Compare commits

..

1 Commits

Author SHA1 Message Date
Patrick Devine
c75b428249 fix: fixes a memory leak in bfloat16 package
This change vendors in the bfloat16 package from
github.com/d4l3k/go-bfloat16/ and fixes a memory leak which
was being caused by using unsafe pointers instead of the
math package.
2025-03-17 21:46:12 -07:00
115 changed files with 1673 additions and 4461 deletions

View File

@@ -86,9 +86,9 @@ if(CMAKE_CUDA_COMPILER)
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
)
check_language(HIP)
@@ -97,7 +97,7 @@ if(CMAKE_HIP_COMPILER)
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()

View File

@@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],

View File

@@ -51,7 +51,7 @@ see if the change were accepted.
The title should look like:
<package>: <short description>
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known

View File

@@ -104,8 +104,8 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm

View File

@@ -285,13 +285,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Saddle](https://github.com/jikkuatwork/saddle)
- [TagSpaces](https://www.tagspaces.org) (A platform for file based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-AGI)
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
@@ -325,7 +324,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support and multiple large language models.)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
@@ -348,7 +346,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
@@ -396,8 +394,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
### Cloud
@@ -437,10 +433,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
### Apple Vision Pro
@@ -519,7 +512,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
### Mobile

View File

@@ -12,7 +12,6 @@ import (
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
// StatusError is an error with an HTTP status code and message.
@@ -82,7 +81,7 @@ type GenerateRequest struct {
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -107,7 +106,7 @@ type ChatRequest struct {
Tools `json:"tools,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
}
type Tools []Tool
@@ -163,65 +162,19 @@ func (t *ToolCallFunctionArguments) String() string {
type Tool struct {
Type string `json:"type"`
Items any `json:"items,omitempty"`
Function ToolFunction `json:"function"`
}
// PropertyType can be either a string or an array of strings
type PropertyType []string
// UnmarshalJSON implements the json.Unmarshaler interface
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
// Try to unmarshal as a string first
var s string
if err := json.Unmarshal(data, &s); err == nil {
*pt = []string{s}
return nil
}
// If that fails, try to unmarshal as an array of strings
var a []string
if err := json.Unmarshal(data, &a); err != nil {
return err
}
*pt = a
return nil
}
// MarshalJSON implements the json.Marshaler interface
func (pt PropertyType) MarshalJSON() ([]byte, error) {
if len(pt) == 1 {
// If there's only one type, marshal as a string
return json.Marshal(pt[0])
}
// Otherwise marshal as an array
return json.Marshal([]string(pt))
}
// String returns a string representation of the PropertyType
func (pt PropertyType) String() string {
if len(pt) == 0 {
return ""
}
if len(pt) == 1 {
return pt[0]
}
return fmt.Sprintf("%v", []string(pt))
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}
@@ -307,7 +260,7 @@ type EmbedRequest struct {
Truncate *bool `json:"truncate,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
}
// EmbedResponse is the response from [Client.Embed].
@@ -333,7 +286,7 @@ type EmbeddingRequest struct {
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
}
// EmbeddingResponse is the response from [Client.Embeddings].
@@ -379,7 +332,7 @@ type ShowRequest struct {
Template string `json:"template"`
Verbose bool `json:"verbose"`
Options map[string]any `json:"options"`
Options map[string]interface{} `json:"options"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -387,18 +340,17 @@ type ShowRequest struct {
// ShowResponse is the response returned from [Client.Show].
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].
@@ -551,7 +503,7 @@ func (m *Metrics) Summary() {
}
}
func (opts *Options) FromMap(m map[string]any) error {
func (opts *Options) FromMap(m map[string]interface{}) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
@@ -608,12 +560,12 @@ func (opts *Options) FromMap(m map[string]any) error {
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []any, not []string
val, ok := val.([]any)
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []any to []string
// convert []interface{} to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
@@ -720,7 +672,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
}
// FormatParams converts specified parameter options to their correct types
func FormatParams(params map[string][]string) (map[string]any, error) {
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
opts := Options{}
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
@@ -734,7 +686,7 @@ func FormatParams(params map[string][]string) (map[string]any, error) {
}
}
out := make(map[string]any)
out := make(map[string]interface{})
// iterate params and set values based on json struct tags
for key, vals := range params {
if opt, ok := jsonOpts[key]; !ok {

View File

@@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var oMap map[string]any
var oMap map[string]interface{}
err := json.Unmarshal([]byte(test.req), &oMap)
require.NoError(t, err)
opts := DefaultOptions()
@@ -231,144 +231,3 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
}
}
}
func TestToolFunction_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
wantErr string
}{
{
name: "valid enum with same types",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": ["a", "b", "c"]
}
}
}
}`,
wantErr: "",
},
{
name: "empty enum array",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": []
}
}
}
}`,
wantErr: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var tf ToolFunction
err := json.Unmarshal([]byte(tt.input), &tf)
if tt.wantErr != "" {
require.Error(t, err)
assert.Contains(t, err.Error(), tt.wantErr)
} else {
require.NoError(t, err)
}
})
}
}
func TestPropertyType_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expected PropertyType
}{
{
name: "string type",
input: `"string"`,
expected: PropertyType{"string"},
},
{
name: "array of types",
input: `["string", "number"]`,
expected: PropertyType{"string", "number"},
},
{
name: "array with single type",
input: `["string"]`,
expected: PropertyType{"string"},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var pt PropertyType
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(pt) != len(test.expected) {
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
}
for i, v := range pt {
if v != test.expected[i] {
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
}
}
})
}
}
func TestPropertyType_MarshalJSON(t *testing.T) {
tests := []struct {
name string
input PropertyType
expected string
}{
{
name: "single type",
input: PropertyType{"string"},
expected: `"string"`,
},
{
name: "multiple types",
input: PropertyType{"string", "number"},
expected: `["string","number"]`,
},
{
name: "empty type",
input: PropertyType{},
expected: `[]`,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
data, err := json.Marshal(test.input)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if string(data) != test.expected {
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
}
})
}
}

View File

@@ -1,178 +0,0 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -18,7 +18,6 @@ import (
"os/signal"
"path/filepath"
"runtime"
"slices"
"sort"
"strconv"
"strings"
@@ -268,7 +267,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
Options: map[string]interface{}{},
}
format, err := cmd.Flags().GetString("format")
@@ -340,11 +339,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below,
// these are left in for backwards compatibility with older servers
// that don't have the capabilities field in the model info
if len(info.ProjectorInfo) != 0 {
opts.MultiModal = true
}
@@ -675,15 +669,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
return
})
if len(resp.Capabilities) > 0 {
tableRender("Capabilities", func() (rows [][]string) {
for _, capability := range resp.Capabilities {
rows = append(rows, []string{"", capability.String()})
}
return
})
}
if resp.ProjectorInfo != nil {
tableRender("Projector", func() (rows [][]string) {
arch := resp.ProjectorInfo["general.architecture"].(string)
@@ -718,8 +703,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
for _, k := range keys {
var v string
switch vData := resp.ModelInfo[k].(type) {
case bool:
v = fmt.Sprintf("%t", vData)
case string:
v = vData
case float64:
@@ -852,7 +835,7 @@ type runOptions struct {
Format string
System string
Images []api.ImageData
Options map[string]any
Options map[string]interface{}
MultiModal bool
KeepAlive *api.Duration
}
@@ -1381,6 +1364,7 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_KV_CACHE_TYPE"],
envVars["OLLAMA_LLM_LIBRARY"],

View File

@@ -16,7 +16,6 @@ import (
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
func TestShowInfo(t *testing.T) {
@@ -88,8 +87,6 @@ func TestShowInfo(t *testing.T) {
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(8_000_000_000),
"some.true_bool": true,
"some.false_bool": false,
"test.context_length": float64(1000),
"test.embedding_length": float64(11434),
},
@@ -114,8 +111,6 @@ func TestShowInfo(t *testing.T) {
Metadata
general.architecture test
general.parameter_count 8e+09
some.false_bool false
some.true_bool true
test.context_length 1000
test.embedding_length 11434
@@ -261,34 +256,6 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("capabilities", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
}, false, &b); err != nil {
t.Fatal(err)
}
expect := " Model\n" +
" architecture test \n" +
" parameters 7B \n" +
" quantization FP16 \n" +
"\n" +
" Capabilities\n" +
" vision \n" +
" tools \n" +
"\n"
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}
func TestDeleteHandler(t *testing.T) {

View File

@@ -182,10 +182,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
var conv ModelConverter
switch p.Architectures[0] {
case "LlamaForCausalLM":
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llamaModel{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":
@@ -203,7 +201,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
case "CohereForCausalLM":
conv = &commandrModel{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
return errors.New("unsupported architecture")
}
if err := json.Unmarshal(bts, conv); err != nil {

View File

@@ -1,190 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3Model struct {
ModelParameters
ImageTokenIndex uint32 `json:"image_token_index"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
VisionFeatureLayer int32 `json:"vision_feature_layer"`
TextModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
ImageSize uint32 `json:"image_size"`
NumChannels uint32 `json:"num_channels"`
PatchSize uint32 `json:"patch_size"`
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
}
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
if p.ProjectorHiddenAct != "" {
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
}
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3Model) Replacements() []string {
return []string{
"language_model.model.norm", "output_norm",
"language_model.model.", "",
"language_model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.TextModel.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -62,7 +62,10 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
Pattern string
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{
{"*.safetensors", parseSafetensors},
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},

View File

@@ -11,9 +11,10 @@ import (
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/types/bfloat16"
)
type safetensorMetadata struct {

View File

@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
var file_sentencepiece_model_proto_goTypes = []any{
var file_sentencepiece_model_proto_goTypes = []interface{}{
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
return
}
if !protoimpl.UnsafeEnabled {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TrainerSpec); i {
case 0:
return &v.state
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*NormalizerSpec); i {
case 0:
return &v.state
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*SelfTestData); i {
case 0:
return &v.state
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ModelProto); i {
case 0:
return &v.state
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*SelfTestData_Sample); i {
case 0:
return &v.state
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ModelProto_SentencePiece); i {
case 0:
return &v.state

View File

@@ -12,7 +12,7 @@ func IsNUMA() bool {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]any{}
ids := map[string]interface{}{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)

View File

@@ -111,7 +111,6 @@ func GetCPUDetails() ([]CPU, error) {
if err != nil {
return nil, err
}
defer file.Close()
return linuxCPUDetails(file)
}
@@ -169,11 +168,13 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for id, s := range socketByID {
s.CoreCount = len(coreBySocket[id])
s.ThreadCount = 0
for _, tc := range threadsByCoreBySocket[id] {
s.ThreadCount += tc
}
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
efficiencyCoreCount := 0
for _, threads := range threadsByCoreBySocket[id] {
s.ThreadCount += threads
if threads == 1 {
efficiencyCoreCount++
}

View File

@@ -558,10 +558,6 @@ Final response:
{
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"message": {
"role": "assistant",
"content": ""
},
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,
@@ -1217,7 +1213,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"model": "llava"
"model": "llama3.2"
}'
```
@@ -1260,11 +1256,7 @@ curl http://localhost:11434/api/show -d '{
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
},
"capabilities": [
"completion",
"vision"
],
}
}
```

