="MiniMax M2.1 8bit",
|
||||
description="MiniMax M2.1 8bit",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-8bit"),
|
||||
pretty_name="MiniMax M2.1 8bit",
|
||||
storage_size=Memory.from_bytes(242986745856),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
"minimax-m2.1-3bit": ModelCard(
|
||||
short_id="minimax-m2.1-3bit",
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
|
||||
storage_size=Memory.from_bytes(100086644736),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
name="MiniMax M2.1 3bit",
|
||||
description="MiniMax M2.1 3bit",
|
||||
tags=[],
|
||||
metadata=ModelMetadata(
|
||||
model_id=ModelId("mlx-community/MiniMax-M2.1-3bit"),
|
||||
pretty_name="MiniMax M2.1 3bit",
|
||||
storage_size=Memory.from_bytes(100086644736),
|
||||
n_layers=61,
|
||||
hidden_size=3072,
|
||||
supports_tensor=True,
|
||||
),
|
||||
),
|
||||
}
|
||||
|
||||
@@ -6,8 +6,9 @@ from huggingface_hub import model_info
|
||||
from loguru import logger
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from exo.shared.models.model_cards import MODEL_CARDS, ModelCard, ModelId
|
||||
from exo.shared.models.model_cards import MODEL_CARDS
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.worker.download.download_utils import (
|
||||
ModelSafetensorsIndex,
|
||||
download_file_with_retry,
|
||||
@@ -91,18 +92,18 @@ async def get_safetensors_size(model_id: str) -> Memory:
|
||||
return Memory.from_bytes(info.safetensors.total)
|
||||
|
||||
|
||||
_model_card_cache: dict[str, ModelCard] = {}
|
||||
_model_meta_cache: dict[str, ModelMetadata] = {}
|
||||
|
||||
|
||||
async def get_model_card(model_id: str) -> ModelCard:
|
||||
if model_id in _model_card_cache:
|
||||
return _model_card_cache[model_id]
|
||||
model_card = await _get_model_card(model_id)
|
||||
_model_card_cache[model_id] = model_card
|
||||
return model_card
|
||||
async def get_model_meta(model_id: str) -> ModelMetadata:
|
||||
if model_id in _model_meta_cache:
|
||||
return _model_meta_cache[model_id]
|
||||
model_meta = await _get_model_meta(model_id)
|
||||
_model_meta_cache[model_id] = model_meta
|
||||
return model_meta
|
||||
|
||||
|
||||
async def _get_model_card(model_id: str) -> ModelCard:
|
||||
async def _get_model_meta(model_id: str) -> ModelMetadata:
|
||||
"""Fetches storage size and number of layers for a Hugging Face model, returns Pydantic ModelMeta."""
|
||||
config_data = await get_config_data(model_id)
|
||||
num_layers = config_data.layer_count
|
||||
@@ -112,11 +113,14 @@ async def _get_model_card(model_id: str) -> ModelCard:
|
||||
None,
|
||||
)
|
||||
|
||||
return ModelCard(
|
||||
return ModelMetadata(
|
||||
model_id=ModelId(model_id),
|
||||
pretty_name=model_card.name if model_card is not None else model_id,
|
||||
storage_size=mem_size_bytes,
|
||||
n_layers=num_layers,
|
||||
hidden_size=config_data.hidden_size or 0,
|
||||
# TODO: all custom models currently do not support tensor. We could add a dynamic test for this?
|
||||
supports_tensor=model_card.supports_tensor if model_card is not None else False,
|
||||
supports_tensor=model_card.metadata.supports_tensor
|
||||
if model_card is not None
|
||||
else False,
|
||||
)
|
||||
|
||||
@@ -7,8 +7,8 @@ import pytest
|
||||
from _pytest.logging import LogCaptureFixture
|
||||
from loguru import logger
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, ShardMetadata
|
||||
|
||||
|
||||
@@ -31,8 +31,9 @@ def get_pipeline_shard_metadata(
|
||||
model_id: ModelId, device_rank: int, world_size: int = 1
|
||||
) -> ShardMetadata:
|
||||
return PipelineShardMetadata(
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=model_id,
|
||||
pretty_name=str(model_id),
|
||||
storage_size=Memory.from_mb(100000),
|
||||
n_layers=32,
|
||||
hidden_size=1000,
|
||||
|
||||
@@ -4,9 +4,9 @@ from typing import Any, Literal
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic_core import PydanticUseDefault
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.common import CommandId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
|
||||
@@ -206,7 +206,7 @@ class DeleteInstanceTaskParams(BaseModel):
|
||||
class CreateInstanceResponse(BaseModel):
|
||||
message: str
|
||||
command_id: CommandId
|
||||
model_card: ModelCard
|
||||
model_meta: ModelMetadata
|
||||
|
||||
|
||||
class DeleteInstanceResponse(BaseModel):
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from enum import Enum
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.api import GenerationStats
|
||||
from exo.utils.pydantic_ext import TaggedModel
|
||||
|
||||
from .api import FinishReason
|
||||
from .models import ModelId
|
||||
|
||||
|
||||
class ChunkType(str, Enum):
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from pydantic import Field
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard
|
||||
from exo.shared.types.api import ChatCompletionTaskParams
|
||||
from exo.shared.types.common import CommandId, NodeId
|
||||
from exo.shared.types.models import ModelMetadata
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
|
||||
@@ -21,7 +21,7 @@ class ChatCompletion(BaseCommand):
|
||||
|
||||
|
||||
class PlaceInstance(BaseCommand):
|
||||
model_card: ModelCard
|
||||
model_meta: ModelMetadata
|
||||
sharding: Sharding
|
||||
instance_meta: InstanceMeta
|
||||
min_nodes: int
|
||||
|
||||
@@ -16,9 +16,7 @@ class Id(str):
|
||||
cls, _source: type, handler: GetCoreSchemaHandler
|
||||
) -> core_schema.CoreSchema:
|
||||
# Just use a plain string schema
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls, core_schema.str_schema()
|
||||
)
|
||||
return core_schema.str_schema()
|
||||
|
||||
|
||||
class NodeId(Id):
|
||||
|
||||
18
src/exo/shared/types/models.py
Normal file
18
src/exo/shared/types/models.py
Normal file
@@ -0,0 +1,18 @@
|
||||
from pydantic import PositiveInt
|
||||
|
||||
from exo.shared.types.common import Id
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
|
||||
|
||||
class ModelId(Id):
|
||||
pass
|
||||
|
||||
|
||||
class ModelMetadata(CamelCaseModel):
|
||||
model_id: ModelId
|
||||
pretty_name: str
|
||||
storage_size: Memory
|
||||
n_layers: PositiveInt
|
||||
hidden_size: PositiveInt
|
||||
supports_tensor: bool
|
||||
@@ -53,21 +53,13 @@ class NetworkInterfaceInfo(CamelCaseModel):
|
||||
ip_address: str
|
||||
|
||||
|
||||
class NodeIdentity(CamelCaseModel):
|
||||
"""Static and slow-changing node identification data."""
