mirror of
https://github.com/exo-explore/exo.git
synced 2026-02-18 14:55:13 -05:00
Compare commits
4 Commits
support-ml
...
alexcheema
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f31d51ecc0 | ||
|
|
859f593883 | ||
|
|
9c3c569d9f | ||
|
|
8c57df8b37 |
@@ -126,37 +126,11 @@ final class ExoProcessController: ObservableObject {
|
||||
return
|
||||
}
|
||||
process.terminationHandler = nil
|
||||
status = .stopped
|
||||
|
||||
guard process.isRunning else {
|
||||
self.process = nil
|
||||
return
|
||||
if process.isRunning {
|
||||
process.terminate()
|
||||
}
|
||||
|
||||
let proc = process
|
||||
self.process = nil
|
||||
|
||||
Task.detached {
|
||||
proc.interrupt()
|
||||
|
||||
for _ in 0..<50 {
|
||||
if !proc.isRunning { return }
|
||||
try? await Task.sleep(nanoseconds: 100_000_000)
|
||||
}
|
||||
|
||||
if proc.isRunning {
|
||||
proc.terminate()
|
||||
}
|
||||
|
||||
for _ in 0..<30 {
|
||||
if !proc.isRunning { return }
|
||||
try? await Task.sleep(nanoseconds: 100_000_000)
|
||||
}
|
||||
|
||||
if proc.isRunning {
|
||||
kill(proc.processIdentifier, SIGKILL)
|
||||
}
|
||||
}
|
||||
status = .stopped
|
||||
}
|
||||
|
||||
func restart() {
|
||||
|
||||
@@ -1,7 +0,0 @@
|
||||
# Canary benchmark manifest
|
||||
#
|
||||
# Lists the suite files to include. Each file defines benchmarks
|
||||
# with shared constraints, topology, and default args.
|
||||
include = [
|
||||
"single-m3-ultra.toml",
|
||||
]
|
||||
@@ -1,189 +0,0 @@
|
||||
# Single-node M3 Ultra benchmarks
|
||||
#
|
||||
# Shared constraints applied to ALL benchmarks in this file.
|
||||
constraints = [
|
||||
"All(MacOsBuild(=25D125))",
|
||||
"Hosts(=1)",
|
||||
"All(Chip(m3_ultra))",
|
||||
"All(GpuCores(=80))",
|
||||
]
|
||||
|
||||
[topology]
|
||||
type = "none"
|
||||
|
||||
# Default args merged into each benchmark's args (benchmark-level args win).
|
||||
[defaults]
|
||||
pp = [512, 2048, 8192, 16384]
|
||||
tg = 128
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-70B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/gpt-oss-120b-MXFP4-Q8"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-6bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-30B-A3B-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-0.6B-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-0.6B-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.2-1B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.2-3B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Meta-Llama-3.1-8B-Instruct-bf16"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/gpt-oss-20b-MXFP4-Q8"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-30B-A3B-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-5bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-Flash-6bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.3-70B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-5bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Thinking-4bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Next-80B-A3B-Thinking-8bit"
|
||||
extra_constraints = ["All(Memory(>=96GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Llama-3.3-70B-Instruct-8bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/llama-3.3-70b-instruct-fp16"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.5-Air-8bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.5-Air-bf16"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-4bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/MiniMax-M2.1-3bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/MiniMax-M2.1-8bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-235B-A22B-Instruct-2507-4bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-Next-bf16"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Step-3.5-Flash-4bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Step-3.5-Flash-6bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Step-3.5-Flash-8Bit"
|
||||
extra_constraints = ["All(Memory(>=256GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/DeepSeek-V3.1-4bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-6bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/GLM-4.7-8bit-gs32"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-235B-A22B-Instruct-2507-8bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
|
||||
[[benchmark]]
|
||||
model = "mlx-community/Qwen3-Coder-480B-A35B-Instruct-4bit"
|
||||
extra_constraints = ["All(Memory(>=512GiB))"]
|
||||
File diff suppressed because it is too large
Load Diff
@@ -14,7 +14,6 @@ from exo.download.download_utils import (
|
||||
map_repo_download_progress_to_download_progress_data,
|
||||
)
|
||||
from exo.download.shard_downloader import ShardDownloader
|
||||
from exo.shared.constants import EXO_MODELS_DIR
|
||||
from exo.shared.models.model_cards import ModelId
|
||||
from exo.shared.types.commands import (
|
||||
CancelDownload,
|
||||
@@ -64,9 +63,6 @@ class DownloadCoordinator:
|
||||
self.event_sender, self.event_receiver = channel[Event]()
|
||||