View File

@@ -1,59 +0,0 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -20,13 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
```
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
To change this when using `ollama run`, use `/set parameter`:

View File

@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama --no-pager --follow --pager-end
journalctl -u ollama --no-pager
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
@@ -26,6 +26,7 @@ When you run Ollama on **Windows**, there are a few different locations. You can
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
@@ -68,6 +69,10 @@ If you run into problems on Linux and want to install an older version, or you'd
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```
## Linux tmp noexec
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
## Linux docker
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.

View File

@@ -62,6 +62,7 @@ the explorer window by hitting `<Ctrl>+R` and type in:
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Uninstall

View File

@@ -5,7 +5,7 @@ import (
"time"
)
func assertEqual(t *testing.T, a any, b any) {
func assertEqual(t *testing.T, a interface{}, b interface{}) {
if a != b {
t.Errorf("Assert failed, expected %v, got %v", b, a)
}

View File

@@ -1,13 +0,0 @@
package fs
type Config interface {
Architecture() string
String(string, ...string) string
Uint(string, ...uint32) uint32
Float(string, ...float32) float32
Bool(string, ...bool) bool
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
Floats(string, ...[]float32) []float32
}

View File

@@ -6,7 +6,6 @@ import (
"fmt"
"io"
"log/slog"
"reflect"
"slices"
"strings"
@@ -53,80 +52,32 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCounts() []uint64 {
return kv.UintOrArrayAsArray("attention.head_count", kv.BlockCount(), 1)
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
}
func (kv KV) HeadCountKVs() []uint64 {
return kv.UintOrArrayAsArray("attention.head_count_kv", kv.BlockCount(), 1)
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCount() []uint64 {
headCount := kv.HeadCounts()
embeddingHeadCount := make([]uint64, len(headCount))
for i, heads := range headCount {
if heads == 0 {
embeddingHeadCount[i] = 0
} else {
embeddingHeadCount[i] = kv.EmbeddingLength() / heads
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / heads
}
return embeddingHeadCount
return 0
}
func (kv KV) FillArrayOrDefault(key string, defaultValue []uint64) []uint64 {
length := len(defaultValue)
if v, ok := keyValueUntyped(kv, key); ok {
switch v := v.(type) {
case uint32:
return FillArray(uint64(v), length)
case uint64:
return FillArray(v, length)
case int32:
return FillArray(uint64(v), length)
default:
slog.Warn("unsupported type", "key", key, "type", reflect.TypeOf(v))
}
}
return defaultValue
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountK() []uint64 {
return kv.FillArrayOrDefault("attention.key_length", kv.EmbeddingHeadCount())
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountV() []uint64 {
return kv.FillArrayOrDefault("attention.value_length", kv.EmbeddingHeadCount())
}
func (kv KV) GQAMax() uint64 {
heads := kv.HeadCounts()
headsKV := kv.HeadCountKVs()
if len(heads) != len(headsKV) {
slog.Warn("head count and head count kv are not the same length")
return 0
}
if len(heads) == 0 {
slog.Warn("head count is empty")
return 0
}
maxGQA := uint64(0)
for i := range heads {
head := heads[i]
headKV := headsKV[i]
if head == 0 || headKV == 0 {
return 0
}
gqa := head / headKV
if gqa > maxGQA {
maxGQA = gqa
}
}
return maxGQA
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) ContextLength() uint64 {
@@ -153,41 +104,6 @@ func (kv KV) Bool(key string, defaultValue ...bool) bool {
return keyValue(kv, key, append(defaultValue, false)...)
}
func (kv KV) UintOrArrayAsArray(key string, n uint64, defaultSingleValue ...uint64) []uint64 {
var singleValue *uint64
if v, ok := keyValueUntyped(kv, key); ok {
switch v := v.(type) {
case *array:
switch v.values[0].(type) {
case int32, uint32, uint64:
values, ok := AsUint64Array(v.values)
if ok {
return values
}
default:
slog.Warn("unexpected array value type", "key", key, "type", reflect.TypeOf(v))
}
case uint32:
val := uint64(v)
singleValue = &val
case int32:
val := uint64(v)
singleValue = &val
}
}
if singleValue == nil {
slog.Warn("falling back to default")
singleValue = &defaultSingleValue[0]
}
values := make([]uint64, n)
for i := range values {
values[i] = *singleValue
}
return values
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
r := keyValue(kv, key, &array{})
s := make([]string, r.size)
@@ -218,31 +134,20 @@ func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
}
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"gemma3",
"mistral3",
}, kv.Architecture())
return kv.Architecture() == "gemma3"
}
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
if val, ok := keyValueUntyped(kv, key); ok {
return val.(T)
}
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
func keyValueUntyped(kv KV, key string) (any, bool) {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val, true
return val.(T)
}
return nil, false
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
type Tensors struct {
@@ -508,55 +413,31 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCounts()
headsKV := f.KV().HeadCountKVs()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
maxEmbeddingHeads, ok := MaxValue(embeddingHeads)
if !ok {
maxEmbeddingHeads = 1
slog.Warn("failed to get max embedding heads")
}
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
maxEmbeddingHeadsK, ok := MaxValue(embeddingHeadsK)
if !ok {
maxEmbeddingHeadsK = 1
slog.Warn("failed to get max embedding headsK")
}
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = make([]uint64, f.KV().BlockCount())
for i := range kv {
kv[i] = uint64(float64(context*(embeddingHeadsK[i]+embeddingHeadsV[i])*headsKV[i]) * bytesPerElement)
}
maxHeads, ok := MaxValue(heads)
if !ok {
maxHeads = 1
slog.Warn("failed to get max heads")
}
maxHeadsKV, ok := MaxValue(headsKV)
if !ok {
maxHeadsKV = 1
slog.Warn("failed to get max headsKV")
}
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch f.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+maxHeads)),
4*batch*(1+4*embedding+context*(1+heads)),
4*batch*(embedding+vocab),
)
partialOffload = 4 * batch * embedding
partialOffload += max(
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*maxHeads+maxEmbeddingHeads*maxHeadsKV),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
@@ -564,33 +445,35 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
// mixtral 8x22b
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+maxHeadsKV+embedding+context+maxEmbeddingHeads*maxHeadsKV),
4*(context*batch*maxHeads+context*maxEmbeddingHeads*maxHeadsKV+batch*1024+maxEmbeddingHeads*maxHeadsKV*batch),
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
)
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
// mixtral 8x7b
ffnGateWeight1 := ffnGateWeight.Shape[1]
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+maxHeads) + 2*maxHeadsKV + ffnGateWeight1)
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
partialOffload = max(
4*batch*(3+maxEmbeddingHeads*maxHeadsKV+embedding+context*(1+maxHeads)+ffnGateWeight1)+(embedding*embedding+3*embedding*maxHeadsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+maxHeads))+embedding*(6*context*maxHeadsKV/maxHeads+embedding*9/16),
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
for i := range kv {
if slices.Contains(crossAttentionLayers, uint32(i)) {
kv[i] = headsKV[i] * (embeddingHeadsK[i] + embeddingHeadsV[i]) *
4 * // sizeof(float32)
visionTokens *
tiles
}
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
visionTokens*
tiles)
}
fullOffload = max(
4*batch*(2+3*embedding+maxEmbeddingHeadsK*maxHeads+context*(1+maxHeads)),
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
// vocab graph
4*batch*(embedding+vocab),
)
@@ -604,70 +487,56 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
partialOffload = max(
4*(batch*
(2*embedding+1+context*(1+maxHeads)+maxEmbeddingHeadsK*maxHeads)+
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
ropeFreqsCount+
maxEmbeddingHeadsK*context*maxHeadsKV),
embeddingHeadsK*context*headsKV),
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2", "gemma3":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*maxHeads+2*embedding+2*maxEmbeddingHeadsK*maxHeads),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
)
partialOffload = max(
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
4*batch*(2*embedding+1+2*maxEmbeddingHeadsK*maxHeads+context+context*maxHeads)+
4*maxEmbeddingHeadsK*context*8+
embedding*embedding*maxEmbeddingHeadsK*maxHeads*9/16,
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
// engine. Gemma3 always uses the Ollama engine.
if f.KV().Architecture() == "gemma3" {
const gemma3GlobalCacheCount = 6
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
for i := range kv {
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
// layers are the smaller local (sliding) layers.
if (i+1)%gemma3GlobalCacheCount != 0 {
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK[i]+embeddingHeadsV[i])*headsKV[i]) * bytesPerElement)
}
}
}
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+4*embedding+context*(1+maxHeads)),
4*batch*(2+4*embedding+context*(1+heads)),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*batch*(1+2*embedding+context*(1+maxHeads))+4*embedding*context+embedding*embedding*9/16,
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
)
case "qwen2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+2*embedding+context+context*maxHeads),
4*batch*(1+2*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*(batch*(1+2*embedding+context*(1+maxHeads))+embedding*(1+context)),
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
)
case "phi2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+4*embedding+context+context*maxHeads),
4*batch*(1+4*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2+3*embedding+context+context*maxHeads),
4*batch*(2+3*embedding+context+context*heads),
)
case "stablelm":
fullOffload = 4 * batch * (context*(1+maxHeads) + 3*embedding + 2)
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
partialOffload = max(
4*batch*(vocab+2*embedding),
fullOffload,
@@ -675,12 +544,12 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
case "deepseek2":
fullOffload = max(
4*batch*(3*embedding+vocab),
4*batch*(3*embedding+2+context*(1+maxHeadsKV)+2*maxEmbeddingHeadsK*maxHeadsKV),
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
)
partialOffload = max(
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*maxEmbeddingHeadsK*maxHeadsKV+context+context*maxHeadsKV)+4*maxEmbeddingHeadsK*context*maxHeadsKV+embedding*embedding*maxEmbeddingHeadsK*maxHeadsKV*9/16,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
case "chatglm":
fullOffload = 4 * batch * (embedding + vocab)
@@ -691,8 +560,8 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
4*batch*(2+
2*embedding+
context+
context*maxHeads+
maxEmbeddingHeadsK*maxHeads+
context*heads+
embeddingHeadsK*heads+
qkvBias.Shape[0]),
)
@@ -700,11 +569,11 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
partialOffload,
4*batch*(1+
2*embedding+
maxEmbeddingHeadsK*maxHeads+
embeddingHeadsK*heads+
context+
context*maxHeads)+
4*maxEmbeddingHeadsK*context+
4*context*maxEmbeddingHeadsK+
context*heads)+
4*embeddingHeadsK*context+
4*context*embeddingHeadsK+
4*qkvBias.Shape[0],
)
}
@@ -754,7 +623,7 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
embeddingLength*numPatches*maxNumTiles +
9*embeddingLength*numPaddedPatches*maxNumTiles +
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
case "gemma3", "mistral3":
case "gemma3":
graphSize = 4 * (imageSize*imageSize*numChannels +
embeddingLength*patchSize +
numPatches*numPatches*headCount)
@@ -776,15 +645,9 @@ func (f GGML) SupportsFlashAttention() bool {
}
// Check head counts match and are non-zero
headCount := f.KV().HeadCounts()
embeddingHeadCountK := f.KV().EmbeddingHeadCountK()
embeddingHeadCountV := f.KV().EmbeddingHeadCountV()
for i := range headCount {
if embeddingHeadCountK[i] != embeddingHeadCountV[i] {
return false
}
}
return true
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
@@ -798,54 +661,3 @@ func kvCacheBytesPerElement(cacheType string) float64 {
return 2 // f16 (default)
}
}
func AsUint64Array(v []any) ([]uint64, bool) {
switch v[0].(type) {
case uint32:
values := make([]uint64, len(v))
for i, v := range v {
values[i] = uint64(v.(uint32))
}
return values, true
case uint64:
values := make([]uint64, len(v))
for i, v := range v {
values[i] = v.(uint64)
}
return values, true
case int32:
values := make([]uint64, len(v))
for i, val := range v {
val := val.(int32)
if val < 0 {
slog.Warn("negative value in int32 array", "value", val)
return nil, false
}
values[i] = uint64(val)
}
return values, true
}
return nil, false
}
func MaxValue(values []uint64) (uint64, bool) {
if len(values) == 0 {
return 0, false
}
max := values[0]
for _, v := range values {
if v > max {
max = v
}
}
return max, true
}
func FillArray[T any](value T, n int) []T {
values := make([]T, n)
for i := range values {
values[i] = value
}
return values
}

1
go.mod
View File

@@ -16,7 +16,6 @@ require (
require (
github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/google/go-cmp v0.6.0

2
go.sum
View File

@@ -35,8 +35,6 @@ github.com/containerd/console v1.0.3 h1:lIr7SlA5PxZyMV30bDW0MGbiOPXwc63yRuCP0ARu
github.com/containerd/console v1.0.3/go.mod h1:7LqA/THxQ86k76b8c/EMSiaJ3h1eZkMkXar0TQ1gf3U=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 h1:cBzrdJPAFBsgCrDPnZxlp1dF2+k4r1kVpD7+1S1PVjY=
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1/go.mod h1:uw2gLcxEuYUlAd/EXyjc/v55nd3+47YAgWbSXVxPrNI=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=

View File

@@ -22,7 +22,7 @@ func TestOrcaMiniBlueSky(t *testing.T) {
Model: "orca-mini",