|
||||
|
||||
class NodePerformanceProfile(CamelCaseModel):
|
||||
model_id: str = "Unknown"
|
||||
chip_id: str = "Unknown"
|
||||
friendly_name: str = "Unknown"
|
||||
|
||||
|
||||
class NodeNetworkInfo(CamelCaseModel):
|
||||
"""Network interface information for a node."""
|
||||
|
||||
interfaces: Sequence[NetworkInterfaceInfo] = []
|
||||
|
||||
|
||||
class NodeThunderboltInfo(CamelCaseModel):
|
||||
"""Thunderbolt interface identifiers for a node."""
|
||||
|
||||
interfaces: Sequence[ThunderboltIdentifier] = []
|
||||
memory: MemoryUsage = MemoryUsage.from_bytes(
|
||||
ram_total=0, ram_available=0, swap_total=0, swap_available=0
|
||||
)
|
||||
network_interfaces: Sequence[NetworkInterfaceInfo] = []
|
||||
tb_interfaces: Sequence[ThunderboltIdentifier] = []
|
||||
system: SystemPerformanceProfile = SystemPerformanceProfile()
|
||||
|
||||
@@ -7,13 +7,7 @@ from pydantic.alias_generators import to_camel
|
||||
|
||||
from exo.shared.topology import Topology, TopologySnapshot
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.profiling import (
|
||||
MemoryUsage,
|
||||
NodeIdentity,
|
||||
NodeNetworkInfo,
|
||||
NodeThunderboltInfo,
|
||||
SystemPerformanceProfile,
|
||||
)
|
||||
from exo.shared.types.profiling import NodePerformanceProfile
|
||||
from exo.shared.types.tasks import Task, TaskId
|
||||
from exo.shared.types.worker.downloads import DownloadProgress
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId
|
||||
@@ -41,17 +35,11 @@ class State(CamelCaseModel):
|
||||
runners: Mapping[RunnerId, RunnerStatus] = {}
|
||||
downloads: Mapping[NodeId, Sequence[DownloadProgress]] = {}
|
||||
tasks: Mapping[TaskId, Task] = {}
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile] = {}
|
||||
last_seen: Mapping[NodeId, datetime] = {}
|
||||
topology: Topology = Field(default_factory=Topology)
|
||||
last_event_applied_idx: int = Field(default=-1, ge=-1)
|
||||
|
||||
# Granular node state mappings (update independently at different frequencies)
|
||||
node_identities: Mapping[NodeId, NodeIdentity] = {}
|
||||
node_memory: Mapping[NodeId, MemoryUsage] = {}
|
||||
node_system: Mapping[NodeId, SystemPerformanceProfile] = {}
|
||||
node_network: Mapping[NodeId, NodeNetworkInfo] = {}
|
||||
node_thunderbolt: Mapping[NodeId, NodeThunderboltInfo] = {}
|
||||
|
||||
@field_serializer("topology", mode="plain")
|
||||
def _encode_topology(self, value: Topology) -> TopologySnapshot:
|
||||
return value.to_snapshot()
|
||||
|
||||
@@ -2,8 +2,8 @@ from collections.abc import Mapping
|
||||
|
||||
from pydantic import model_validator
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.common import Id, NodeId
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.worker.shards import ShardMetadata
|
||||
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ from enum import Enum
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard
|
||||
from exo.shared.types.models import ModelMetadata
|
||||
from exo.utils.pydantic_ext import TaggedModel
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ class BaseShardMetadata(TaggedModel):
|
||||
Replaces previous `Shard` object.
|
||||
"""
|
||||
|
||||
model_card: ModelCard
|
||||
model_meta: ModelMetadata
|
||||
device_rank: int
|
||||
world_size: int
|
||||
|
||||
@@ -41,7 +41,7 @@ class BaseShardMetadata(TaggedModel):
|
||||
def __hash__(self) -> int:
|
||||
return hash(
|
||||
(
|
||||
self.model_card.model_id,
|
||||
self.model_meta.model_id,
|
||||
self.start_layer,
|
||||
self.end_layer,
|
||||
self.n_layers,
|
||||
|
||||
@@ -7,7 +7,7 @@ from loguru import logger
|
||||
|
||||
from exo.shared.topology import Topology
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.profiling import NodeNetworkInfo
|
||||
from exo.shared.types.profiling import NodePerformanceProfile
|
||||
|
||||
REACHABILITY_ATTEMPTS = 3
|
||||
|
||||
@@ -79,7 +79,7 @@ async def check_reachability(
|
||||
async def check_reachable(
|
||||
topology: Topology,
|
||||
self_node_id: NodeId,
|
||||
node_network: Mapping[NodeId, NodeNetworkInfo],
|
||||
node_profiles: Mapping[NodeId, NodePerformanceProfile],
|
||||
) -> dict[NodeId, set[str]]:
|
||||
"""Check which nodes are reachable and return their IPs."""