self.shard_downloader.on_progress(self._download_progress_callback)
|
||||
|
||||
def _model_dir(self, model_id: ModelId) -> str:
|
||||
return str(EXO_MODELS_DIR / model_id.normalize())
|
||||
|
||||
async def _download_progress_callback(
|
||||
self, callback_shard: ShardMetadata, progress: RepoDownloadProgress
|
||||
) -> None:
|
||||
@@ -78,7 +74,6 @@ class DownloadCoordinator:
|
||||
shard_metadata=callback_shard,
|
||||
node_id=self.node_id,
|
||||
total_bytes=progress.total_bytes,
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
self.download_status[model_id] = completed
|
||||
await self.event_sender.send(
|
||||
@@ -98,7 +93,6 @@ class DownloadCoordinator:
|
||||
download_progress=map_repo_download_progress_to_download_progress_data(
|
||||
progress
|
||||
),
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
self.download_status[model_id] = ongoing
|
||||
await self.event_sender.send(
|
||||
@@ -176,11 +170,7 @@ class DownloadCoordinator:
|
||||
return
|
||||
|
||||
# Emit pending status
|
||||
progress = DownloadPending(
|
||||
shard_metadata=shard,
|
||||
node_id=self.node_id,
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
progress = DownloadPending(shard_metadata=shard, node_id=self.node_id)
|
||||
self.download_status[model_id] = progress
|
||||
await self.event_sender.send(NodeDownloadProgress(download_progress=progress))
|
||||
|
||||
@@ -194,7 +184,6 @@ class DownloadCoordinator:
|
||||
shard_metadata=shard,
|
||||
node_id=self.node_id,
|
||||
total_bytes=initial_progress.total_bytes,
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
self.download_status[model_id] = completed
|
||||
await self.event_sender.send(
|
||||
@@ -217,7 +206,6 @@ class DownloadCoordinator:
|
||||
download_progress=map_repo_download_progress_to_download_progress_data(
|
||||
initial_progress
|
||||
),
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
self.download_status[model_id] = status
|
||||
self.event_sender.send_nowait(NodeDownloadProgress(download_progress=status))
|
||||
@@ -231,7 +219,6 @@ class DownloadCoordinator:
|
||||
shard_metadata=shard,
|
||||
node_id=self.node_id,
|
||||
error_message=str(e),
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
self.download_status[model_id] = failed
|
||||
await self.event_sender.send(
|
||||
@@ -266,7 +253,6 @@ class DownloadCoordinator:
|
||||
pending = DownloadPending(
|
||||
shard_metadata=current_status.shard_metadata,
|
||||
node_id=self.node_id,
|
||||
model_directory=self._model_dir(model_id),
|
||||
)
|
||||
await self.event_sender.send(
|
||||
NodeDownloadProgress(download_progress=pending)
|
||||
@@ -309,18 +295,11 @@ class DownloadCoordinator:
|
||||
node_id=self.node_id,
|
||||
shard_metadata=progress.shard,
|
||||
total_bytes=progress.total_bytes,
|
||||
model_directory=self._model_dir(
|
||||
progress.shard.model_card.model_id
|
||||
),
|
||||
)
|
||||
elif progress.status in ["in_progress", "not_started"]:
|
||||
if progress.downloaded_bytes_this_session.in_bytes == 0:
|
||||
status = DownloadPending(
|
||||
node_id=self.node_id,
|
||||
shard_metadata=progress.shard,
|
||||
model_directory=self._model_dir(
|
||||
progress.shard.model_card.model_id
|
||||
),
|
||||
node_id=self.node_id, shard_metadata=progress.shard
|
||||
)
|
||||
else:
|
||||
status = DownloadOngoing(
|
||||
@@ -329,9 +308,6 @@ class DownloadCoordinator:
|
||||
download_progress=map_repo_download_progress_to_download_progress_data(
|
||||
progress
|
||||
),
|
||||
model_directory=self._model_dir(
|
||||
progress.shard.model_card.model_id
|
||||
),
|
||||
)
|
||||
else:
|
||||
continue
|
||||
|
||||
@@ -136,8 +136,6 @@ class Node:
|
||||
|
||||
async def run(self):
|
||||
async with self._tg as tg:
|
||||
signal.signal(signal.SIGINT, lambda _, __: self.shutdown())
|
||||
signal.signal(signal.SIGTERM, lambda _, __: self.shutdown())
|
||||
tg.start_soon(self.router.run)
|
||||
tg.start_soon(self.election.run)
|
||||
if self.download_coordinator:
|
||||
@@ -149,6 +147,8 @@ class Node:
|
||||
if self.api:
|
||||
tg.start_soon(self.api.run)
|
||||
tg.start_soon(self._elect_loop)
|
||||
signal.signal(signal.SIGINT, lambda _, __: self.shutdown())
|
||||
signal.signal(signal.SIGTERM, lambda _, __: self.shutdown())
|
||||
|
||||
def shutdown(self):
|
||||
# if this is our second call to shutdown, just sys.exit
|
||||
|
||||
@@ -144,8 +144,8 @@ async def collect_responses_response(
|
||||
for tool in chunk.tool_calls:
|
||||
function_call_items.append(
|
||||
ResponseFunctionCallItem(
|
||||
id=tool.id,
|
||||
call_id=tool.id,
|
||||
id=f"fc_{tool.id}",
|
||||
call_id=f"call_{tool.id}",
|
||||
name=tool.name,
|
||||
arguments=tool.arguments,
|
||||
)
|
||||
|
||||
@@ -143,12 +143,7 @@ from exo.shared.types.openai_responses import (
|
||||
ResponsesResponse,
|
||||
)
|
||||
from exo.shared.types.state import State
|
||||
from exo.shared.types.worker.instances import (
|
||||
Instance,
|
||||
InstanceId,
|
||||
InstanceMeta,
|
||||
MlxDevice,
|
||||
)
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding
|
||||
from exo.utils.banner import print_startup_banner
|
||||
from exo.utils.channels import Receiver, Sender, channel
|
||||
@@ -315,7 +310,6 @@ class API:
|
||||
sharding=payload.sharding,
|
||||
instance_meta=payload.instance_meta,
|
||||
min_nodes=payload.min_nodes,
|
||||
mlx_device=payload.mlx_device,
|
||||
)
|
||||
await self._send(command)
|
||||
|
||||
@@ -356,7 +350,6 @@ class API:
|
||||
sharding: Sharding = Sharding.Pipeline,
|
||||
instance_meta: InstanceMeta = InstanceMeta.MlxRing,
|
||||
min_nodes: int = 1,
|
||||
mlx_device: MlxDevice = MlxDevice.Auto,
|
||||
) -> Instance:
|
||||
model_card = await ModelCard.load(model_id)
|
||||
|
||||
@@ -367,7 +360,6 @@ class API:
|
||||
sharding=sharding,
|
||||
instance_meta=instance_meta,
|
||||
min_nodes=min_nodes,
|
||||
mlx_device=mlx_device,
|
||||
),
|
||||
node_memory=self.state.node_memory,
|
||||
node_network=self.state.node_network,
|
||||
|
||||
@@ -159,7 +159,6 @@ def place_instance(
|
||||
shard_assignments=shard_assignments,
|
||||
jaccl_devices=mlx_jaccl_devices,
|
||||
jaccl_coordinators=mlx_jaccl_coordinators,
|
||||
mlx_device=command.mlx_device,
|
||||
)
|
||||
case InstanceMeta.MlxRing:
|
||||
ephemeral_port = random_ephemeral_port()
|
||||
@@ -174,7 +173,6 @@ def place_instance(
|
||||
shard_assignments=shard_assignments,
|
||||
hosts_by_node=hosts_by_node,
|
||||
ephemeral_port=ephemeral_port,
|
||||
mlx_device=command.mlx_device,
|
||||
)
|
||||
|
||||
return target_instances
|
||||
|
||||
@@ -218,6 +218,11 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
|
||||
key: value for key, value in state.downloads.items() if key != event.node_id
|
||||
}
|
||||
# Clean up all granular node mappings
|
||||
node_identities = {
|
||||
key: value
|
||||
for key, value in state.node_identities.items()
|
||||
if key != event.node_id
|
||||
}
|
||||
node_memory = {
|
||||
key: value for key, value in state.node_memory.items() if key != event.node_id
|
||||
}
|
||||
@@ -258,6 +263,7 @@ def apply_node_timed_out(event: NodeTimedOut, state: State) -> State:
|
||||
"downloads": downloads,
|
||||
"topology": topology,
|
||||
"last_seen": last_seen,
|
||||
"node_identities": node_identities,
|
||||
"node_memory": node_memory,
|
||||
"node_disk": node_disk,
|
||||
"node_system": node_system,
|
||||
|
||||
@@ -8,12 +8,7 @@ from pydantic import BaseModel, Field
|
||||
from exo.shared.models.model_cards import ModelCard, ModelId
|
||||
from exo.shared.types.common import CommandId, NodeId
|
||||
from exo.shared.types.memory import Memory
|
||||
from exo.shared.types.worker.instances import (
|
||||
Instance,
|
||||
InstanceId,
|
||||
InstanceMeta,
|
||||
MlxDevice,
|
||||
)
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding, ShardMetadata
|
||||
from exo.utils.pydantic_ext import CamelCaseModel
|
||||
|
||||
@@ -231,7 +226,6 @@ class PlaceInstanceParams(BaseModel):
|
||||
sharding: Sharding = Sharding.Pipeline
|
||||
instance_meta: InstanceMeta = InstanceMeta.MlxRing
|
||||
min_nodes: int = 1
|
||||
mlx_device: MlxDevice = MlxDevice.Auto
|
||||
|
||||
|
||||
class CreateInstanceParams(BaseModel):
|
||||
|
||||
@@ -8,12 +8,7 @@ from exo.shared.types.api import (
|
||||
from exo.shared.types.chunks import InputImageChunk
|
||||
from exo.shared.types.common import CommandId, NodeId
|
||||
from exo.shared.types.text_generation import TextGenerationTaskParams
|
||||
from exo.shared.types.worker.instances import (
|
||||
Instance,
|
||||
InstanceId,
|
||||
InstanceMeta,
|
||||
MlxDevice,
|
||||
)
|
||||
from exo.shared.types.worker.instances import Instance, InstanceId, InstanceMeta
|
||||
from exo.shared.types.worker.shards import Sharding, ShardMetadata
|
||||
from exo.utils.pydantic_ext import CamelCaseModel, TaggedModel
|
||||
|
||||
@@ -43,7 +38,6 @@ class PlaceInstance(BaseCommand):
|
||||
sharding: Sharding
|
||||
instance_meta: InstanceMeta
|
||||
min_nodes: int
|
||||
mlx_device: MlxDevice = MlxDevice.Auto
|
||||
|
||||
|
||||
class CreateInstance(BaseCommand):
|
||||
|
||||
@@ -26,7 +26,6 @@ class DownloadProgressData(CamelCaseModel):
|
||||
class BaseDownloadProgress(TaggedModel):
|
||||
node_id: NodeId
|
||||
shard_metadata: ShardMetadata
|
||||
model_directory: str = ""
|
||||
|
||||
|
||||
class DownloadPending(BaseDownloadProgress):
|
||||
|
||||
@@ -16,16 +16,9 @@ class InstanceMeta(str, Enum):
|
||||
MlxJaccl = "MlxJaccl"
|
||||
|
||||
|
||||
class MlxDevice(str, Enum):
|
||||
Auto = "Auto"
|
||||
Cpu = "Cpu"
|
||||
Gpu = "Gpu"
|
||||
|
||||
|
||||
class BaseInstance(TaggedModel):
|
||||
instance_id: InstanceId
|
||||
shard_assignments: ShardAssignments
|
||||
mlx_device: MlxDevice = MlxDevice.Auto
|
||||
|
||||
def shard(self, runner_id: RunnerId) -> ShardMetadata | None:
|
||||
return self.shard_assignments.runner_to_shard.get(runner_id, None)
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
import sys
|
||||
|
||||
|
||||
def print_startup_banner(port: int) -> None:
|
||||
"""Print a prominent startup banner with API endpoint information."""