Prompt: "why is the sky blue?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
@@ -39,7 +39,7 @@ func TestUnicode(t *testing.T) {
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
// Workaround deepseek context shifting bug
@@ -61,7 +61,7 @@ func TestExtendedUnicodeOutput(t *testing.T) {
Model: "gemma2:2b",
Prompt: "Output some smily face emoji",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
@@ -96,7 +96,7 @@ func TestUnicodeModelDir(t *testing.T) {
Model: "orca-mini",
Prompt: "why is the sky blue?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},

View File

@@ -25,7 +25,7 @@ func TestMultiModelConcurrency(t *testing.T) {
Prompt: "why is the ocean blue?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -34,7 +34,7 @@ func TestMultiModelConcurrency(t *testing.T) {
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -23,7 +23,7 @@ func TestLongInputContext(t *testing.T) {
Model: "llama2",
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
"num_ctx": 128,
@@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
Model: "llama2",
Prompt: "Write me a story with a ton of emojis?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
"num_ctx": 128,

View File

@@ -19,7 +19,7 @@ func TestIntegrationLlava(t *testing.T) {
Model: "llava:7b",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -47,7 +47,7 @@ func TestIntegrationMllama(t *testing.T) {
Model: "x/llama3.2-vision",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -75,7 +75,7 @@ func TestIntegrationSplitBatch(t *testing.T) {
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
Prompt: "what does the text in this image say?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -20,7 +20,7 @@ var (
Model: "orca-mini",
Prompt: "why is the ocean blue?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -28,7 +28,7 @@ var (
Model: "orca-mini",
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -32,7 +32,7 @@ func TestMaxQueue(t *testing.T) {
req := api.GenerateRequest{
Model: "orca-mini",
Prompt: "write a long historical fiction story about christopher columbus. use at least 10 facts from his actual journey",
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -52,8 +52,8 @@ func TestMaxQueue(t *testing.T) {
embedCtx := ctx
var genwg sync.WaitGroup
genwg.Add(1)
go func() {
genwg.Add(1)
defer genwg.Done()
slog.Info("Starting generate request")
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
@@ -71,8 +71,8 @@ func TestMaxQueue(t *testing.T) {
counterMu := sync.Mutex{}
var embedwg sync.WaitGroup
for i := 0; i < threadCount; i++ {
embedwg.Add(1)
go func(i int) {
embedwg.Add(1)
defer embedwg.Done()
slog.Info("embed started", "id", i)
embedReq := api.EmbeddingRequest{

View File

@@ -291,7 +291,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "why is the ocean blue?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -300,7 +300,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "why is the color of dirt brown?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -309,7 +309,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -318,7 +318,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "what is the origin of independence day?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
@@ -327,7 +327,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
Prompt: "what is the composition of air?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},

View File

@@ -43,31 +43,20 @@ type Cache interface {
// ** cache management **
// Init sets up runtime parameters.
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
// dtype: The data type for storing cache entries
// maxSequences: The maximum number of sequences stored in the cache - across all batches
// capacity: The number of cache entries to store, per sequence
// maxBatch: The maximum number of tokens that can occur in a single batch
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
// Init sets up runtime parameters
Init(backend ml.Backend, dtype ml.DType, capacity int32)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs. reserve is to preallocate memory
// without actually storing data in the cache.
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
// entry in positions and seqs.
StartForward(ctx ml.Context, opts input.Options) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// CanResume returns true if the cache can continue with the next token at
// the given position and sequence. Assumes that the caller has already
// verified the contents of the cache.
CanResume(seq int, pos int32) bool
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//

View File

@@ -20,6 +20,7 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
Capacity int32
windowSize int32
opts CausalOptions
@@ -97,7 +98,7 @@ func NewSWACache(windowSize int32, shift shiftFn) *Causal {
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
@@ -118,16 +119,9 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.config.MaskDType = ml.DTypeF32
}
var cacheSize int
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
cacheSize = maxSequences * capacity
} else {
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
}
cacheSize = roundUp(cacheSize, c.config.CachePadding)
c.cells = make([]cacheCell, cacheSize)
c.DType = dtype
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
c.cells = make([]cacheCell, c.Capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
}
@@ -146,60 +140,49 @@ func (c *Causal) Close() {
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
c.opts.Except = nil
if !reserve {
c.updateSlidingWindow()
var err error
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
} else {
// If we are reserving memory, don't update any of the cache metadata but set the size
// to the worst case.
c.curLoc = 0
c.curCellRange.min = 0
c.curCellRange.max = len(c.cells) - 1
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
var err error
c.curMask, err = c.buildMask(ctx)
return err
@@ -227,51 +210,7 @@ func (c *Causal) findStartLoc() (int, error) {
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
}
func (c *Causal) updateSlidingWindow() {
if c.windowSize == math.MaxInt32 {
return
}
// create a map of unique sequences to the lowest position in that sequence
lowestPos := make(map[int]int32)
for i := range c.curPositions {
seq := c.curSequences[i]
pos, ok := lowestPos[seq]
if !ok {
pos = c.curPositions[i]
} else if c.curPositions[i] < pos {
pos = c.curPositions[i]
}
lowestPos[seq] = pos
}
// delete any entries that are beyond the window of the oldest position in the sequence
for seq, pos := range lowestPos {
oldRange, ok := c.cellRanges[seq]
if !ok {
continue
}
newRange := newRange()
for i := oldRange.min; i <= oldRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos < pos-c.windowSize {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
newRange.min = min(newRange.min, i)
newRange.max = max(newRange.max, i)
}
}
}
c.cellRanges[seq] = newRange
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
func roundDown(length, pad int) int {
@@ -326,7 +265,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
return maskTensor, nil
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
for i, key := range c.keys {
if key == nil {
continue
@@ -336,8 +275,8 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
@@ -345,14 +284,14 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
}
ctx.Forward(
@@ -382,8 +321,7 @@ func (c *Causal) defrag() {
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v). We also need to refer to the original
// k and v cache tensors - once per layer, not per move.
// copy for each of k and v).
layers := 0
for _, key := range c.keys {
if key == nil {
@@ -392,7 +330,7 @@ func (c *Causal) defrag() {
layers++
}
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
@@ -541,14 +479,14 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
}
}
@@ -559,7 +497,7 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
elemSize := c.values[c.curLayer].Stride(0)
value = value.Permute(ctx, 1, 2, 0, 3)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
} else {
rowSize := c.values[c.curLayer].Stride(2)
@@ -590,35 +528,6 @@ func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
c.cellRanges[dstSeq] = seqRange
}
func (c *Causal) CanResume(seq int, pos int32) bool {
if c.windowSize == math.MaxInt32 {
return true
}
seqRange, ok := c.cellRanges[seq]
if !ok {
return false
}
// for sliding window, check that the window of the new sequence is contained in
// the window of what we are storing
var last int32 = -1
for i := seqRange.min; i <= seqRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
last = max(last, c.cells[i].pos)
}
}
if last == -1 {
return false
}
lastWindowStart := max(0, last-c.windowSize)
posWindowStart := max(0, pos-c.windowSize)
return posWindowStart >= lastWindowStart
}
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
if c.shiftFn == nil {
return ErrNotSupported
@@ -673,12 +582,6 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
// TODO(jessegross): We should check to see if removing the middle of the sequence will
// cause the sliding window to encompass tokens that we no longer have. If so, then we
// should return an error, which will trigger the runner to evaluate the full history and
// rebuild the window. However, if we have multimodal inputs in our history, this reuse
// results in use after free, so we don't do it for now.
var offset int32
if endIndex != math.MaxInt32 {
offset = beginIndex - endIndex
@@ -693,7 +596,8 @@ func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
} else {
if c.cells[i].pos >= endIndex {
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
return errors.New("shifting cells shared by multiple sequences not supported")
// TODO(jessegross): Need to be careful about data shared between sequences
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
}
c.cells[i].pos += offset

View File

@@ -25,7 +25,7 @@ func TestStore(t *testing.T) {
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -58,11 +58,11 @@ func TestSWA(t *testing.T) {
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF32, 16)
tests := []testCase{
{
name: "FirstBatch",
name: "SlidingWindow",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
@@ -71,16 +71,6 @@ func TestSWA(t *testing.T) {
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{5, 6, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
},
}
testCache(t, backend, cache, tests)
@@ -91,7 +81,7 @@ func TestSequences(t *testing.T) {
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -126,7 +116,7 @@ func TestRemove(t *testing.T) {
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -191,7 +181,7 @@ func TestDefrag(t *testing.T) {
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -239,7 +229,7 @@ func TestCopy(t *testing.T) {
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -280,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -300,79 +290,14 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
}
}
func TestCanResume(t *testing.T) {
backend := &testBackend{}
windowSize := int32(4)
cache := NewSWACache(windowSize, nil)
defer cache.Close()
type testBackend struct{}
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3},
Sequences: []int{0, 0, 0, 0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet
if !cache.CanResume(0, 0) {
t.Errorf("CanResume(0, 0) = false, want true (within window)")
}
if !cache.CanResume(0, 1) {
t.Errorf("CanResume(0, 1) = false, want true (within window)")
}
if !cache.CanResume(0, 2) {
t.Errorf("CanResume(0, 2) = false, want true (within window)")
}
if !cache.CanResume(0, 3) {
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
}
// shift window by adding position 4
err = cache.StartForward(context, input.Batch{
Positions: []int32{4, 5},
Sequences: []int{0, 0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
if cache.CanResume(0, 0) {
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
}
if cache.CanResume(0, 1) {
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
}
if cache.CanResume(0, 2) {
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
}
if cache.CanResume(0, 3) {
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
}
if cache.CanResume(0, 4) {
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
}
if !cache.CanResume(0, 5) {
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
}
func (b *testBackend) Config() ml.Config {
panic("not implemented")
}
type testBackend struct {
ml.Backend
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
@@ -383,10 +308,12 @@ func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
type testContext struct {
ml.Context
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
@@ -425,14 +352,13 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) MaxGraphNodes() int {
return 10
}
@@ -440,8 +366,6 @@ func (c *testContext) MaxGraphNodes() int {
func (c *testContext) Close() {}
type testTensor struct {
ml.Tensor
dtype ml.DType
elementSize int
data []float32
@@ -469,20 +393,16 @@ func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = -t.data[i]
}
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
@@ -493,6 +413,66 @@ func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
@@ -515,6 +495,38 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil

View File

@@ -27,11 +27,6 @@ type EncoderCache struct {
// anything will be stored)
curPos int32
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// ** cache metadata **
// was something stored in the cache?
@@ -54,7 +49,7 @@ func NewEncoderCache() *EncoderCache {
}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
@@ -63,10 +58,6 @@ func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, ca
c.config = &config
}
if maxSequences > 1 {
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
}
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
@@ -88,14 +79,12 @@ func (c *EncoderCache) Close() {
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
// We work with the most recent image