|
||||
|
||||
@@ -98,11 +98,11 @@ async def check_reachable(
|
||||
create_task_group() as tg,
|
||||
):
|
||||
for node_id in topology.list_nodes():
|
||||
if node_id not in node_network:
|
||||
if node_id not in node_profiles:
|
||||
continue
|
||||
if node_id == self_node_id:
|
||||
continue
|
||||
for iface in node_network[node_id].interfaces:
|
||||
for iface in node_profiles[node_id].network_interfaces:
|
||||
tg.start_soon(
|
||||
check_reachability,
|
||||
iface.ip_address,
|
||||
|
||||
@@ -460,10 +460,10 @@ async def resolve_allow_patterns(shard: ShardMetadata) -> list[str]:
|
||||
# (iii) Tensor parallel requires all files.
|
||||
return ["*"]
|
||||
try:
|
||||
weight_map = await get_weight_map(str(shard.model_card.model_id))
|
||||
weight_map = await get_weight_map(str(shard.model_meta.model_id))
|
||||
return get_allow_patterns(weight_map, shard)
|
||||
except Exception:
|
||||
logger.error(f"Error getting weight map for {shard.model_card.model_id=}")
|
||||
logger.error(f"Error getting weight map for {shard.model_meta.model_id=}")
|
||||
logger.error(traceback.format_exc())
|
||||
return ["*"]
|
||||
|
||||
@@ -532,18 +532,18 @@ async def download_shard(
|
||||
allow_patterns: list[str] | None = None,
|
||||
) -> tuple[Path, RepoDownloadProgress]:
|
||||
if not skip_download:
|
||||
logger.info(f"Downloading {shard.model_card.model_id=}")
|
||||
logger.info(f"Downloading {shard.model_meta.model_id=}")
|
||||
|
||||
# Handle local paths
|
||||
if await aios.path.exists(str(shard.model_card.model_id)):
|
||||
logger.info(f"Using local model path {shard.model_card.model_id}")
|
||||
local_path = Path(str(shard.model_card.model_id))
|
||||
if await aios.path.exists(str(shard.model_meta.model_id)):
|
||||
logger.info(f"Using local model path {shard.model_meta.model_id}")
|
||||
local_path = Path(str(shard.model_meta.model_id))
|
||||
return local_path, await download_progress_for_local_path(
|
||||
str(shard.model_card.model_id), shard, local_path
|
||||
str(shard.model_meta.model_id), shard, local_path
|
||||
)
|
||||
|
||||
revision = "main"
|
||||
target_dir = await ensure_models_dir() / str(shard.model_card.model_id).replace(
|
||||
target_dir = await ensure_models_dir() / str(shard.model_meta.model_id).replace(
|
||||
"/", "--"
|
||||
)
|
||||
if not skip_download:
|
||||
@@ -552,13 +552,13 @@ async def download_shard(
|
||||
if not allow_patterns:
|
||||
allow_patterns = await resolve_allow_patterns(shard)
|
||||
|
||||
logger.info(f"Downloading {shard.model_card.model_id=} with {allow_patterns=}")
|
||||
logger.info(f"Downloading {shard.model_meta.model_id=} with {allow_patterns=}")
|
||||
|
||||
all_start_time = time.time()
|
||||
# TODO: currently not recursive. Some models might require subdirectories - thus this will need to be changed.
|
||||
# Update: <- This does not seem to be the case. Yay?
|
||||
file_list = await fetch_file_list_with_cache(
|
||||
str(shard.model_card.model_id), revision, recursive=True
|
||||
str(shard.model_meta.model_id), revision, recursive=True
|
||||
)
|
||||
filtered_file_list = list(
|
||||
filter_repo_objects(
|
||||
@@ -592,7 +592,7 @@ async def download_shard(
|
||||
else timedelta(seconds=0)
|
||||
)
|
||||
file_progress[file.path] = RepoFileDownloadProgress(
|
||||
repo_id=str(shard.model_card.model_id),
|
||||
repo_id=str(shard.model_meta.model_id),
|
||||
repo_revision=revision,
|
||||
file_path=file.path,
|
||||
downloaded=Memory.from_bytes(curr_bytes),
|
||||
@@ -609,7 +609,7 @@ async def download_shard(
|
||||
shard,
|
||||
calculate_repo_progress(
|
||||
shard,
|
||||
str(shard.model_card.model_id),
|
||||
str(shard.model_meta.model_id),
|
||||
revision,
|
||||
file_progress,
|
||||
all_start_time,
|
||||
@@ -619,7 +619,7 @@ async def download_shard(
|
||||
for file in filtered_file_list:
|
||||
downloaded_bytes = await get_downloaded_size(target_dir / file.path)
|
||||
file_progress[file.path] = RepoFileDownloadProgress(
|
||||
repo_id=str(shard.model_card.model_id),
|
||||
repo_id=str(shard.model_meta.model_id),
|
||||
repo_revision=revision,
|
||||
file_path=file.path,
|
||||
downloaded=Memory.from_bytes(downloaded_bytes),
|
||||
@@ -643,7 +643,7 @@ async def download_shard(
|
||||
async def download_with_semaphore(file: FileListEntry) -> None:
|
||||
async with semaphore:
|
||||
await download_file_with_retry(
|
||||
str(shard.model_card.model_id),
|
||||
str(shard.model_meta.model_id),
|
||||
revision,
|
||||
file.path,
|
||||
target_dir,
|
||||
@@ -657,7 +657,7 @@ async def download_shard(
|
||||
*[download_with_semaphore(file) for file in filtered_file_list]
|
||||
)
|
||||
final_repo_progress = calculate_repo_progress(
|
||||
shard, str(shard.model_card.model_id), revision, file_progress, all_start_time
|
||||