|
||||
dashboard_url = f"http://localhost:{port}"
|
||||
banner = f"""
|
||||
╔═══════════════════════════════════════════════════════════════════════╗
|
||||
@@ -29,4 +27,4 @@ def print_startup_banner(port: int) -> None:
|
||||
|
||||
"""
|
||||
|
||||
print(banner, file=sys.stderr)
|
||||
print(banner)
|
||||
|
||||
@@ -388,6 +388,12 @@ class InfoGatherer:
|
||||
if IS_DARWIN:
|
||||
if (macmon_path := shutil.which("macmon")) is not None:
|
||||
tg.start_soon(self._monitor_macmon, macmon_path)
|
||||
else:
|
||||
# macmon not installed — fall back to psutil for memory
|
||||
logger.warning(
|
||||
"macmon not found, falling back to psutil for memory monitoring"
|
||||
)
|
||||
self.memory_poll_rate = 1
|
||||
tg.start_soon(self._monitor_system_profiler_thunderbolt_data)
|
||||
tg.start_soon(self._monitor_thunderbolt_bridge_status)
|
||||
tg.start_soon(self._monitor_rdma_ctl_status)
|
||||
|
||||
@@ -306,7 +306,7 @@ def mlx_generate(
|
||||
max_stop_len = max((len(s) for s in stop_sequences), default=0)
|
||||
|
||||
mx_barrier(group)
|
||||
logger.info("Starting prefill")
|
||||
logger.info("Ready to prefill")
|
||||
|
||||
# Prefill cache with all tokens except the last one
|
||||
prefill_tps, prefill_tokens, ssm_snapshots_list = prefill(
|
||||
|
||||
@@ -353,13 +353,7 @@ def load_tokenizer_for_model_id(
|
||||
return list(hf_tokenizer.model.encode(text, allowed_special="all")) # pyright: ignore[reportUnknownMemberType,reportUnknownArgumentType]
|
||||
|
||||
hf_tokenizer.encode = _patched_encode
|
||||
return TokenizerWrapper(
|
||||
hf_tokenizer,
|
||||
eos_token_ids=eos_token_ids,
|
||||
tool_call_start="<|tool_calls_section_begin|>",
|
||||
tool_call_end="<|tool_calls_section_end|>",
|
||||
tool_parser=_parse_kimi_tool_calls,
|
||||
)
|
||||
return TokenizerWrapper(hf_tokenizer, eos_token_ids=eos_token_ids)
|
||||
|
||||
tokenizer = load_tokenizer(
|
||||
model_path,
|
||||
@@ -591,41 +585,3 @@ def mx_barrier(group: Group | None):
|
||||
mx.array(1.0), group=group, stream=mx.default_stream(mx.Device(mx.cpu))
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _parse_kimi_tool_calls(text: str):
|
||||
import regex as re
|
||||
|
||||
# kimi has a fixed function naming scheme, with a json formatted arg
|
||||
# functions.multiply:0<|tool_call_argument_begin|>{"a": 2, "b": 3}
|
||||
_func_name_regex = re.compile(
|
||||
r"^\s*((?:functions\.)?(.+?):\d+)\s*<\|tool_call_argument_begin\|>", re.DOTALL
|
||||
)
|
||||
_func_arg_regex = re.compile(r"<\|tool_call_argument_begin\|>\s*(.*)\s*", re.DOTALL)
|
||||
_tool_call_split_regex = re.compile(
|
||||
r"<\|tool_call_begin\|>(.*?)<\|tool_call_end\|>", re.DOTALL
|
||||
)
|
||||
|
||||
def _parse_single_tool(text: str) -> dict[str, Any]:
|
||||
func_name_match = _func_name_regex.search(text)
|
||||
if func_name_match is None:
|
||||
raise ValueError("No tool call found.")
|
||||
tool_call_id = func_name_match.group(1) # e.g. "functions.get_weather:0"
|
||||
func_name = func_name_match.group(2) # e.g. "get_weather"
|
||||
|
||||
func_args_match = _func_arg_regex.search(text)
|
||||
if func_args_match is None:
|
||||
raise ValueError("No tool call arguments found.")