if len(batch.Multimodal) > 0 {
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
}
c.curReserve = reserve
return nil
}
@@ -112,10 +101,8 @@ func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
if !c.curReserve {
c.encoderPos = c.curPos
c.encoderCached = true
}
c.encoderPos = c.curPos
c.encoderCached = true
if c.config.PermutedV {
value = value.Permute(ctx, 1, 2, 0, 3)
@@ -143,10 +130,6 @@ func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("encoder cache does not support multiple sequences")
}
func (c *EncoderCache) CanResume(seq int, pos int32) bool {
return true
}
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
c.encoderCached = false

View File

@@ -23,9 +23,9 @@ func NewWrapperCache(caches ...Cache) *WrapperCache {
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
for _, cache := range c.caches {
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
cache.Init(backend, dtype, capacity)
}
}
@@ -41,14 +41,14 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, batch, reserve)
err := cache.StartForward(ctx, opts)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range batch.Positions {
_ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
}
}
return err
@@ -87,16 +87,6 @@ func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
}
}
func (c *WrapperCache) CanResume(seq int, pos int32) bool {
for _, cache := range c.caches {
if !cache.CanResume(seq, pos) {
return false
}
}
return true
}
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
for _, cache := range c.caches {

View File

@@ -65,7 +65,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CHAMELEON, "chameleon" },
{ LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1372,22 +1371,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
},
},
{
LLM_ARCH_MISTRAL3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
}
},
{
LLM_ARCH_UNKNOWN,
{

View File

@@ -69,7 +69,6 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};

View File

@@ -1277,7 +1277,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
} break;
case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@@ -3538,7 +3537,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
} break;
case LLM_ARCH_MISTRAL3: break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -4017,7 +4015,6 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2

View File

@@ -738,8 +738,13 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.") == std::string::npos;
quantize &= name.find("mm.") == std::string::npos;
quantize &= name.find("v.blk.") == std::string::npos;
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -166,10 +166,6 @@ func (c *Context) KvCacheDefrag() {
C.llama_kv_cache_defrag(c.c)
}
func (c *Context) KvCacheCanShift() bool {
return bool(C.llama_kv_cache_can_shift(c.c))
}
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))

View File

@@ -1,19 +1,17 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Patrick Devine <patrick@infrahq.com>
Date: Fri, 14 Mar 2025 16:33:23 -0700
Subject: [PATCH] add model quantizations
Subject: [PATCH] gemma3 quantization
- gemma3
- mistral3
---
src/llama-arch.cpp | 36 ++++++++++++++++++++++++++++++++++++
src/llama-arch.h | 2 ++
src/llama-model.cpp | 10 ++++++++++
src/llama-quant.cpp | 4 ++++
4 files changed, 52 insertions(+)
src/llama-arch.cpp | 19 +++++++++++++++++++
src/llama-arch.h | 1 +
src/llama-model.cpp | 7 +++++++
src/llama-quant.cpp | 9 +++++++++
4 files changed, 36 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index b6f20286..13a0a988 100644
index b6f20286..b443fcd3 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@@ -24,15 +22,7 @@ index b6f20286..13a0a988 100644
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -64,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CHAMELEON, "chameleon" },
{ LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
+ { LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -804,6 +806,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
@@ -57,31 +47,8 @@ index b6f20286..13a0a988 100644
{
LLM_ARCH_STARCODER2,
{
@@ -1352,6 +1372,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
},
},
+ {
+ LLM_ARCH_MISTRAL3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ }
+ },
{
LLM_ARCH_UNKNOWN,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index ec742224..8476ae0a 100644
index ec742224..aad92a5d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -41,6 +41,7 @@ enum llm_arch {
@@ -92,16 +59,8 @@ index ec742224..8476ae0a 100644
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -68,6 +69,7 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
+ LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index ab1a07d1..db4f2685 100644
index ab1a07d1..70183041 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -114,15 +73,7 @@ index ab1a07d1..db4f2685 100644
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -1274,6 +1277,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
} break;
+ case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@@ -2537,6 +2541,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
@@ -132,23 +83,7 @@ index ab1a07d1..db4f2685 100644
case LLM_ARCH_STARCODER2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -3531,6 +3538,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
} break;
+ case LLM_ARCH_MISTRAL3: break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -4009,6 +4017,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
+ case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
@@ -4029,6 +4038,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
@@ -157,16 +92,21 @@ index ab1a07d1..db4f2685 100644
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
index 6eb1da08..ebcbafa1 100644
index 6eb1da08..d2f3a510 100644
--- a/src/llama-quant.cpp
+++ b/src/llama-quant.cpp
@@ -737,6 +737,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+ // don't quantize vision stuff
+ quantize &= name.find("v.") == std::string::npos;
+ quantize &= name.find("mm.") == std::string::npos;
+ quantize &= name.find("v.blk.") == std::string::npos;
+
+ quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
+ quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
+ quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.position_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
+
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -1,103 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Saman <saman.khatir@amd.com>
Date: Wed, 19 Mar 2025 14:02:26 -0700
Subject: [PATCH] add rdna4 support
---
ggml/src/ggml-cuda/common.cuh | 6 ++++--
ggml/src/ggml-cuda/mmq.cu | 2 +-
ggml/src/ggml-cuda/mmq.cuh | 4 ++--
ggml/src/ggml-cuda/mmvq.cu | 4 ++--
ggml/src/ggml-cuda/vendors/hip.h | 4 ++++
5 files changed, 13 insertions(+), 7 deletions(-)
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index adf0d3ec..b24593fc 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -61,11 +61,13 @@
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
+#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
-#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
+#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
+#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
-#elif defined(RDNA3)
+#elif defined(RDNA3) || defined(RDNA4)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;
diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu
index 10f2ebb1..933d945c 100644
--- a/ggml/src/ggml-cuda/mmq.cu
+++ b/ggml/src/ggml-cuda/mmq.cu
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
- return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
+ return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh
index 0451c65f..66ce2bc9 100644
--- a/ggml/src/ggml-cuda/mmq.cuh
+++ b/ggml/src/ggml-cuda/mmq.cuh
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
+#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
-#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
+#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
index 4fb466ca..23ae7abc 100644
--- a/ggml/src/ggml-cuda/mmvq.cu
+++ b/ggml/src/ggml-cuda/mmvq.cu
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
-#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
-#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index 81964611..a62544b5 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -150,6 +150,10 @@
#define CDNA
#endif
+#if defined(__gfx1200__) || defined(__gfx1201__)
+#define RDNA4
+#endif
+
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -1,75 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <git@mxy.ng>
Date: Wed, 2 Apr 2025 15:26:15 -0700
Subject: [PATCH] metal: add op_neg
---
ggml/src/ggml-metal/ggml-metal.m | 15 +++++++++++++++
ggml/src/ggml-metal/ggml-metal.metal | 7 +++++++
2 files changed, 22 insertions(+)
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index e4c093f9..d8422f1b 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -423,6 +423,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
+ GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
@@ -1039,6 +1040,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
@@ -1202,6 +1204,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
+ case GGML_UNARY_OP_NEG:
return ggml_is_contiguous(op->src[0]);
default:
return false;
@@ -1873,6 +1876,18 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
+ case GGML_UNARY_OP_NEG:
+ {
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
+
+ [encoder setComputePipelineState:pipeline];
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
+
+ const int64_t n = ggml_nelements(dst);
+
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ } break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index f38909d0..bb0ff668 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -945,6 +945,13 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
+kernel void kernel_neg(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = -src0[tpig];
+}
+
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

View File

@@ -15,12 +15,12 @@ import (
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
estimate := EstimateGPULayers(gpus, f, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
@@ -71,7 +71,7 @@ type MemoryEstimate struct {
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
@@ -137,19 +137,13 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
if len(kv) > 0 {
layerSize += kv[0]
}
var kvTotal uint64
for _, kvLayer := range kv {
kvTotal += kvLayer
}
// KV is proportional to the number of layers
layerSize += kv / f.KV().BlockCount()
if graphPartialOffload == 0 {
graphPartialOffload = f.KV().GQAMax() * kvTotal / 6
graphPartialOffload = f.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
@@ -223,7 +217,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.Size()
layerSize += kv[i]
layerSize += kv / f.KV().BlockCount()
memoryWeights += blk.Size()
}
@@ -321,7 +315,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
layersRequested: opts.NumGPU,
layersModel: int(f.KV().BlockCount()) + 1,
availableList: availableList,
kv: kvTotal,
kv: kv,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
@@ -380,7 +374,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
"total", format.HumanBytes2(m.memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(m.memoryWeights),
// memory of non-repeating layers

View File

@@ -61,7 +61,7 @@ func TestEstimateGPULayers(t *testing.T) {
projectors := []string{}
opts := api.DefaultOptions()
t.Run("cpu", func(t *testing.T) {
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, 0, estimate.Layers)
assert.Equal(t, uint64(0), estimate.Graph)
})
@@ -112,7 +112,7 @@ func TestEstimateGPULayers(t *testing.T) {
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
var layerSums uint64

View File

@@ -109,7 +109,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
gpus = discover.GetCPUInfo()
}
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
@@ -675,32 +675,9 @@ type CompletionRequest struct {
Grammar string // set before sending the request to the subprocess
}
// DoneReason represents the reason why a completion response is done
type DoneReason int
const (
// DoneReasonStop indicates the completion stopped naturally
DoneReasonStop DoneReason = iota
// DoneReasonLength indicates the completion stopped due to length limits
DoneReasonLength
// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
DoneReasonConnectionClosed
)
func (d DoneReason) String() string {
switch d {
case DoneReasonLength:
return "length"
case DoneReasonStop:
return "stop"
default:
return "" // closed
}
}
type CompletionResponse struct {
Content string `json:"content"`
DoneReason DoneReason `json:"done_reason"`
DoneReason string `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
@@ -809,6 +786,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
continue
}
// slog.Debug("got line", "line", string(line))
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
evt = line

View File

@@ -2,19 +2,28 @@ package ml
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"os"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/fs"
)
type Config interface {
Architecture() string
String(string, ...string) string
Uint(string, ...uint32) uint32
Float(string, ...float32) float32
Bool(string, ...bool) bool
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
Floats(string, ...[]float32) []float32
}
type Backend interface {
Config() fs.Config
Config() Config
Get(name string) Tensor
NewContext() Context
NewContextSize(size int) Context
@@ -51,10 +60,6 @@ type CacheConfig struct {
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// Progress is a callback function that allows reporting percentage completion
// of model loading
Progress func(float32)
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
@@ -71,9 +76,9 @@ type BackendParams struct {
FlashAttention bool
}
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
@@ -81,9 +86,9 @@ func RegisterBackend(name string, f func(context.Context, *os.File, BackendParam
backends[name] = f
}