shard, str(shard.model_meta.model_id), revision, file_progress, all_start_time
|
||||
)
|
||||
await on_progress(shard, final_repo_progress)
|
||||
if gguf := next((f for f in filtered_file_list if f.path.endswith(".gguf")), None):
|
||||
|
||||
@@ -4,7 +4,7 @@ from pathlib import Path
|
||||
from typing import AsyncIterator, Callable
|
||||
|
||||
from exo.shared.models.model_cards import MODEL_CARDS
|
||||
from exo.shared.models.model_meta import get_model_card
|
||||
from exo.shared.models.model_meta import get_model_meta
|
||||
from exo.shared.types.worker.shards import (
|
||||
PipelineShardMetadata,
|
||||
ShardMetadata,
|
||||
@@ -20,21 +20,21 @@ def exo_shard_downloader(max_parallel_downloads: int = 8) -> ShardDownloader:
|
||||
|
||||
|
||||
async def build_base_shard(model_id: str) -> ShardMetadata:
|
||||
model_card = await get_model_card(model_id)
|
||||
model_meta = await get_model_meta(model_id)
|
||||
return PipelineShardMetadata(
|
||||
model_card=model_card,
|
||||
model_meta=model_meta,
|
||||
device_rank=0,
|
||||
world_size=1,
|
||||
start_layer=0,
|
||||
end_layer=model_card.n_layers,
|
||||
n_layers=model_card.n_layers,
|
||||
end_layer=model_meta.n_layers,
|
||||
n_layers=model_meta.n_layers,
|
||||
)
|
||||
|
||||
|
||||
async def build_full_shard(model_id: str) -> PipelineShardMetadata:
|
||||
base_shard = await build_base_shard(model_id)
|
||||
return PipelineShardMetadata(
|
||||
model_card=base_shard.model_card,
|
||||
model_meta=base_shard.model_meta,
|
||||
device_rank=base_shard.device_rank,
|
||||
world_size=base_shard.world_size,
|
||||
start_layer=base_shard.start_layer,
|
||||
@@ -93,11 +93,11 @@ class CachedShardDownloader(ShardDownloader):
|
||||
async def ensure_shard(
|
||||
self, shard: ShardMetadata, config_only: bool = False
|
||||
) -> Path:
|
||||
if (shard.model_card.model_id, shard) in self.cache:
|
||||
return self.cache[(shard.model_card.model_id, shard)]
|
||||
if (shard.model_meta.model_id, shard) in self.cache:
|
||||
return self.cache[(shard.model_meta.model_id, shard)]
|
||||
|
||||
target_dir = await self.shard_downloader.ensure_shard(shard, config_only)
|
||||
self.cache[(shard.model_card.model_id, shard)] = target_dir
|
||||
self.cache[(shard.model_meta.model_id, shard)] = target_dir
|
||||
return target_dir
|
||||
|
||||
async def get_shard_download_status(
|
||||
|
||||
@@ -5,8 +5,8 @@ from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import AsyncIterator, Callable
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.worker.shards import (
|
||||
PipelineShardMetadata,
|
||||
ShardMetadata,
|
||||
@@ -86,8 +86,9 @@ NOOP_DOWNLOAD_PROGRESS = RepoDownloadProgress(
|
||||
repo_id="noop",
|
||||
repo_revision="noop",
|
||||
shard=PipelineShardMetadata(
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId("noop"),
|
||||
pretty_name="noope",
|
||||
storage_size=Memory.from_bytes(0),
|
||||
n_layers=1,
|
||||
hidden_size=1,
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Any
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx_lm.models.cache import KVCache
|
||||
@@ -15,3 +17,27 @@ class Model(nn.Module):
|
||||
cache: list[KVCache] | None,
|
||||
input_embeddings: mx.array | None = None,
|
||||
) -> mx.array: ...
|
||||
|
||||
|
||||
class Detokenizer:
|
||||
def reset(self) -> None: ...
|
||||
def add_token(self, token: int) -> None: ...
|
||||
def finalize(self) -> None: ...
|
||||
|
||||
@property
|
||||
def last_segment(self) -> str: ...
|
||||
|
||||
|
||||
class TokenizerWrapper:
|
||||
bos_token: str | None
|
||||
eos_token_ids: list[int]
|
||||
detokenizer: Detokenizer
|
||||
|
||||
def encode(self, text: str, add_special_tokens: bool = True) -> list[int]: ...
|
||||
|
||||
def apply_chat_template(
|
||||
self,
|
||||
messages_dicts: list[dict[str, Any]],
|
||||
tokenize: bool = False,
|
||||
add_generation_prompt: bool = True,
|
||||
) -> str: ...
|
||||
|
||||
@@ -248,9 +248,9 @@ def patch_pipeline_model[T](model: T, group: mx.distributed.Group) -> T:
|
||||
"cache", None
|
||||
)
|
||||
|
||||
# Add dependency to last cache entry to ensure distributed ops are evaluated
|
||||
if cache is not None:
|
||||
cache[-1].state = mx.depends(cache[-1].state, logits) # type: ignore
|
||||
# # Add dependency to last cache entry to ensure distributed ops are evaluated
|
||||
# if cache is not None:
|
||||
# cache[-1].state = mx.depends(cache[-1].state, logits) # type: ignore
|
||||
|
||||
logits = mx.distributed.all_gather(logits, group=group)[
|
||||
-logits.shape[0] :
|
||||
@@ -566,7 +566,7 @@ class MiniMaxShardingStrategy(TensorParallelShardingStrategy):
|
||||
layer.block_sparse_moe.switch_mlp.up_proj
|
||||
)
|
||||
layer.block_sparse_moe = ShardedQwenMoE(layer.block_sparse_moe) # pyright: ignore[reportAttributeAccessIssue, reportArgumentType]
|
||||