|
||||
func_args = func_args_match.group(1)
|
||||
try:
|
||||
arg_dct = json.loads(func_args) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
arg_dct = None
|
||||
|
||||
return dict(id=tool_call_id, name=func_name, arguments=arg_dct)
|
||||
|
||||
tool_matches = _tool_call_split_regex.findall(text)
|
||||
if tool_matches:
|
||||
return [_parse_single_tool(match) for match in tool_matches] # pyright: ignore[reportAny]
|
||||
else:
|
||||
return [_parse_single_tool(text)]
|
||||
|
||||
@@ -4,7 +4,7 @@ import loguru
|
||||
|
||||
from exo.shared.types.events import Event, RunnerStatusUpdated
|
||||
from exo.shared.types.tasks import Task, TaskId
|
||||
from exo.shared.types.worker.instances import BoundInstance, MlxDevice, MlxJacclInstance
|
||||
from exo.shared.types.worker.instances import BoundInstance, MlxJacclInstance
|
||||
from exo.shared.types.worker.runners import RunnerFailed
|
||||
from exo.utils.channels import ClosedResourceError, MpReceiver, MpSender
|
||||
|
||||
@@ -35,15 +35,6 @@ def entrypoint(
|
||||
|
||||
logger.info(f"Fast synch flag: {os.environ['MLX_METAL_FAST_SYNCH']}")
|
||||
|
||||
# Set MLX compute device before importing runner (which imports mlx.core at module scope)
|
||||
mlx_device = bound_instance.instance.mlx_device
|
||||
if mlx_device != MlxDevice.Auto:
|
||||
import mlx.core as mx
|
||||
|
||||
device = mx.cpu if mlx_device == MlxDevice.Cpu else mx.gpu
|
||||
mx.set_default_device(device)
|
||||
logger.info(f"MLX device set to: {mlx_device}")
|
||||
|
||||
# Import main after setting global logger - this lets us just import logger from this module
|
||||
try:
|
||||
from exo.worker.runner.runner import main
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
import base64
|
||||
import json
|
||||
import math
|
||||
import resource
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from functools import cache
|
||||
from typing import Literal
|
||||
from typing import Any, Callable, Literal
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.models.gpt_oss import Model as GptOssModel
|
||||
@@ -15,6 +16,7 @@ from openai_harmony import ( # pyright: ignore[reportMissingTypeStubs]
|
||||
StreamableParser,
|
||||
load_harmony_encoding,
|
||||
)
|
||||
from pydantic import ValidationError
|
||||
|
||||
from exo.shared.constants import EXO_MAX_CHUNK_SIZE, EXO_TRACING_ENABLED
|
||||
from exo.shared.models.model_cards import ModelId, ModelTask
|
||||
@@ -91,8 +93,6 @@ from exo.worker.engines.mlx.utils_mlx import (
|
||||
)
|
||||
from exo.worker.runner.bootstrap import logger
|
||||
|
||||
from .tool_parsers import ToolParser, make_mlx_parser
|
||||
|
||||
|
||||
def _is_primary_output_node(shard_metadata: ShardMetadata) -> bool:
|
||||
"""Check if this node is the primary output node for image generation.
|
||||
@@ -138,7 +138,6 @@ def main(
|
||||
inference_model: Model | None = None
|
||||
image_model: DistributedImageModel | None = None
|
||||
tokenizer = None
|
||||
tool_parser: ToolParser | None = None
|
||||
group = None
|
||||
kv_prefix_cache: KVPrefixCache | None = None
|
||||
check_for_cancel_every: int | None = None
|
||||
@@ -204,17 +203,8 @@ def main(
|
||||
bound_instance, group, on_timeout=on_model_load_timeout
|
||||
)
|
||||
logger.info(
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling} using tokens {tokenizer.tool_call_start}, {tokenizer.tool_call_end}"
|
||||
f"model has_tool_calling={tokenizer.has_tool_calling}"
|
||||
)
|
||||
if tokenizer.has_tool_calling:
|
||||
assert tokenizer.tool_call_start
|
||||
assert tokenizer.tool_call_end
|
||||
assert tokenizer.tool_parser # pyright: ignore[reportAny]
|
||||
tool_parser = make_mlx_parser(
|
||||
tokenizer.tool_call_start,
|
||||
tokenizer.tool_call_end,
|
||||
tokenizer.tool_parser, # pyright: ignore[reportAny]
|
||||
)
|
||||
kv_prefix_cache = KVPrefixCache(group)
|
||||
|
||||
elif (
|
||||
@@ -320,11 +310,31 @@ def main(
|
||||
mlx_generator, tokenizer
|
||||
)
|
||||
|
||||
# Kimi-K2 has tool call sections - we don't care about them
|
||||
if "kimi" in shard_metadata.model_card.model_id.lower():
|
||||
mlx_generator = filter_kimi_tokens(mlx_generator)
|
||||
patch_kimi_tokenizer(tokenizer)
|
||||
|
||||
# GLM models need patched parser (upstream has bug with None regex match)
|
||||
elif "glm" in shard_metadata.model_card.model_id.lower():
|
||||
patch_glm_tokenizer(tokenizer)
|
||||
|
||||
# GPT-OSS specific parsing to match other model formats.
|
||||
if isinstance(inference_model, GptOssModel):
|
||||
elif isinstance(inference_model, GptOssModel):
|
||||
mlx_generator = parse_gpt_oss(mlx_generator)
|
||||
elif tool_parser:
|
||||
mlx_generator = parse_tool_calls(mlx_generator, tool_parser)
|
||||
|
||||
if tokenizer.has_tool_calling and not isinstance(
|
||||
inference_model, GptOssModel
|
||||
):
|
||||
assert tokenizer.tool_call_start
|
||||
assert tokenizer.tool_call_end
|
||||
assert tokenizer.tool_parser # pyright: ignore[reportAny]
|
||||
mlx_generator = parse_tool_calls(
|
||||
mlx_generator,
|
||||
tokenizer.tool_call_start,
|
||||
tokenizer.tool_call_end,
|
||||
tokenizer.tool_parser, # pyright: ignore[reportAny]
|
||||
)
|
||||
|
||||
completion_tokens = 0
|
||||
tokens_since_last_cancel_check = 0
|
||||
@@ -577,8 +587,21 @@ def get_gpt_oss_encoding():
|
||||
return encoding
|
||||
|
||||
|
||||
def filter_kimi_tokens(
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
) -> Generator[GenerationResponse]:
|
||||
for resp in responses:
|
||||
assert isinstance(resp, GenerationResponse)
|
||||
if (
|
||||
resp.text == "<|tool_calls_section_begin|>"
|
||||
or resp.text == "<|tool_calls_section_end|>"
|
||||
):
|
||||
continue
|
||||
yield resp
|
||||
|
||||
|
||||
def parse_gpt_oss(
|
||||
responses: Generator[GenerationResponse],
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