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
func NewBackend(f *os.File, params BackendParams) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(ctx, f, params)
return backend(f, params)
}
return nil, fmt.Errorf("unsupported backend")
@@ -97,20 +102,15 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
Reserve() error
MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating tensors that are
// inputs to the model (which includes things like output locations)
// Input returns a context appropriate for creating input tensors
Input() Context
// Output returns a context appropriate for creating output tensors
Output() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}
@@ -125,7 +125,6 @@ type Tensor interface {
Bytes() []byte
Floats() []float32
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
@@ -140,10 +139,7 @@ type Tensor interface {
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Sin(ctx Context) Tensor
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
@@ -158,13 +154,9 @@ type Tensor interface {
Unpad(ctx Context, shape ...int) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
// Repeat repeats the tensor n times along dimension dim
Repeat(ctx Context, dim, n int) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
Duplicate(ctx Context) Tensor
}
// ScaledDotProductAttention implements a fused attention
@@ -229,7 +221,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16, DTypeQ80, DTypeQ40:
f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
f32 := ctx.Empty(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)

View File

@@ -9,24 +9,20 @@ package ggml
import "C"
import (
"context"
"errors"
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strconv"
"strings"
"sync/atomic"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"golang.org/x/sync/errgroup"
@@ -43,17 +39,16 @@ func devices() []*C.struct_ggml_backend_device {
}
type Backend struct {
meta *fsggml.GGML
sched *C.struct_ggml_backend_sched
schedBackends []*C.struct_ggml_backend
schedBufts []*C.struct_ggml_backend_buffer_type
meta *fs.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
input *C.struct_ggml_backend_buffer_type
// output is the backend used for outputs
output *C.struct_ggml_backend_buffer_type
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
@@ -63,8 +58,8 @@ type Backend struct {
maxGraphNodes int
}
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fsggml.Decode(r, -1)
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
@@ -188,7 +183,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
maxTensors += blocks * 2
type tensor struct {
source *fsggml.Tensor
source *fs.Tensor
target string
}
@@ -286,10 +281,6 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if b == nil {
return nil, fmt.Errorf("unable to allocate memory from device %v for model weights", C.GoString(C.ggml_backend_buft_name(bt)))
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
@@ -306,16 +297,12 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
}
var doneBytes atomic.Uint64
totalBytes := uint64(n) - meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
for i := range tts {
target := targets[t.Name][i]
for _, target := range targets[t.Name] {
g.Go(func() error {
if target == "" {
target = t.Name
}
@@ -325,51 +312,25 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
bts := C.malloc(C.size_t(t.Size()))
if bts == nil {
return errors.New("failed to allocate tensor buffer")
}
defer C.free(bts)
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(r.Name())
if err != nil {
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
return err
buf := unsafe.Slice((*byte)(bts), t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
if err != nil || n != len(buf) {
return errors.New("read failed")
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if params.Progress != nil {
done := doneBytes.Add(uint64(n))
params.Progress(float32(done) / float32(totalBytes))
}
}
return nil
})
C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
return nil
})
}
}
// start a goroutine to cancel the errgroup if the parent context is done
go func() {
<-ctx.Done()
g.Go(func() error {
return ctx.Err()
})
}()
if err := g.Wait(); err != nil {
if g.Wait() != nil {
return nil, err
}
@@ -394,6 +355,8 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
@@ -412,9 +375,8 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
C.size_t(maxGraphNodes),
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
),
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
@@ -430,7 +392,7 @@ func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Config() fs.Config {
func (b *Backend) Config() ml.Config {
return b.meta.KV()
}
@@ -495,6 +457,19 @@ func (c Context) Input() ml.Context {
return &c
}
func (c Context) Output() ml.Context {
if c.b.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Layer(i int) ml.Context {
if buft, ok := c.b.layers[i]; ok {
return &Context{
@@ -539,24 +514,6 @@ func (c Context) Compute(tensors ...ml.Tensor) {
}
}
func (c Context) Reserve() error {
if !C.ggml_backend_sched_reserve(c.b.sched, c.graph) {
C.ggml_backend_sched_reset(c.b.sched)
return errors.New("failed to reserve graph")
}
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
for i := range c.b.schedBackends {
size := C.ggml_backend_sched_get_buffer_size(c.b.sched, c.b.schedBackends[i])
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(size)))
}
C.ggml_backend_sched_reset(c.b.sched)
return nil
}
func (c Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
@@ -574,9 +531,9 @@ func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
panic("set Input, Output, or Layer before creating tensors")
}
var cdtype uint32
@@ -597,7 +554,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}, nil
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -611,29 +568,16 @@ func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if b == nil {
return nil, fmt.Errorf("unable to allocate %v from device %v for new tensor", format.HumanBytes2(uint64(size)), C.GoString(C.ggml_backend_buft_name(c.buft)))
}
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}, nil
return &Tensor{b: c.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
return t
return c.newTensor(dtype, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
@@ -661,11 +605,7 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return nil, err
}
t, err := c.newTensor(ml.DTypeF32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
@@ -678,11 +618,7 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return nil, err
}
t, err := c.newTensor(ml.DTypeI32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
@@ -766,13 +702,6 @@ func (t *Tensor) DType() ml.DType {
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
@@ -780,27 +709,6 @@ func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
if dim < 0 || dim >= C.GGML_MAX_DIMS {
panic("invalid dimension")
}
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
for i := range C.GGML_MAX_DIMS {
if i == dim {
shape[i] = C.int64_t(t.Dim(i) * n)
} else {
shape[i] = C.int64_t(t.Dim(i))
}
}
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
return &Tensor{
b: t.b,
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
@@ -937,20 +845,6 @@ func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1039,13 +933,6 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
}
}
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1114,10 +1001,3 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.T
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
}
}

View File

@@ -61,13 +61,11 @@
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -388,7 +386,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3) || defined(RDNA4)
#elif defined(RDNA3)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;

View File

@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)

View File

@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;

View File

@@ -150,10 +150,6 @@
#define CDNA
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#define RDNA4
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -3083,13 +3083,6 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_neg(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

View File

@@ -423,7 +423,6 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
@@ -1040,7 +1039,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
@@ -1204,7 +1202,6 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_NEG:
return ggml_is_contiguous(op->src[0]);
default:
return false;
@@ -1876,18 +1873,6 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_NEG:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));

View File

@@ -945,13 +945,6 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_neg(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

View File

@@ -1,7 +1,5 @@
package input
import "github.com/ollama/ollama/ml"
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
@@ -35,24 +33,11 @@ type MultimodalIndex struct {
Multimodal any
}
// Batch contains the inputs for a model forward pass
type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
Positions []int32
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
Positions []int32
Sequences []int
Outputs []int32
}

View File

@@ -1,7 +1,6 @@
package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
@@ -16,8 +15,7 @@ import (
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
@@ -28,7 +26,7 @@ var ErrNoVisionModel = errors.New("this model is missing data required for image
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, input.Batch) (ml.Tensor, error)
Forward(ml.Context, input.Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
@@ -84,10 +82,10 @@ func (m *Base) Config() config {
return m.config
}
var models = make(map[string]func(fs.Config) (Model, error))
var models = make(map[string]func(ml.Config) (Model, error))
// Register registers a model constructor for the given architecture
func Register(name string, f func(fs.Config) (Model, error)) {
func Register(name string, f func(ml.Config) (Model, error)) {
if _, ok := models[name]; ok {
panic("model: model already registered")
}
@@ -96,14 +94,14 @@ func Register(name string, f func(fs.Config) (Model, error)) {
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
func New(modelPath string, params ml.BackendParams) (Model, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
b, err := ml.NewBackend(ctx, r, params)
b, err := ml.NewBackend(r, params)
if err != nil {
return nil, err
}
@@ -132,14 +130,14 @@ func NewTextProcessor(s string) (TextProcessor, error) {
return nil, err
}
defer r.Close()
meta, _, err := fsggml.Decode(r, -1)
meta, _, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
func getTextProcessor(kv fs.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
@@ -282,30 +280,24 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
if len(batch.Positions) != len(batch.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
if len(batch.Positions) < 1 {
if len(opts.Positions) < 1 {
return nil, errors.New("batch size cannot be less than 1")
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return nil, err
}
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, false)
err := cache.StartForward(ctx, opts)
if err != nil {
return nil, err
}
}
t, err := m.Forward(ctx, batch)
t, err := m.Forward(ctx, opts)
if err != nil {
return nil, err
}

View File

@@ -7,8 +7,7 @@ import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
@@ -140,7 +139,7 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
}
func TestGetTextProcessor(t *testing.T) {
tp, err := getTextProcessor(fsggml.KV{})
tp, err := getTextProcessor(fs.KV{})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
@@ -149,10 +148,10 @@ func TestGetTextProcessor(t *testing.T) {
t.Error("expected nil tp")
}
models["dummy"] = func(fs.Config) (Model, error) {
models["dummy"] = func(ml.Config) (Model, error) {
return notTextProcessorModel{}, nil
}
tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
tp, err = getTextProcessor(fs.KV{"general.architecture": "dummy"})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
@@ -164,7 +163,7 @@ func TestGetTextProcessor(t *testing.T) {
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
panic("unimplemented")
}

View File

@@ -3,7 +3,6 @@ package gemma2
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
@@ -36,9 +35,10 @@ const (
gemma27BLayerCount = 46
)
func New(c fs.Config) (model.Model, error) {
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -168,18 +168,23 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
if len(m.Layers) == gemma27BLayerCount {
@@ -206,7 +211,8 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
return hiddenState.Rows(ctx, outputs), nil
}
func init() {

View File

@@ -6,7 +6,6 @@ import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
@@ -53,9 +52,10 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
return visionOutputs
}
func New(c fs.Config) (model.Model, error) {
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -139,18 +139,23 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
}
func init() {

View File

@@ -3,7 +3,6 @@ package gemma3
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
@@ -11,7 +10,7 @@ import (
"github.com/ollama/ollama/model/input"
)
type TextConfig struct {
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
@@ -28,7 +27,7 @@ type TextModel struct {
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextConfig
*TextOptions
}
const (
@@ -41,11 +40,12 @@ const (
cacheTypeCausal
)
func newTextModel(c fs.Config) *TextModel {
func newTextModel(c ml.Config) *TextModel {
numBlocks := int(c.Uint("block_count"))
m := TextModel{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -55,7 +55,7 @@ func newTextModel(c fs.Config) *TextModel {
},
),
Layers: make([]TextLayer, numBlocks),
TextConfig: &TextConfig{
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
@@ -84,7 +84,7 @@ type TextSelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