layer.block_sparse_moe.sharding_group = self.group # pyright: ignore[reportAttributeAccessIssue]
|
||||
layer.block_sparse_moe.sharding_group = self.group
|
||||
|
||||
return model
|
||||
|
||||
@@ -661,7 +661,7 @@ class GptOssShardingStrategy(TensorParallelShardingStrategy):
|
||||
self.all_to_sharded_linear_in_place(layer.mlp.experts.up_proj)
|
||||
|
||||
layer.mlp = ShardedGptOssMoE(layer.mlp) # type: ignore
|
||||
layer.mlp.sharding_group = self.group # pyright: ignore[reportAttributeAccessIssue]
|
||||
layer.mlp.sharding_group = self.group
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@@ -119,7 +119,6 @@ def mlx_generate(
|
||||
model: Model,
|
||||
tokenizer: TokenizerWrapper,
|
||||
task: ChatCompletionTaskParams,
|
||||
prompt: str,
|
||||
) -> Generator[GenerationResponse]:
|
||||
# Ensure that generation stats only contains peak memory for this generation
|
||||
mx.reset_peak_memory()
|
||||
@@ -131,6 +130,11 @@ def mlx_generate(
|
||||
if task.seed is not None:
|
||||
mx.random.seed(task.seed)
|
||||
|
||||
prompt = apply_chat_template(
|
||||
tokenizer=tokenizer,
|
||||
chat_task_data=task,
|
||||
)
|
||||
|
||||
caches = make_kv_cache(model=model)
|
||||
|
||||
logits_processors: list[Callable[[mx.array, mx.array], mx.array]] = []
|
||||
|
||||
@@ -75,7 +75,7 @@ def get_weights_size(model_shard_meta: ShardMetadata) -> Memory:
|
||||
return Memory.from_float_kb(
|
||||
(model_shard_meta.end_layer - model_shard_meta.start_layer)
|
||||
/ model_shard_meta.n_layers
|
||||
* model_shard_meta.model_card.storage_size.in_kb
|
||||
* model_shard_meta.model_meta.storage_size.in_kb
|
||||
/ (
|
||||
1
|
||||
if isinstance(model_shard_meta, PipelineShardMetadata)
|
||||
@@ -169,10 +169,10 @@ def mlx_distributed_init(
|
||||
|
||||
# TODO: update once upstream fixes
|
||||
logger.info(
|
||||
f"rank {rank} MLX_JACCL_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
|
||||
f"rank {rank} MLX_IBV_DEVICES: {coordination_file} with devices: {jaccl_devices_json}"
|
||||
)
|
||||
logger.info(f"rank {rank} MLX_JACCL_COORDINATOR: {jaccl_coordinator}")
|
||||
os.environ["MLX_JACCL_DEVICES"] = coordination_file
|
||||
os.environ["MLX_IBV_DEVICES"] = coordination_file
|
||||
os.environ["MLX_RANK"] = str(rank)
|
||||
os.environ["MLX_JACCL_COORDINATOR"] = jaccl_coordinator
|
||||
group = mx.distributed.init(backend="jaccl", strict=True)
|
||||
@@ -206,7 +206,7 @@ def load_mlx_items(
|
||||
) -> tuple[Model, TokenizerWrapper]:
|
||||
if group is None:
|
||||
logger.info(f"Single device used for {bound_instance.instance}")
|
||||
model_path = build_model_path(bound_instance.bound_shard.model_card.model_id)
|
||||
model_path = build_model_path(bound_instance.bound_shard.model_meta.model_id)
|
||||
start_time = time.perf_counter()
|
||||
model, _ = load_model(model_path, strict=True)
|
||||
end_time = time.perf_counter()
|
||||
@@ -234,7 +234,7 @@ def shard_and_load(
|
||||
group: Group,
|
||||
on_timeout: TimeoutCallback | None = None,
|
||||
) -> tuple[nn.Module, TokenizerWrapper]:
|
||||
model_path = build_model_path(shard_metadata.model_card.model_id)
|
||||
model_path = build_model_path(shard_metadata.model_meta.model_id)
|
||||
|
||||
model, _ = load_model(model_path, lazy=True, strict=False)
|
||||
logger.debug(model)
|
||||
@@ -293,7 +293,7 @@ def shard_and_load(
|
||||
|
||||
def get_tokenizer(model_path: Path, shard_metadata: ShardMetadata) -> TokenizerWrapper:
|
||||
"""Load tokenizer for a model shard. Delegates to load_tokenizer_for_model_id."""
|
||||
return load_tokenizer_for_model_id(shard_metadata.model_card.model_id, model_path)
|
||||
return load_tokenizer_for_model_id(shard_metadata.model_meta.model_id, model_path)
|
||||
|
||||
|
||||
def get_eos_token_ids_for_model(model_id: str) -> list[int] | None:
|
||||
@@ -312,9 +312,6 @@ def get_eos_token_ids_for_model(model_id: str) -> list[int] | None:
|
||||
model_id_lower = model_id.lower()
|
||||
if "kimi-k2" in model_id_lower:
|
||||
return [163586]
|
||||
elif "glm-4.7-flash" in model_id_lower:
|
||||
# 154820: <|endoftext|>, 154827: <|user|>, 154829: <|observation|>
|
||||
return [154820, 154827, 154829]
|
||||
elif "glm" in model_id_lower:
|
||||
return [151336, 151329, 151338]
|
||||
return None
|
||||
@@ -399,16 +396,6 @@ def apply_chat_template(
|
||||
return prompt
|
||||
|
||||
|
||||
def detect_thinking_prompt_suffix(prompt: str, tokenizer: TokenizerWrapper) -> bool:
|
||||
"""
|
||||
Detect if prompt ends with a thinking opening tag that should be
|
||||
prepended to the output stream.
|
||||
"""
|
||||
think_token = tokenizer.think_start
|
||||
|
||||
return think_token is not None and prompt.rstrip().endswith(think_token)
|
||||
|
||||
|
||||
class NullKVCache(KVCache):
|
||||
"""
|
||||
A KVCache that pretends to exist but holds zero tokens.