encoding = get_gpt_oss_encoding()
|
||||
stream = StreamableParser(encoding, role=Role.ASSISTANT)
|
||||
@@ -635,9 +658,9 @@ def parse_gpt_oss(
|
||||
|
||||
|
||||
def parse_thinking_models(
|
||||
responses: Generator[GenerationResponse],
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
tokenizer: TokenizerWrapper,
|
||||
) -> Generator[GenerationResponse]:
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
"""
|
||||
For models that inject thinking tags in the prompt (like GLM-4.7),
|
||||
prepend the thinking tag to the output stream so the frontend
|
||||
@@ -758,55 +781,221 @@ def _process_image_response(
|
||||
|
||||
|
||||
def parse_tool_calls(
|
||||
responses: Generator[GenerationResponse], tool_parser: ToolParser
|
||||
responses: Generator[GenerationResponse | ToolCallResponse],
|
||||
tool_call_start: str,
|
||||
tool_call_end: str,
|
||||
tool_parser: Callable[[str], dict[str, Any] | list[dict[str, Any]]],
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
in_tool_call = False
|
||||
tool_call_text_parts: list[str] = []
|
||||
for response in responses:
|
||||
if response.text.startswith(tool_parser.start_parsing):
|
||||
assert isinstance(response, GenerationResponse)
|
||||
# assumption: the tool call start is one token
|
||||
if response.text == tool_call_start:
|
||||
in_tool_call = True
|
||||
|
||||
if in_tool_call:
|
||||
tool_call_text_parts.append(response.text)
|
||||
if response.text.endswith(tool_parser.end_parsing):
|
||||
# parse the actual tool calls from the tool call text
|
||||
parsed = tool_parser.parse_tool_calls(
|
||||
"".join(tool_call_text_parts).strip()
|
||||
)
|
||||
continue
|
||||
# assumption: the tool call end is one token
|
||||
if in_tool_call and response.text == tool_call_end:
|
||||
try:
|
||||
# tool_parser returns an arbitrarily nested python dictionary
|
||||
# we actually don't want the python dictionary, we just want to
|
||||
# parse the top level { function: ..., arguments: ... } structure
|
||||
# as we're just gonna hand it back to the api anyway
|
||||
parsed = tool_parser("".join(tool_call_text_parts).strip())
|
||||
logger.info(f"parsed {tool_call_text_parts=} into {parsed=}")
|
||||
if parsed is not None:
|
||||
yield ToolCallResponse(
|
||||
tool_calls=parsed, usage=response.usage, stats=response.stats
|
||||
)
|
||||
if isinstance(parsed, list):
|
||||
tools = [_validate_single_tool(tool) for tool in parsed]
|
||||
else:
|
||||
logger.warning(
|
||||
f"tool call parsing failed for text {''.join(tool_call_text_parts)}"
|
||||
)
|
||||
response.text = "".join(tool_call_text_parts)
|
||||
yield response
|
||||
|
||||
in_tool_call = False
|
||||
tool_call_text_parts = []
|
||||
continue
|
||||
|
||||
if response.finish_reason is not None:
|
||||
logger.info(
|
||||
"tool call parsing interrupted, yield partial tool call as text"
|
||||
tools = [_validate_single_tool(parsed)]
|
||||
yield ToolCallResponse(
|
||||
tool_calls=tools, usage=response.usage, stats=response.stats
|
||||
)
|
||||
response = response.model_copy(
|
||||
update={
|
||||
"text": "".join(tool_call_text_parts),
|
||||
"token": 0,
|
||||
}
|
||||
|
||||
except (
|
||||
json.JSONDecodeError,
|
||||
ValidationError,
|
||||
ValueError,
|
||||
AttributeError,
|
||||
) as e:
|
||||
# ValueError: our parsers raise this for malformed tool calls
|
||||
# AttributeError: upstream parsers (e.g. glm47) may raise this when regex doesn't match
|
||||
logger.opt(exception=e).warning("tool call parsing failed")
|
||||
# assumption: talking about tool calls, not making a tool call
|
||||
response.text = (
|
||||
tool_call_start + "".join(tool_call_text_parts) + tool_call_end
|
||||
)
|
||||
yield response
|
||||
|
||||
in_tool_call = False
|
||||
tool_call_text_parts = []
|
||||
continue
|
||||
|
||||
if in_tool_call:
|
||||
tool_call_text_parts.append(response.text)
|
||||
if response.finish_reason is not None:
|
||||
logger.info(
|
||||
"toll call parsing interrupted, yield partial tool call as text"
|
||||
)
|
||||
yield GenerationResponse(
|
||||
text=tool_call_start + "".join(tool_call_text_parts),
|
||||
token=0,
|
||||
finish_reason=response.finish_reason,
|
||||
usage=response.usage,
|
||||
stats=response.stats,
|
||||
)
|
||||
continue
|
||||
# fallthrough
|
||||
yield response
|
||||
|
||||
|
||||
def patch_kimi_tokenizer(tokenizer: TokenizerWrapper):
|
||||
"""
|
||||
Version of to-be-upstreamed kimi-k2 tool parser
|
||||
"""
|
||||
import ast
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import regex as re
|
||||
|
||||
# kimi has a fixed function naming scheme, with a json formatted arg
|
||||
# functions.multiply:0 <|tool_call_argument_begin|> {"a": 2, "b": 3}
|
||||
# Also needs to handle tools like call_0<|tool_call_argument_begin|>{"filePath": "..."}
|
||||
_func_name_regex = re.compile(
|
||||
r"^\s*(.+)[:](\d+)\s*<\|tool_call_argument_begin\|>", re.DOTALL
|
||||
)
|
||||
_func_arg_regex = re.compile(r"<\|tool_call_argument_begin\|>\s*(.*)\s*", re.DOTALL)
|
||||
|
||||
# kimi has a tool_calls_section - we're leaving this up to the caller to handle
|
||||
tool_call_start = "<|tool_call_begin|>"
|
||||
tool_call_end = "<|tool_call_end|>"
|
||||
|
||||
def _deserialize(value: str) -> Any: # pyright: ignore[reportAny]
|
||||
try:
|
||||
return json.loads(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
try:
|
||||
return ast.literal_eval(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
return value
|
||||
|
||||
def parse_tool_call(text: str, tools: Any | None = None):
|
||||
func_name_match = _func_name_regex.search(text)
|
||||
if func_name_match is None:
|
||||
raise ValueError(f"Could not parse function name from tool call: {text!r}")
|
||||
original_func_name = func_name_match.group(1)
|
||||
tool_id = func_name_match.group(2)