@@ -120,12 +120,12 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeBase := m.TextConfig.ropeLocalBase
ropeBase := m.TextOptions.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
ropeBase = m.TextConfig.ropeGlobalBase
ropeBase = m.TextOptions.ropeGlobalBase
}
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
}
type TextMLP struct {
@@ -134,7 +134,7 @@ type TextMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -148,7 +148,7 @@ type TextLayer struct {
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -171,13 +171,13 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
// set image embeddings
var except []int
for _, image := range batch.Multimodal {
for _, image := range opts.Multimodal {
visionOutputs := image.Multimodal.(ml.Tensor)
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
@@ -206,7 +206,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -3,7 +3,6 @@ package gemma3
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
@@ -112,7 +111,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
return hiddenState
}
func newVisionModel(c fs.Config) *VisionModel {
func newVisionModel(c ml.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
VisionModelOptions: &VisionModelOptions{

View File

@@ -3,7 +3,7 @@ package gemma3
import (
"image"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/imageproc"
)
@@ -11,7 +11,7 @@ type ImageProcessor struct {
imageSize, patchSize, numChannels int
}
func newImageProcessor(c fs.Config) ImageProcessor {
func newImageProcessor(c ml.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),

View File

@@ -5,7 +5,6 @@ import (
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
@@ -31,7 +30,7 @@ type Model struct {
*Options
}
func New(c fs.Config) (model.Model, error) {
func New(c ml.Config) (model.Model, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
@@ -140,18 +139,23 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)

View File

@@ -1,56 +0,0 @@
package mistral3
import (
"image"
_ "image/jpeg"
_ "image/png"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/model/imageproc"
)
type ImageProcessor struct {
imageSize int
patchSize int
numChannels int
longestEdge int
}
func newImageProcessor(c fs.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size", 1540)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
longestEdge: int(c.Uint("vision.longest_edge", 1540)),
}
}
// ProcessImage prepares an image for the vision model by:
// 1. Compositing transparent images
// 2. Resizing to fit model constraints while preserving aspect ratio
// 3. Normalizing pixel values
// Returns normalized image data and the final size in pixels
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, image.Point, error) {
img = imageproc.Composite(img)
size := img.Bounds().Size()
ratio := max(float64(size.Y)/float64(p.longestEdge), float64(size.X)/float64(p.longestEdge))
if ratio > 1.0 {
size = image.Point{
int(math.Floor(float64(size.X) / ratio)),
int(math.Floor(float64(size.Y) / ratio)),
}
}
patchesX := (size.X-1)/p.patchSize + 1
patchesY := (size.Y-1)/p.patchSize + 1
size = image.Point{
patchesX * p.patchSize,
patchesY * p.patchSize,
}
img = imageproc.Resize(img, size, imageproc.ResizeBilinear)
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
return data, size, nil
}

View File

@@ -1,189 +0,0 @@
package mistral3
import (
"bytes"
"image"
"slices"
"sync"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
*TextModel
*VisionModel `gguf:"v,vision"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
// Implement MultimodalProcessor interface
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
textModel, err := NewTextModel(c)
if err != nil {
return nil, err
}
m := &Model{
TextModel: textModel,
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
type PatchMerger struct {
MergingLayer *nn.Linear `gguf:"merging_layer"`
}
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
d := visionOutputs.Dim(0)
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
return pm.MergingLayer.Forward(ctx, reshaped)
}
type MultiModalProjector struct {
Norm *nn.RMSNorm `gguf:"norm"`
Linear1 *nn.Linear `gguf:"linear_1"`
Linear2 *nn.Linear `gguf:"linear_2"`
PatchMerger *PatchMerger `gguf:"patch_merger"`
spatialMergeSize int
eps float32
patchSize int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
visionOutputs = visionOutputs.GELU(ctx)
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
}
func newMultiModalProjector(c fs.Config) *MultiModalProjector {
return &MultiModalProjector{
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
eps: c.Float("text_config.rms_norm_eps", 1e-5),
patchSize: int(c.Uint("vision.patch_size", 14)),
}
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, size, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
// split into patches to be sent to the text transformer
parent := imageFeatures{tensor: features}
rows := make([]*imageRow, size.Y)
for i := range rows {
rows[i] = &imageRow{parent: &parent, s: i, shape: []int{features.Dim(0), size.X}}
}
return rows, nil
}
type imageFeatures struct {
tensor ml.Tensor
dataOnce sync.Once
data []float32
}
type imageRow struct {
parent *imageFeatures
s int
shape []int
}
func (r *imageRow) data() []float32 {
n := 1
for _, s := range r.shape {
n *= s
}
return r.parent.data[r.s*n : (r.s+1)*n]
}
// PostTokenize arranges Mistral 3's inputs for the forward pass
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
// that can be processed together.
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal.([]*imageRow)
for i, row := range inputMultimodal {
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.shape[1]})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.shape[1]-1)...)
if i == len(inputMultimodal)-1 {
// [IMG_END]
result = append(result, input.Input{Token: 13})
} else {
// [IMG_BREAK]
result = append(result, input.Input{Token: 12})
}
}
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {
model.Register("mistral3", New)
}

View File

@@ -1,177 +0,0 @@
package mistral3
import (
"fmt"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads, headDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type TextModel struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextOptions
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(0)
headDim := opts.headDim
if headDim == 0 {
headDim = opts.hiddenSize / opts.numHeads
}
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
kqv := nn.Attention(ctx, q, k, v, 1.0/math.Sqrt(float64(headDim)), cache)
kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
// image embeddings
for _, image := range batch.Multimodal {
row := image.Multimodal.(*imageRow)
row.parent.dataOnce.Do(func() {
// use a new, throwaway context so the image tensor is not added to the graph
temp := m.Backend().NewContext()
temp.Forward(row.parent.tensor).Compute(row.parent.tensor)
row.parent.data = row.parent.tensor.Floats()
temp.Close()
})
imageFeature, err := ctx.Input().FromFloatSlice(row.data(), row.shape...)
if err != nil {
panic(err)
}
ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
}
for i, layer := range m.Layers {
cache.SetLayer(i)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
}
func NewTextModel(c fs.Config) (*TextModel, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
textModel := &TextModel{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
Layers: make([]Layer, c.Uint("block_count")),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
return textModel, nil
}

View File

@@ -1,186 +0,0 @@
package mistral3
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Neg(ctx).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type VisionEncoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *VisionSelfAttention
FFNNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
intermediateSize int
imageSize int
patchSize int
numChannels int
eps float32
ropeBase float32
}
type VisionModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_conv"`
EncoderNorm *nn.RMSNorm `gguf:"encoder_norm"`
Layers []VisionEncoderLayer `gguf:"blk"`
*VisionModelOptions
}
func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor) ml.Tensor {
maxPatchesPerSide := m.imageSize / m.patchSize
frequencies := m.headDim / 2
frequenciesHeight := make([]float32, frequencies/2*maxPatchesPerSide)
frequenciesWidth := make([]float32, frequencies/2*maxPatchesPerSide)
for i := range frequencies {
for j := range maxPatchesPerSide {
frequency := float32(j) / float32(math.Pow(float64(m.ropeBase), float64(i)*2/float64(m.headDim)))
if i%2 == 0 {
frequenciesHeight[i/2*maxPatchesPerSide+j] = frequency
} else {
frequenciesWidth[i/2*maxPatchesPerSide+j] = frequency
}
}
}
h, err := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
w, err := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
h = h.Repeat(ctx, 1, maxPatchesPerSide)
h = h.Reshape(ctx, frequencies/2, maxPatchesPerSide, maxPatchesPerSide).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
w = w.Repeat(ctx, 2, maxPatchesPerSide)
inverseFrequencies := h.Concat(ctx, w, 0).Reshape(ctx, frequencies, maxPatchesPerSide*maxPatchesPerSide)
inverseFrequencies = inverseFrequencies.Concat(ctx, inverseFrequencies, 0)
return inverseFrequencies.Rows(ctx, positionIDs)
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
numPatchesW := pixelValues.Dim(0) / m.patchSize
numPatchesH := pixelValues.Dim(1) / m.patchSize
numPatches := numPatchesW * numPatchesH
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
hiddenStates = hiddenStates.Reshape(ctx, numPatches, m.hiddenSize)
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenStates = m.EncoderNorm.Forward(ctx, hiddenStates, m.VisionModelOptions.eps)
// Prepare position IDs for 2D rope
positions := make([]int32, numPatches)
for h := range numPatchesH {
for w := range numPatchesW {
idx := h*numPatchesW + w
positions[idx] = int32(h*m.imageSize/m.patchSize + w)
}
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
panic(err)
}
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionModelOptions)
}
return hiddenStates
}
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 24)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),
headDim: int(c.Uint("vision.attention.key_length", 64)),
intermediateSize: int(c.Uint("vision.feed_forward_length", 4096)),
imageSize: int(c.Uint("vision.image_size", 1540)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-5),
ropeBase: c.Float("vision.rope.freq_base", 10000.0),
},
}
}

View File

@@ -8,7 +8,6 @@ import (
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
@@ -33,7 +32,7 @@ const (
selfAttentionLayer
)
func New(c fs.Config) (model.Model, error) {
func New(c ml.Config) (model.Model, error) {
// Verify unified config
if c.Uint("vision.block_count") == 0 {
return nil, fmt.Errorf("non-unified vision model not supported")
@@ -136,27 +135,32 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(batch.Multimodal) > 0 {
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(opts.Multimodal) > 0 {
images := opts.Multimodal[len(opts.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(images) > 0 {
crossAttentionStates = images[len(images)-1]
}
}
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -4,7 +4,6 @@ import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
@@ -221,7 +220,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, mask
return m.Output.Forward(ctx, hiddenState)
}
func newTextModel(c fs.Config) *TextModel {
func newTextModel(c ml.Config) *TextModel {
var decoderLayers []TextDecoderLayer
for i := range c.Uint("block_count") {
var textDecoderLayer TextDecoderLayer

View File

@@ -4,7 +4,6 @@ import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
@@ -186,7 +185,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = m.ClassEmbedding.Repeat(ctx, 2, m.numTiles).Concat(ctx, hiddenState, 1)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
@@ -214,7 +213,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
return hiddenState.Concat(ctx, hiddenStates, 0)
}
func newVisionModel(c fs.Config) *VisionModel {
func newVisionModel(c ml.Config) *VisionModel {
return &VisionModel{
Transformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},

View File

@@ -8,14 +8,14 @@ import (
"golang.org/x/image/draw"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
)
type ImageProcessor struct {
imageSize, numChannels, maxNumTiles int
}
func newImageProcessor(c fs.Config) ImageProcessor {
func newImageProcessor(c ml.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size")),
numChannels: int(c.Uint("vision.num_channels")),

View File

@@ -4,6 +4,5 @@ import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -0,0 +1,68 @@
package pixtral
import (
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"io"
"math"
"github.com/ollama/ollama/model/imageproc"
)
func getNumImageTokens(imageSize, patchSize image.Point) image.Point {
return image.Point{
(imageSize.X-1)/patchSize.X + 1,
(imageSize.Y-1)/patchSize.Y + 1,
}
}
func getResizeOutputImageSize(img image.Image, longestEdge int, patchSize image.Point) image.Point {
b := img.Bounds()
le := float64(longestEdge)
ratio := math.Max(float64(b.Max.Y)/le, float64(b.Max.X)/le)
newSize := img.Bounds().Max
if ratio > 1.0 {
newSize = image.Point{
int(math.Ceil(float64(b.Max.X) / ratio)),
int(math.Ceil(float64(b.Max.Y) / ratio)),
}
}
tokens := getNumImageTokens(newSize, patchSize)
return image.Point{
tokens.X * patchSize.X,
tokens.Y * patchSize.Y,
}
}
func resizeImage(img image.Image, format string, longestEdge int, patchSize image.Point) image.Image {
if format == "png" {
img = imageproc.Composite(img)
}
newSize := getResizeOutputImageSize(img, longestEdge, patchSize)
// todo should be ResizeBicubic, but it doesn't exist
return imageproc.Resize(img, newSize, imageproc.ResizeBilinear)
}
func Preprocess(imageData io.Reader) ([]float32, map[string]any, error) {
img, format, err := image.Decode(imageData)
if err != nil {
return nil, nil, fmt.Errorf("failed to decode image: %w", err)