|
||||
|
||||
@@ -8,7 +8,6 @@ from loguru import logger
|
||||
|
||||
from exo.routing.connection_message import ConnectionMessage, ConnectionMessageType
|
||||
from exo.shared.apply import apply
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.commands import ForwarderCommand, RequestEventLog
|
||||
from exo.shared.types.common import NodeId, SessionId
|
||||
from exo.shared.types.events import (
|
||||
@@ -23,6 +22,7 @@ from exo.shared.types.events import (
|
||||
TopologyEdgeCreated,
|
||||
TopologyEdgeDeleted,
|
||||
)
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.multiaddr import Multiaddr
|
||||
from exo.shared.types.state import State
|
||||
from exo.shared.types.tasks import (
|
||||
@@ -186,11 +186,11 @@ class Worker:
|
||||
)
|
||||
)
|
||||
case DownloadModel(shard_metadata=shard):
|
||||
if shard.model_card.model_id not in self.download_status:
|
||||
if shard.model_meta.model_id not in self.download_status:
|
||||
progress = DownloadPending(
|
||||
shard_metadata=shard, node_id=self.node_id
|
||||
)
|
||||
self.download_status[shard.model_card.model_id] = progress
|
||||
self.download_status[shard.model_meta.model_id] = progress
|
||||
await self.event_sender.send(
|
||||
NodeDownloadProgress(download_progress=progress)
|
||||
)
|
||||
@@ -205,7 +205,7 @@ class Worker:
|
||||
node_id=self.node_id,
|
||||
total_bytes=initial_progress.total_bytes,
|
||||
)
|
||||
self.download_status[shard.model_card.model_id] = progress
|
||||
self.download_status[shard.model_meta.model_id] = progress
|
||||
await self.event_sender.send(
|
||||
NodeDownloadProgress(download_progress=progress)
|
||||
)
|
||||
@@ -339,7 +339,7 @@ class Worker:
|
||||
initial_progress
|
||||
),
|
||||
)
|
||||
self.download_status[task.shard_metadata.model_card.model_id] = status
|
||||
self.download_status[task.shard_metadata.model_meta.model_id] = status
|
||||
self.event_sender.send_nowait(NodeDownloadProgress(download_progress=status))
|
||||
|
||||
last_progress_time = 0.0
|
||||
@@ -356,7 +356,7 @@ class Worker:
|
||||
node_id=self.node_id,
|
||||
total_bytes=progress.total_bytes,
|
||||
)
|
||||
self.download_status[shard.model_card.model_id] = status
|
||||
self.download_status[shard.model_meta.model_id] = status
|
||||
await self.event_sender.send(
|
||||
NodeDownloadProgress(download_progress=status)
|
||||
)
|
||||
@@ -376,7 +376,7 @@ class Worker:
|
||||
progress
|
||||
),
|
||||
)
|
||||
self.download_status[shard.model_card.model_id] = status
|
||||
self.download_status[shard.model_meta.model_id] = status
|
||||
await self.event_sender.send(
|
||||
NodeDownloadProgress(download_progress=status)
|
||||
)
|
||||
@@ -409,7 +409,7 @@ class Worker:
|
||||
conns = await check_reachable(
|
||||
self.state.topology,
|
||||
self.node_id,
|
||||
self.state.node_network,
|
||||
self.state.node_profiles,
|
||||
)
|
||||
for nid in conns:
|
||||
for ip in conns[nid]:
|
||||
@@ -478,7 +478,7 @@ class Worker:
|
||||
else:
|
||||
continue
|
||||
|
||||
self.download_status[progress.shard.model_card.model_id] = status
|
||||
self.download_status[progress.shard.model_meta.model_id] = status
|
||||
await self.event_sender.send(
|
||||
NodeDownloadProgress(download_progress=status)
|
||||
)
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
|
||||
from collections.abc import Mapping, Sequence
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.tasks import (
|
||||
ChatCompletion,
|
||||
ConnectToGroup,
|
||||
@@ -114,7 +114,7 @@ def _model_needs_download(
|
||||
download_status: Mapping[ModelId, DownloadProgress],
|
||||
) -> DownloadModel | None:
|
||||
for runner in runners.values():
|
||||
model_id = runner.bound_instance.bound_shard.model_card.model_id
|
||||
model_id = runner.bound_instance.bound_shard.model_meta.model_id
|
||||
if isinstance(runner.status, RunnerIdle) and (
|
||||
model_id not in download_status
|
||||
or not isinstance(
|
||||
@@ -191,7 +191,7 @@ def _load_model(
|
||||
nid in global_download_status
|
||||
and any(
|
||||
isinstance(dp, DownloadCompleted)
|
||||
and dp.shard_metadata.model_card.model_id == shard_assignments.model_id
|
||||
and dp.shard_metadata.model_meta.model_id == shard_assignments.model_id
|
||||
for dp in global_download_status[nid]
|
||||
)
|
||||
for nid in shard_assignments.node_to_runner
|
||||
|
||||
@@ -4,7 +4,6 @@ from functools import cache
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
from mlx_lm.tokenizer_utils import TokenizerWrapper
|
||||
from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
HarmonyEncodingName,
|
||||
Role,
|
||||
@@ -51,8 +50,6 @@ from exo.shared.types.worker.runners import (
|
||||
from exo.utils.channels import MpReceiver, MpSender
|
||||
from exo.worker.engines.mlx.generator.generate import mlx_generate, warmup_inference
|
||||
from exo.worker.engines.mlx.utils_mlx import (
|
||||
apply_chat_template,
|
||||
detect_thinking_prompt_suffix,
|
||||
initialize_mlx,
|
||||
load_mlx_items,
|
||||
mlx_force_oom,
|
||||
@@ -180,28 +177,17 @@ def main(
|
||||
try:
|
||||
_check_for_debug_prompts(task_params.messages[0].content)
|
||||
|
||||
# Build prompt once - used for both generation and thinking detection
|
||||
prompt = apply_chat_template(tokenizer, task_params)
|
||||
|
||||
# Generate responses using the actual MLX generation
|
||||
mlx_generator = mlx_generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
task=task_params,
|
||||
prompt=prompt,
|
||||
)
|
||||
|
||||
# GPT-OSS specific parsing to match other model formats.
|
||||
if isinstance(model, GptOssModel):
|
||||
mlx_generator = parse_gpt_oss(mlx_generator)
|
||||
|
||||
# For other thinking models (GLM, etc.), check if we need to
|
||||
# prepend the thinking tag that was consumed by the chat template
|
||||
if detect_thinking_prompt_suffix(prompt, tokenizer):
|
||||
mlx_generator = parse_thinking_models(
|
||||
mlx_generator, tokenizer
|
||||
)
|
||||
|
||||
# TODO: Add tool call parser here
|
||||
|
||||
for response in mlx_generator:
|
||||
@@ -213,7 +199,7 @@ def main(
|
||||
command_id=command_id,
|
||||
chunk=TokenChunk(
|
||||
idx=response.token,
|
||||
model=shard_metadata.model_card.model_id,
|
||||
model=shard_metadata.model_meta.model_id,
|
||||
text=response.text,
|
||||
token_id=response.token,
|
||||
finish_reason=response.finish_reason,
|
||||
@@ -230,7 +216,7 @@ def main(
|
||||
command_id=command_id,
|
||||
chunk=TokenChunk(
|
||||
idx=0,
|
||||
model=shard_metadata.model_card.model_id,
|
||||
model=shard_metadata.model_meta.model_id,
|
||||
text="",
|
||||
token_id=0,
|
||||
finish_reason="error",
|
||||
@@ -307,28 +293,6 @@ def parse_gpt_oss(
|
||||
break
|
||||
|
||||
|
||||
def parse_thinking_models(
|
||||
responses: Generator[GenerationResponse],
|
||||
tokenizer: TokenizerWrapper,
|
||||
) -> Generator[GenerationResponse]:
|
||||
"""
|
||||
For models that inject thinking tags in the prompt (like GLM-4.7),
|
||||
prepend the thinking tag to the output stream so the frontend
|
||||
can properly parse thinking content.