|
||||
# strip off the `functions.` prefix, if it exists.
|
||||
func_name = original_func_name[original_func_name.find(".") + 1 :]
|
||||
|
||||
func_args_match = _func_arg_regex.search(text)
|
||||
if func_args_match is None:
|
||||
raise ValueError(f"Could not parse function args from tool call: {text!r}")
|
||||
func_args = func_args_match.group(1)
|
||||
# the args should be valid json - no need to check against our tools to deserialize
|
||||
arg_dct = _deserialize(func_args) # pyright: ignore[reportAny]
|
||||
|
||||
return dict(
|
||||
id=f"{original_func_name}:{tool_id}",
|
||||
name=func_name,
|
||||
arguments=arg_dct, # pyright: ignore[reportAny]
|
||||
)
|
||||
|
||||
tokenizer._tool_call_start = tool_call_start
|
||||
tokenizer._tool_call_end = tool_call_end
|
||||
tokenizer._tool_parser = parse_tool_call
|
||||
|
||||
|
||||
def patch_glm_tokenizer(tokenizer: TokenizerWrapper):
|
||||
"""
|
||||
Fixed version of mlx_lm's glm47 tool parser that handles regex match failures.
|
||||
"""
|
||||
import ast
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import regex as re
|
||||
|
||||
_func_name_regex = re.compile(r"^(.*?)<arg_key>", re.DOTALL)
|
||||
_func_arg_regex = re.compile(
|
||||
r"<arg_key>(.*?)</arg_key>(?:\n|\s)*<arg_value>(.*?)(?:</arg_value>|(?=<arg_key>)|$)",
|
||||
re.DOTALL,
|
||||
)
|
||||
|
||||
tool_call_start = "<tool_call>"
|
||||
tool_call_end = "</tool_call>"
|
||||
|
||||
def _is_string_type(
|
||||
tool_name: str,
|
||||
arg_name: str,
|
||||
tools: list[Any] | None,
|
||||
) -> bool:
|
||||
if tools is None:
|
||||
return False
|
||||
for tool in tools: # pyright: ignore[reportAny]
|
||||
func = tool["function"] # pyright: ignore[reportAny]
|
||||
if func["name"] == tool_name:
|
||||
params = func["parameters"] # pyright: ignore[reportAny]
|
||||
if params is None:
|
||||
return False
|
||||
props = params.get("properties", {}) # pyright: ignore[reportAny]
|
||||
arg_props = props.get(arg_name, {}) # pyright: ignore[reportAny]
|
||||
arg_type = arg_props.get("type", None) # pyright: ignore[reportAny]
|
||||
return arg_type == "string" # pyright: ignore[reportAny]
|
||||
return False
|
||||
|
||||
def _deserialize(value: str) -> Any: # pyright: ignore[reportAny]
|
||||
try:
|
||||
return json.loads(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
return ast.literal_eval(value) # pyright: ignore[reportAny]
|
||||
except Exception:
|
||||
pass
|
||||
return value
|
||||
|
||||
def parse_tool_call(text: str, tools: list[Any] | None = None):
|
||||
func_name_match = _func_name_regex.search(text)
|
||||
if func_name_match is None:
|
||||
raise ValueError(f"Could not parse function name from tool call: {text!r}")
|
||||
func_name = func_name_match.group(1)
|
||||
|
||||
pairs = _func_arg_regex.findall(text)
|
||||
arg_dct: dict[str, Any] = {}
|
||||
for key, value in pairs: # pyright: ignore[reportAny]
|
||||
arg_key = key.strip() # pyright: ignore[reportAny]
|
||||
arg_val = value.strip() # pyright: ignore[reportAny]
|
||||
if not _is_string_type(func_name, arg_key, tools): # pyright: ignore[reportAny]
|
||||
arg_val = _deserialize(arg_val) # pyright: ignore[reportAny]
|
||||
arg_dct[arg_key] = arg_val
|
||||
return dict(name=func_name, arguments=arg_dct)
|
||||
|
||||
tokenizer._tool_call_start = tool_call_start
|
||||
tokenizer._tool_call_end = tool_call_end
|
||||
tokenizer._tool_parser = parse_tool_call
|
||||
|
||||
|
||||
def _validate_single_tool(obj: dict[str, Any]) -> ToolCallItem:
|
||||
if (
|
||||
((name := obj.get("name")) is not None)
|
||||
and ((args := obj.get("arguments")) is not None)
|
||||
and isinstance(name, str)
|
||||
):
|
||||
raw_id: object = obj.get("id")
|
||||
extra = {"id": str(raw_id)} if raw_id is not None else {}
|
||||
return ToolCallItem(
|
||||
**extra,
|
||||
name=name,
|
||||
arguments=json.dumps(args),
|
||||
)
|
||||
else:
|
||||
raise ValidationError
|
||||
|
||||
|
||||
EXO_RUNNER_MUST_FAIL = "EXO RUNNER MUST FAIL"
|
||||
EXO_RUNNER_MUST_OOM = "EXO RUNNER MUST OOM"
|
||||
EXO_RUNNER_MUST_TIMEOUT = "EXO RUNNER MUST TIMEOUT"
|
||||
|
||||
@@ -1,72 +0,0 @@
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable
|
||||
|
||||
from exo.shared.types.api import ToolCallItem
|
||||
|
||||
|
||||
@dataclass
|
||||
class ToolParser:
|
||||
start_parsing: str
|
||||
end_parsing: str
|
||||
parse_tool_calls: Callable[[str], list[ToolCallItem] | None]
|
||||
|
||||
|
||||
def make_mlx_parser(
|
||||
tool_call_start: str,
|
||||
tool_call_end: str,
|
||||
tool_parser: Callable[[str], dict[str, Any] | list[dict[str, Any]]],
|
||||
) -> ToolParser:
|
||||
def parse_tool_calls(text: str) -> list[ToolCallItem] | None:
|
||||
try:
|
||||
text = text.removeprefix(tool_call_start)
|
||||
text = text.removesuffix(tool_call_end)
|
||||
parsed = tool_parser(text)
|
||||
if isinstance(parsed, list):
|
||||
return [ToolCallItem.model_validate(_flatten(p)) for p in parsed]
|
||||
else:
|
||||
return [ToolCallItem.model_validate(_flatten(parsed))]
|
||||
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
return ToolParser(
|
||||
start_parsing=tool_call_start,
|
||||
end_parsing=tool_call_end,
|
||||
parse_tool_calls=parse_tool_calls,
|
||||
)
|
||||
|
||||
|
||||
# TODO / example code:
|
||||
def _parse_json_calls(text: str) -> list[ToolCallItem] | None:
|
||||
try:
|
||||
text = text.removeprefix("<tool_call>")
|
||||
text = text.removesuffix("</tool_call>")
|
||||
top_level = {
|
||||
k: json.dumps(v) if isinstance(v, (dict, list)) else v
|
||||
for k, v in json.loads(text).items() # pyright: ignore[reportAny]
|
||||
}
|
||||
return [ToolCallItem.model_validate(top_level)]
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def _flatten(p: dict[str, Any]) -> dict[str, str]:
|
||||
return {
|
||||
k: json.dumps(v) if isinstance(v, (dict, list)) else str(v) # pyright: ignore[reportAny]
|
||||
for k, v in p.items() # pyright: ignore[reportAny]
|
||||
}
|
||||
|
||||
|
||||
json_tool_parser = ToolParser(
|
||||
start_parsing="<tool_call>",
|
||||
end_parsing="</tool_call>",
|
||||
parse_tool_calls=_parse_json_calls,
|
||||
)
|
||||
|
||||
|
||||
def infer_tool_parser(chat_template: str) -> ToolParser | None:
|
||||
"""Attempt to auto-infer a tool parser from the chat template."""
|
||||
if "<tool_call>" in chat_template and "tool_call.name" in chat_template:
|
||||
return json_tool_parser
|
||||
return None
|
||||
@@ -5,13 +5,12 @@ from typing import Any
|
||||
|
||||
from exo.shared.types.worker.runner_response import GenerationResponse, ToolCallResponse
|
||||
from exo.worker.runner.runner import parse_tool_calls
|
||||
from exo.worker.runner.tool_parsers import make_mlx_parser
|
||||
|
||||
|
||||
def _make_responses(
|
||||
texts: list[str],
|
||||
finish_on_last: bool = True,
|
||||
) -> Generator[GenerationResponse]:
|
||||
) -> Generator[GenerationResponse | ToolCallResponse]:
|
||||
"""Create a sequence of GenerationResponses from text strings."""
|
||||
for i, text in enumerate(texts):
|
||||
is_last = i == len(texts) - 1
|
||||
@@ -23,13 +22,10 @@ def _make_responses(
|
||||
)
|
||||
|
||||
|
||||
def _dummier_parser(text: str) -> dict[str, Any]:
|
||||
def _dummy_parser(text: str) -> dict[str, Any]:
|
||||
return {"name": "test_fn", "arguments": {"arg": text}}
|
||||
|
||||
|
||||
_dummy_parser = make_mlx_parser("<tool_call>", "</tool_call>", _dummier_parser)
|
||||
|
||||
|
||||
class TestParseToolCalls:
|
||||
"""Tests for parse_tool_calls generator."""
|
||||
|
||||
@@ -39,6 +35,8 @@ class TestParseToolCalls:
|
||||
results = list(
|
||||
parse_tool_calls(
|
||||
_make_responses(texts, finish_on_last=False),
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
_dummy_parser,
|
||||
)
|
||||
)
|
||||
@@ -52,6 +50,8 @@ class TestParseToolCalls:
|
||||
results = list(
|
||||
parse_tool_calls(
|
||||
_make_responses(texts),
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
_dummy_parser,
|
||||
)
|
||||
)
|
||||
@@ -76,7 +76,9 @@ class TestParseToolCalls:
|
||||
results = list(
|
||||
parse_tool_calls(
|
||||
_make_responses(texts, finish_on_last=False),
|
||||
make_mlx_parser("<tool_call>", "</tool_call>", _failing_parser),
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
_failing_parser,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user