}
longestEdge := 1024
patchSize := image.Point{16, 16}
img = resizeImage(img, format, longestEdge, patchSize)
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
opts := map[string]any{}
return data, opts, nil
}

View File

@@ -0,0 +1,219 @@
package pixtral
import (
"bytes"
"encoding/binary"
"image"
"image/png"
"math"
"os"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestGetNumImageTokens(t *testing.T) {
type numImageTokensCase struct {
ImageSize image.Point
PatchSize image.Point
Expected image.Point
}
cases := []numImageTokensCase{
{
ImageSize: image.Point{1024, 764},
PatchSize: image.Point{16, 16},
Expected: image.Point{64, 48},
},
{
ImageSize: image.Point{800, 600},
PatchSize: image.Point{16, 16},
Expected: image.Point{50, 38},
},
{
ImageSize: image.Point{640, 480},
PatchSize: image.Point{16, 16},
Expected: image.Point{40, 30},
},
{
ImageSize: image.Point{320, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{20, 13},
},
{
ImageSize: image.Point{1320, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{83, 13},
},
{
ImageSize: image.Point{2000, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{125, 13},
},
{
ImageSize: image.Point{10000, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{625, 13},
},
{
ImageSize: image.Point{1131, 577},
PatchSize: image.Point{16, 16},
Expected: image.Point{71, 37},
},
{
ImageSize: image.Point{16, 16},
PatchSize: image.Point{16, 16},
Expected: image.Point{1, 1},
},
}
for _, c := range cases {
actual := getNumImageTokens(c.ImageSize, c.PatchSize)
if diff := cmp.Diff(actual, c.Expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
}
func TestGetResizeOutputImageSize(t *testing.T) {
type resizeCase struct {
Image image.Image
LongestEdge int
PatchSize image.Point
Expected image.Point
}
cases := []resizeCase{
{
Image: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{1024, 768},
},
{
Image: image.NewRGBA(image.Rect(0, 0, 1162, 690)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{1024, 624},
},
{
Image: image.NewRGBA(image.Rect(0, 0, 300, 200)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{304, 208},
},
{
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{1024, 288},
},
}
for _, c := range cases {
actual := getResizeOutputImageSize(c.Image, c.LongestEdge, c.PatchSize)
if diff := cmp.Diff(actual, c.Expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
}
func TestResize(t *testing.T) {
type resizeCase struct {
Image image.Image
LongestEdge int
PatchSize image.Point
Expected image.Image
}
cases := []resizeCase{
{
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.NewRGBA(image.Rect(0, 0, 1024, 288)),
},
{
Image: image.NewRGBA(image.Rect(0, 0, 10, 10)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.NewRGBA(image.Rect(0, 0, 16, 16)),
},
}
for _, c := range cases {
actual := resizeImage(c.Image, "png", c.LongestEdge, c.PatchSize)
if actual.Bounds() != c.Expected.Bounds() {
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual.Bounds(), c.Expected.Bounds())
}
}
}
func TestPreprocess(t *testing.T) {
type preprocessCase struct {
TestImage image.Image
ExpectedLen int
}
cases := []preprocessCase{
{
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
ExpectedLen: 16 * 16 * 3 * 1,
},
{
TestImage: image.NewRGBA(image.Rect(0, 0, 2000, 2000)),
ExpectedLen: 1024 * 1024 * 3 * 1,
},
}
for _, c := range cases {
var buf bytes.Buffer
err := png.Encode(&buf, c.TestImage)
if err != nil {
t.Fatal(err)
}
imgData, _, err := Preprocess(&buf)
if err != nil {
t.Fatalf("error processing: %q", err)
}
switch len(imgData) {
case 0:
t.Errorf("no image data returned")
case c.ExpectedLen:
// ok
default:
t.Errorf("unexpected image data length: %d, expected: %d", len(imgData), c.ExpectedLen)
}
}
}
func TestPreprocessImages(t *testing.T) {
for _, testFile := range []string{"flight.png", "sportsball.png"} {
f, err := os.Open(testFile)
if err != nil {
t.Skipf("skipping test, no test image found at %s", testFile)
}
defer f.Close()
imgData, _, err := Preprocess(f)
if err != nil {
t.Fatalf("error processing: %q", err)
}
byteData := make([]byte, len(imgData)*4) // float32 is 4 bytes
for i, f := range imgData {
binary.LittleEndian.PutUint32(byteData[i*4:], math.Float32bits(f))
}
outputPath := "processed_" + testFile + ".bin"
err = os.WriteFile(outputPath, byteData, 0o644)
if err != nil {
t.Fatalf("error writing processed image: %q", err)
}
}
}

View File

@@ -263,10 +263,6 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
continue
}
if id := bpe.vocab.Encode(pair.value); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil

View File

@@ -1,23 +1,29 @@
package model
import (
"container/heap"
"fmt"
"iter"
"log/slog"
"strconv"
"strings"
"github.com/dlclark/regexp2"
queue "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
const spmWhitespaceSep = "▁"
func replaceWhitespaceBySeperator(s string) string {
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
}
type SentencePieceModel struct {
maxTokenLen int
pre *regexp2.Regexp
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePieceModel)(nil)
func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
@@ -38,6 +44,7 @@ func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
return SentencePieceModel{
maxTokenLen: maxTokenLen,
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
}
}
@@ -46,9 +53,20 @@ func (spm SentencePieceModel) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
}
}
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := spm.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
@@ -73,6 +91,7 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
slog.Debug("fragments", "frags", fragments)
var ids []int32
for _, frag := range fragments {
@@ -81,96 +100,105 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
continue
}
text := strings.ReplaceAll(frag.value, " ", spmWhitespaceSep)
for split := range spm.split(frag.value) {
split = replaceWhitespaceBySeperator(split)
if id := spm.vocab.Encode(text); id >= 0 {
ids = append(ids, id)
continue
}
q := &queue{}
heap.Init(q)
runes := []rune(text)
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
score: spm.vocab.Scores[id],
size: len(left) + len(right),
}
}
return nil
}
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
heap.Push(q, pair)
}
}
for q.Len() > 0 {
pair := heap.Pop(q).(*candidate)
left, right := merges[pair.a], merges[pair.b]
if string(left.runes) == "" || string(right.runes) == "" || len(string(left.runes))+len(string(right.runes)) != pair.size {
var sb strings.Builder
sb.Write([]byte(split))
if id := spm.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
runes := []rune(sb.String())
pq := queue.NewWith(func(a, b any) int {
priA := a.(*candidate)
priB := b.(*candidate)
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
return -1
}
return 1
})
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
heap.Push(q, pair)
slog.Debug("tokenizer", "merges", merges)
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
score: spm.vocab.Scores[id],
}
}
return nil
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
heap.Push(q, pair)
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pq.Enqueue(pair)
}
}
}
for _, merge := range merges {
if token := string(merge.runes); token != "" {
id := spm.vocab.Encode(token)
pqv := pq.Values()
for _, v := range pqv {
e := v.(*candidate)
slog.Debug("candidate", "candidate", e)
}
if id >= 0 {
ids = append(ids, id)
for !pq.Empty() {
v, _ := pq.Dequeue()
pair := v.(*candidate)
left, right := merges[pair.a], merges[pair.b]
slog.Debug("pair", "left", left, "right", right)
if len(left.runes) == 0 || len(right.runes) == 0 {
continue
}
// Fallback to byte tokenization
var result []int32
for _, b := range []byte(token) {
byteToken := fmt.Sprintf("<0x%02X>", b)
unknownID := spm.vocab.Encode(byteToken)
if unknownID >= 0 {
result = append(result, unknownID)
} else {
slog.Debug("unknown byte token", "byte", b, "token", byteToken)
}
if id := spm.vocab.Encode(string(left.runes) + string(right.runes)); id < 0 {
continue
}
ids = append(ids, result...)
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pq.Enqueue(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pq.Enqueue(pair)
}
}
slog.Debug("merges", "merges", merges)
for _, merge := range merges {
if len(merge.runes) > 0 {
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
} else {
slog.Debug("missing token", "token", string(merge.runes))
}
}
}
}
}
@@ -201,30 +229,6 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
type candidate struct {
a, b int
score float32
size int
}
type queue []*candidate
func (q queue) Len() int { return len(q) }
func (q queue) Less(i, j int) bool {
return (q[i].score > q[j].score) || (q[i].score == q[j].score && q[i].a < q[j].a)
}
func (q queue) Swap(i, j int) { q[i], q[j] = q[j], q[i] }
func (q *queue) Push(x interface{}) {
item := x.(*candidate)
*q = append(*q, item)
}
func (q *queue) Pop() interface{} {
old := *q
n := len(old)
item := old[n-1]
*q = old[0 : n-1]
return item
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
@@ -232,26 +236,11 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
for _, id := range ids {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
// For tokenizers that use byte tokens like "<0xEA>"
// convert them to the partial unicode character
// so they are buffered correctly by the runner instead
// of being sent back to the api as "<0xEA>"
if len(data) == 6 && strings.HasPrefix(data, "<0x") && strings.HasSuffix(data, ">") {
byteVal, err := strconv.ParseUint(data[1:5], 0, 8)
if err != nil {
return "", fmt.Errorf("failed to parse hex byte: %v", err)
}
if err := sb.WriteByte(byte(byteVal)); err != nil {
return "", err
}
} else {
if _, err := sb.WriteString(data); err != nil {
return "", err
}
if _, err := sb.WriteString(data); err != nil {
return "", err
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -25,6 +25,8 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
t.Fatal(err)
}
preTokenizer := `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`
var v Vocabulary
for _, piece := range spm.GetPieces() {
@@ -45,7 +47,7 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
}
}
return NewSentencePieceModel(&v)
return NewSentencePieceModel(preTokenizer, &v)
}
func TestSentencePieceEncode(t *testing.T) {
@@ -114,59 +116,3 @@ func TestSentencePieceEncode(t *testing.T) {
}
})
}
func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
vocab := &Vocabulary{
Values: []string{
"normal",
"<0xEA>",
"<0x41>",
"<0xC3>",
"<0xA3>",
},
Types: []uint32{
TOKEN_TYPE_NORMAL,
TOKEN_TYPE_BYTE,
TOKEN_TYPE_BYTE,
TOKEN_TYPE_BYTE,
TOKEN_TYPE_BYTE,
},
Scores: []float32{0, 0, 0, 0, 0},
}
spm := NewSentencePieceModel(vocab)
tests := []struct {
name string
ids []int32
expected string
}{
{
name: "single byte token",
ids: []int32{1},
expected: "\xea",
},
{
name: "ASCII byte token",
ids: []int32{2},
expected: "A",
},
{
name: "multiple byte tokens forming UTF-8 character",
ids: []int32{3, 4},
expected: "ã",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := spm.Decode(tt.ids)
if err != nil {
t.Errorf("failed to decode token IDs %v: %v", tt.ids, err)
}
if result != tt.expected {
t.Errorf("got %q, want %q", result, tt.expected)
}
})
}
}

View File

@@ -23,10 +23,10 @@ import (
var finishReasonToolCalls = "tool_calls"
type Error struct {
Message string `json:"message"`
Type string `json:"type"`
Param any `json:"param"`
Code *string `json:"code"`
Message string `json:"message"`
Type string `json:"type"`
Param interface{} `json:"param"`
Code *string `json:"code"`
}
type ErrorResponse struct {
@@ -465,7 +465,7 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
}
options := make(map[string]any)
options := make(map[string]interface{})
switch stop := r.Stop.(type) {
case string:

View File

@@ -219,7 +219,7 @@ func TestChatMiddleware(t *testing.T) {
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]any{
Arguments: map[string]interface{}{
"location": "Paris, France",
"format": "celsius",
},
@@ -281,31 +281,27 @@ func TestChatMiddleware(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},

View File

@@ -11,13 +11,10 @@ import (
"os"
"os/user"
"path/filepath"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"golang.org/x/sync/errgroup"
"golang.org/x/text/encoding/unicode"
"golang.org/x/text/transform"
@@ -147,25 +144,12 @@ func fileDigestMap(path string) (map[string]string, error) {
files = []string{path}
}
var mu sync.Mutex
var g errgroup.Group
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
for _, f := range files {
g.Go(func() error {
digest, err := digestForFile(f)
if err != nil {
return err
}
mu.Lock()
defer mu.Unlock()
fl[f] = digest
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
digest, err := digestForFile(f)
if err != nil {
return nil, err
}
fl[f] = digest
}
return fl, nil
@@ -227,10 +211,16 @@ func filesForModel(path string) ([]string, error) {
}
var files []string
if st, _ := glob(filepath.Join(path, "*.safetensors"), "application/octet-stream"); len(st) > 0 {
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin

View File

@@ -213,16 +213,8 @@ func (c *InputCache) ShiftDiscard(inputLen int, numKeep int) int {
return discard
}
type ErrReprocessInputs struct {
Inputs []input
}
func (e *ErrReprocessInputs) Error() string {
return fmt.Sprintf("kv cache shift not supported, inputs need reprocessing (input count: %v)", len(e.Inputs))
}
// ShiftCacheSlot frees up space in the KV cache by deleting the oldest half of history
// and shifting the newest half into that space (saving numKeep inputs at the beginning).
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
@@ -230,8 +222,7 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
return fmt.Errorf("unable to shift context - keep exceeds context (keep: %v context: %v)", numKeep, c.numCtx)
}
inputLen := len(slot.Inputs)
discard := c.ShiftDiscard(inputLen, numKeep)
discard := c.ShiftDiscard(len(slot.Inputs), numKeep)
if discard <= 0 {
return nil