|
||||
"""
|
||||
first = True
|
||||
for response in responses:
|
||||
if first:
|
||||
first = False
|
||||
yield response.model_copy(
|
||||
update={
|
||||
"text": tokenizer.think_start,
|
||||
"token": tokenizer.think_start_id, # type: ignore
|
||||
}
|
||||
)
|
||||
yield response
|
||||
|
||||
|
||||
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
|
||||
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
|
||||
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from typing import Final
|
||||
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.common import CommandId, NodeId
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.tasks import TaskId
|
||||
from exo.shared.types.worker.instances import InstanceId, RunnerId
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.tasks import BaseTask, TaskId
|
||||
from exo.shared.types.worker.instances import (
|
||||
BoundInstance,
|
||||
@@ -32,8 +32,9 @@ def get_pipeline_shard_metadata(
|
||||
model_id: ModelId, device_rank: int, world_size: int = 1
|
||||
) -> ShardMetadata:
|
||||
return PipelineShardMetadata(
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=model_id,
|
||||
pretty_name=str(model_id),
|
||||
storage_size=Memory.from_mb(100000),
|
||||
n_layers=32,
|
||||
hidden_size=2048,
|
||||
|
||||
@@ -11,9 +11,9 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from exo.shared.constants import EXO_MODELS_DIR
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.api import ChatCompletionMessage
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId, ModelMetadata
|
||||
from exo.shared.types.tasks import ChatCompletionTaskParams
|
||||
from exo.shared.types.worker.shards import PipelineShardMetadata, TensorShardMetadata
|
||||
from exo.worker.engines.mlx import Model
|
||||
@@ -81,8 +81,9 @@ def run_gpt_oss_pipeline_device(
|
||||
start_layer, end_layer = layer_splits[rank]
|
||||
|
||||
shard_meta = PipelineShardMetadata(
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId(DEFAULT_GPT_OSS_MODEL_ID),
|
||||
pretty_name="GPT-OSS 20B",
|
||||
storage_size=Memory.from_gb(12),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
@@ -150,8 +151,9 @@ def run_gpt_oss_tensor_parallel_device(
|
||||
|
||||
# For tensor parallelism, all devices run all layers
|
||||
shard_meta = TensorShardMetadata(
|
||||
model_card=ModelCard(
|
||||
model_meta=ModelMetadata(
|
||||
model_id=ModelId(DEFAULT_GPT_OSS_MODEL_ID),
|
||||
pretty_name="GPT-OSS 20B",
|
||||
storage_size=Memory.from_gb(12),
|
||||
n_layers=24,
|
||||
hidden_size=2880,
|
||||
|
||||
@@ -76,13 +76,13 @@ def get_test_models() -> list[tuple[str, ModelCard]]:
|
||||
"""Get a representative sample of models to test."""
|
||||
# Pick one model from each family to test
|
||||
families: dict[str, tuple[str, ModelCard]] = {}
|
||||
for _, card in MODEL_CARDS.items():
|
||||
for short_id, card in MODEL_CARDS.items():
|
||||
# Extract family name (e.g., "llama-3.1" from "llama-3.1-8b")
|
||||
parts = card.model_id.short().split("-")
|
||||
parts = short_id.split("-")
|
||||
family = "-".join(parts[:2]) if len(parts) >= 2 else parts[0]
|
||||
|
||||
if family not in families:
|
||||
families[family] = (card.model_id.short(), card)
|
||||
families[family] = (short_id, card)
|
||||
|
||||
return list(families.values())
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import exo.worker.plan as plan_mod
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.common import NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.models import ModelId
|
||||
from exo.shared.types.tasks import LoadModel
|
||||
from exo.shared.types.worker.downloads import DownloadCompleted, DownloadProgress
|
||||
from exo.shared.types.worker.instances import BoundInstance
|
||||
|
||||
@@ -114,10 +114,6 @@ def patch_out_mlx(monkeypatch: pytest.MonkeyPatch):
|
||||
monkeypatch.setattr(mlx_runner, "load_mlx_items", make_nothin((1, 1)))
|
||||
monkeypatch.setattr(mlx_runner, "warmup_inference", make_nothin(1))
|
||||
monkeypatch.setattr(mlx_runner, "_check_for_debug_prompts", nothin)
|
||||
# Mock apply_chat_template since we're using a fake tokenizer (integer 1).
|
||||
# Returns a prompt without thinking tag so detect_thinking_prompt_suffix returns None.
|
||||
monkeypatch.setattr(mlx_runner, "apply_chat_template", make_nothin("test prompt"))
|
||||
monkeypatch.setattr(mlx_runner, "detect_thinking_prompt_suffix", make_nothin(False))
|
||||
|
||||
def fake_generate(*_1: object, **_2: object):
|
||||
yield GenerationResponse(token=0, text="hi", finish_reason="stop")
|
||||
|
||||
@@ -82,7 +82,7 @@ async def tb_detection():
|
||||
send, recv = channel[GatheredInfo]()
|
||||
ig = InfoGatherer(send)
|
||||
with anyio.move_on_after(1):
|
||||
await ig._monitor_system_profiler_thunderbolt_data() # pyright: ignore[reportPrivateUsage]
|
||||
await ig._monitor_system_profiler() # pyright: ignore[reportPrivateUsage]
|
||||
with recv:
|
||||
return recv.collect()
|
||||
|
||||
@@ -135,7 +135,7 @@ def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
|
||||
else:
|
||||
raise ValueError(f"{hn} not in {test.devs}")
|
||||
|
||||
card = MODEL_CARDS[test.model_id]
|
||||
meta = MODEL_CARDS[test.model_id].metadata
|
||||
instance = MlxRingInstance(
|
||||
instance_id=iid,
|
||||
ephemeral_port=52416,
|
||||
@@ -145,15 +145,15 @@ def ring_instance(test: Tests, iid: InstanceId, hn: str) -> Instance:
|
||||
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
|
||||
runner_to_shard={
|
||||
RunnerId(test.devs[i][0]): PipelineShardMetadata(
|
||||
model_card=card,
|
||||
model_meta=meta,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=(card.n_layers // world_size) * i,
|
||||
start_layer=(meta.n_layers // world_size) * i,
|
||||
end_layer=min(
|
||||
card.n_layers, (card.n_layers // world_size) * (i + 1)
|
||||
meta.n_layers, (meta.n_layers // world_size) * (i + 1)
|
||||
),
|
||||
n_layers=min(card.n_layers, (card.n_layers // world_size) * (i + 1))
|
||||
- (card.n_layers // world_size) * i,
|
||||
n_layers=min(meta.n_layers, (meta.n_layers // world_size) * (i + 1))
|
||||
- (meta.n_layers // world_size) * i,
|
||||
)
|
||||
for i in range(world_size)
|
||||
},
|
||||
@@ -224,7 +224,7 @@ async def jaccl_backend(test: Tests):
|
||||
|
||||
|
||||
def jaccl_instance(test: Tests, iid: InstanceId):
|
||||
card = MODEL_CARDS[test.model_id]
|
||||
meta = MODEL_CARDS[test.model_id].metadata
|
||||
world_size = len(test.devs)
|
||||
|
||||
return MlxJacclInstance(
|
||||
@@ -239,12 +239,12 @@ def jaccl_instance(test: Tests, iid: InstanceId):
|
||||
node_to_runner={NodeId(host[0]): RunnerId(host[0]) for host in test.devs},
|
||||
runner_to_shard={
|
||||
RunnerId(test.devs[i][0]): TensorShardMetadata(
|
||||
model_card=card,
|
||||
model_meta=meta,
|
||||
device_rank=i,
|
||||
world_size=world_size,
|
||||
start_layer=card.n_layers,
|
||||
end_layer=card.n_layers,
|
||||
n_layers=card.n_layers,
|
||||
start_layer=meta.n_layers,
|
||||
end_layer=meta.n_layers,
|
||||
n_layers=meta.n_layers,
|
||||
)
|
||||
for i in range(world_size)
|
||||
},
|
||||
|
||||
@@ -1,84 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
PREFS="${PREFS:-/Library/Preferences/SystemConfiguration/preferences.plist}"
|
||||
|
||||
tmpdir="$(mktemp -d)"
|
||||
trap 'rm -rf "$tmpdir"' EXIT
|
||||
injson="$tmpdir/in.json"
|
||||
outjson="$tmpdir/out.json"
|
||||
plutil -convert json -o "$injson" "$PREFS"
|
||||
|
||||
perl -Mstrict -Mwarnings -MJSON::PP -e '
|
||||
my ($in, $out) = @ARGV;
|
||||
|
||||
open my $fh, "<", $in or die "open $in: $!";
|
||||
local $/;
|
||||
my $txt = <$fh>;
|
||||
close $fh;
|
||||
|
||||
my $json = JSON::PP->new->utf8->relaxed(1);
|
||||
my $d = $json->decode($txt);
|
||||
|
||||
if (ref($d->{VirtualNetworkInterfaces}) eq "HASH"
|
||||
&& ref($d->{VirtualNetworkInterfaces}{Bridge}) eq "HASH") {
|
||||
delete $d->{VirtualNetworkInterfaces}{Bridge}{bridge0};
|
||||
}
|
||||
|
||||
my @bridge_svcs;
|
||||
if (ref($d->{NetworkServices}) eq "HASH") {
|
||||
for my $k (keys %{ $d->{NetworkServices} }) {
|
||||
my $svc = $d->{NetworkServices}{$k};
|
||||
next unless ref($svc) eq "HASH";
|
||||
my $iface = $svc->{Interface};
|
||||
next unless ref($iface) eq "HASH";
|
||||
my $dev = $iface->{DeviceName};
|
||||
if (defined $dev && $dev eq "bridge0") {
|
||||
push @bridge_svcs, $k;
|
||||
}
|
||||
}
|
||||
delete @{ $d->{NetworkServices} }{ @bridge_svcs } if @bridge_svcs;
|
||||
}
|
||||
|
||||
my %is_bridge = map { $_ => 1 } @bridge_svcs;
|
||||
|
||||
if (ref($d->{Sets}) eq "HASH") {
|
||||
for my $setk (keys %{ $d->{Sets} }) {
|
||||
my $set = $d->{Sets}{$setk};
|
||||
next unless ref($set) eq "HASH";
|
||||
my $net = $set->{Network};
|
||||
next unless ref($net) eq "HASH";
|
||||
|
||||
if (ref($net->{Interface}) eq "HASH") {
|
||||
delete $net->{Interface}{bridge0};
|
||||
}
|
||||
|
||||
if (ref($net->{Service}) eq "HASH" && @bridge_svcs) {
|
||||
for my $svc (@bridge_svcs) {
|
||||
delete $net->{Service}{$svc};
|
||||
}
|
||||
}
|
||||
|
||||
my $g = $net->{Global};
|
||||
if (ref($g) eq "HASH"
|
||||
&& ref($g->{IPv4}) eq "HASH"
|
||||
&& ref($g->{IPv4}{ServiceOrder}) eq "ARRAY"
|
||||
&& @bridge_svcs) {
|
||||
|
||||
my @so = @{ $g->{IPv4}{ServiceOrder} };
|
||||
@so = grep { !defined($_) || !$is_bridge{$_} } @so;
|
||||
$g->{IPv4}{ServiceOrder} = \@so;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
open my $oh, ">", $out or die "open $out: $!";
|
||||
print $oh JSON::PP->new->utf8->canonical(1)->pretty(1)->encode($d);
|
||||
close $oh;
|
||||
' "$injson" "$outjson"
|
||||
|
||||
# Convert JSON -> plist (write back as binary1; change to xml1 if you prefer)
|
||||
plutil -convert xml1 -o "$PREFS" "$outjson"
|
||||
|
||||
# Ask configd to reload SystemConfiguration state
|
||||
killall -HUP configd 2>/dev/null || true
|
||||
Reference in New Issue
Block a user