@@ -240,42 +231,16 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) error {
slog.Debug("context limit hit - shifting", "id", slot.Id, "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
var shiftFailed bool
if c.lc.KvCacheCanShift() {
// For models that support shifting, attempt to shift the KV cache
if !c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard) {
shiftFailed = true
slog.Debug("kv cache removal not supported, clearing cache and returning inputs for reprocessing", "id", slot.Id)
} else {
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, inputLen, -discard)
}
} else {
// For models that don't support shifting
shiftFailed = true
slog.Debug("kv cache cannot shift, clearing cache and returning inputs for reprocessing", "id", slot.Id)
// TODO (jessegross): KV cache removal can fail for certain types of models
if !c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard) {
return fmt.Errorf("unable to remove old kv cache entries (id: %v, keep: %v discard: %v)", slot.Id, numKeep, discard)
}
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
if shiftFailed {
// Create new input slice with preserved tokens (numKeep + remaining tokens after discard)
newInputs := make([]input, numKeep+inputLen-(numKeep+discard))
copy(newInputs[:numKeep], slot.Inputs[:numKeep])
copy(newInputs[numKeep:], slot.Inputs[numKeep+discard:])
// Clear the entire KV cache
_ = c.lc.KvCacheSeqRm(slot.Id, 0, -1)
// Reset the slot inputs since we've cleared the cache
slot.Inputs = []input{}
// Return error with inputs that need to be reprocessed
return &ErrReprocessInputs{Inputs: newInputs}
}
// Standard shift succeeded - update input array
for i := numKeep + discard; i < inputLen; i++ {
for i := numKeep + discard; i < len(slot.Inputs); i++ {
slot.Inputs[i-discard] = slot.Inputs[i]
}
slot.Inputs = slot.Inputs[:inputLen-discard]
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
return nil
}

View File

@@ -83,7 +83,7 @@ type Sequence struct {
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason llm.DoneReason
doneReason string
// Metrics
startProcessingTime time.Time
@@ -301,7 +301,7 @@ func flushPending(seq *Sequence) bool {
}
}
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
@@ -380,7 +380,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, llm.DoneReasonLength)
s.removeSequence(seqIdx, "limit")
continue
}
@@ -389,15 +389,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
var reprocess *ErrReprocessInputs
if errors.As(err, &reprocess) {
// Prepend these inputs to the sequence's inputs queue for reprocessing
seq.inputs = append(reprocess.Inputs, seq.inputs...)
// Continue processing as normal
continue
} else {
return err
}
return err
}
} else {
break
@@ -482,7 +474,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
seq.embedding <- embed
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "")
continue
}
@@ -499,7 +491,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -530,7 +522,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -543,7 +535,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
if !flushPending(seq) {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
s.removeSequence(i, "connection")
}
}
@@ -607,7 +599,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
@@ -619,7 +611,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
@@ -635,7 +626,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
@@ -657,9 +647,14 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: seq.doneReason,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numDecoded,
@@ -696,7 +691,7 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embeddings request due to client closing the connection")
} else {
http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
@@ -708,7 +703,6 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
@@ -721,7 +715,6 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}

View File

@@ -31,10 +31,8 @@ type InputCache struct {
cache kvcache.Cache
}
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
numCtx := kvSize / int32(numSlots)
if numCtx < 1 {
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/int32(numSlots) < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
@@ -46,11 +44,11 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
cache := model.Config().Cache
if cache != nil {
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), numSlots, int(numCtx), batchSize)
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), kvSize)
}
return &InputCache{
numCtx: numCtx,
numCtx: kvSize / int32(numSlots),
enabled: cache != nil,
slots: slots,
multiUserCache: multiUserCache,
@@ -118,10 +116,6 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
}
if c.cache != nil {
if numPast > 0 && !c.cache.CanResume(slot.Id, numPast) {
numPast = 0
}
err = c.cache.Remove(slot.Id, numPast, math.MaxInt32)
if err != nil {
// Some models don't support partial erasure
@@ -229,8 +223,6 @@ func countCommonPrefix(a []input.Input, b []input.Input) int32 {
return count
}
// TODO(jessegross): If we need to reprocess the inputs we should ensure that
// we don't split up a SameBatch
func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
@@ -245,14 +237,6 @@ func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
return discard
}
type ErrReprocessInputs struct {
Inputs []input.Input
}
func (e *ErrReprocessInputs) Error() string {
return fmt.Sprintf("kv cache shift not supported, inputs need reprocessing (input count: %v)", len(e.Inputs))
}
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
@@ -272,23 +256,11 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int32) error {
slog.Debug("context limit hit - shifting", "id", slot.Id, "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
if c.cache != nil {
err := c.cache.Remove(slot.Id, numKeep, numKeep+discard)
if err != nil {
slog.Debug("kv cache removal unsupported, clearing cache and returning inputs for reprocessing",
"id", slot.Id, "error", err)
// Create new input slice with preserved tokens (numKeep + remaining tokens after discard)
newInputs := make([]input.Input, numKeep+inputLen-(numKeep+discard))
copy(newInputs[:numKeep], slot.Inputs[:numKeep])
copy(newInputs[numKeep:], slot.Inputs[numKeep+discard:])
// Reset the cache
_ = c.cache.Remove(slot.Id, 0, -1)
slot.Inputs = []input.Input{}
// Return error with inputs that need to be reprocessed
return &ErrReprocessInputs{Inputs: newInputs}
return fmt.Errorf("unable to remove old kv cache entries (id: %v, keep: %v discard: %v): %w", slot.Id, numKeep, discard, err)
}
}

View File

@@ -1,13 +1,10 @@
package ollamarunner
import (
"errors"
"fmt"
"image"
"testing"
"time"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
@@ -428,92 +425,3 @@ func TestLoadCacheSlot(t *testing.T) {
})
}
}
// Mock implementation of the Cache interface
type mockCache struct {
shouldFail bool
}
// Implement only the methods needed for the test
func (m *mockCache) Remove(seq int, beginIndex, endIndex int32) error {
if m.shouldFail {
return fmt.Errorf("mock cache removal error")
}
return nil
}
// Stub implementations for other interface methods
func (m *mockCache) SetLayer(layer int) {}
func (m *mockCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) { return nil, nil, nil }
func (m *mockCache) Put(ctx ml.Context, key, value ml.Tensor) {}
func (m *mockCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {}
func (m *mockCache) Close() {}
func (m *mockCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error { return nil }
func (m *mockCache) CopyPrefix(srcSeq, dstSeq int, len int32) {}
func (m *mockCache) SetConfig(ml.CacheConfig) {}
func (m *mockCache) CanResume(seq int, pos int32) bool { return true }
func TestShiftCacheSlot(t *testing.T) {
tests := []struct {
name string
numCtx int32
inputs []input.Input
numKeep int32
cacheErr bool
wantErr any
wantInputsLen int
}{
{
name: "Normal shift",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: false, // No error
wantErr: nil,
wantInputsLen: 6, // After discarding 4 tokens
},
{
name: "Cache removal fails",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: true,
wantErr: &ErrReprocessInputs{},
wantInputsLen: 0, // Original inputs should be cleared
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mock := &mockCache{shouldFail: tt.cacheErr}
c := InputCache{
numCtx: tt.numCtx,
cache: mock,
}
slot := &InputCacheSlot{
Id: 123,
Inputs: make([]input.Input, len(tt.inputs)),
}
copy(slot.Inputs, tt.inputs)
err := c.ShiftCacheSlot(slot, tt.numKeep)
if tt.wantErr != nil {
if err == nil {
t.Errorf("Expected error but got nil")
return
}
if !errors.As(err, &tt.wantErr) {
t.Errorf("Expected error of type %T but got %T: %v", tt.wantErr, err, err)
}
} else if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(slot.Inputs) != tt.wantInputsLen {
t.Errorf("Slot inputs length after operation: got %v, want %v", len(slot.Inputs), tt.wantInputsLen)
}
})
}
}

View File

@@ -82,7 +82,7 @@ type Sequence struct {
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason llm.DoneReason
doneReason string
// Metrics
startProcessingTime time.Time
@@ -115,41 +115,16 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
params.numKeep = int32(len(inputs))
}
// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
// otherwise we might truncate or split the batch against the model's wishes
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
if int32(len(inputs)) > s.cache.numCtx {
discard := int32(len(inputs)) - s.cache.numCtx
promptStart := params.numKeep + discard
// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
sameBatch := 0
for i, inp := range inputs {
if sameBatch > 0 {
sameBatch--
if promptStart == int32(i) {
promptStart++
}
} else if promptStart == int32(i) {
break
}
if inp.SameBatch != 0 {
if int32(i) < params.numKeep {
return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
}
sameBatch = inp.SameBatch
}
}
if promptStart >= int32(len(inputs)) {
return nil, errors.New("entire prompt removed by truncation")
}
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[promptStart:]...)
newInputs = append(newInputs, inputs[params.numKeep+discard:]...)
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
inputs = newInputs
@@ -292,9 +267,6 @@ type Server struct {
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
// multimodalHash generates hashes for comparing equality
// of non-text data
multimodalHash maphash.Hash
@@ -341,7 +313,7 @@ func flushPending(seq *Sequence) bool {
}
}
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
@@ -376,22 +348,16 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var batchInputs []int32
var batch input.Batch
resumeSeq := -1
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
var options input.Options
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, llm.DoneReasonLength)
s.removeSequence(i, "limit")
continue
}
@@ -402,23 +368,16 @@ func (s *Server) processBatch() error {
batchSize := s.batchSize
for i, inp := range seq.inputs {
for j, inp := range seq.inputs {
// If we are required to put following inputs into a single batch then extend the
// batch size. Since we are only extending the size the minimum amount possible, this
// will cause a break if we have existing inputs.
// will cause a break if we have pending inputs.
minBatch := 1 + inp.SameBatch
if minBatch > batchSize {
batchSize = minBatch
}
// Stop if the required batch would put us over the total batch size (including tokens
// added by other sequences). If we haven't been able to add anything yet then pick up
// here again for the next batch to avoid starvation, though we can opportunistically
// check if other sequences can still squeeze something in.
if len(batchInputs)+minBatch > batchSize {
if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
resumeSeq = seqIdx
}
if len(seq.pendingInputs)+minBatch > batchSize {
break
}
@@ -432,29 +391,21 @@ func (s *Server) processBatch() error {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
var reprocess *ErrReprocessInputs
if errors.As(err, &reprocess) {
// Prepend these inputs to the sequence's inputs queue for reprocessing
seq.inputs = append(reprocess.Inputs, seq.inputs...)
// Skip this sequence but continue processing the rest
continue
} else {
return err
}
return err
}
}
batchInputs = append(batchInputs, inp.Token)
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
}
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
batch.Sequences = append(batch.Sequences, seq.cache.Id)
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(batch.Outputs)
if i+1 == len(seq.inputs) {
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
seq.iBatch = len(options.Outputs)
if j+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, inp)
}
@@ -462,20 +413,14 @@ func (s *Server) processBatch() error {
seq.inputs = seq.inputs[len(seq.pendingInputs):]
}
if resumeSeq != -1 {
s.nextSeq = resumeSeq
} else {
s.nextSeq = seqIdx + 1
}
if len(batchInputs) == 0 {
if len(options.Inputs) == 0 {
return nil
}
ctx := s.model.Backend().NewContext()
defer ctx.Close()
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
modelOutput, err := model.Forward(ctx, s.model, options)
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
}
@@ -510,12 +455,12 @@ func (s *Server) processBatch() error {
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported")
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "")
continue
}
// sample a token
vocabSize := len(logits) / len(batch.Outputs)
vocabSize := len(logits) / len(options.Outputs)
token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
if err != nil {
@@ -528,7 +473,7 @@ func (s *Server) processBatch() error {
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -564,7 +509,7 @@ func (s *Server) processBatch() error {
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -577,7 +522,7 @@ func (s *Server) processBatch() error {
}
if !flushPending(seq) {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
s.removeSequence(i, "connection")
}
}
@@ -642,7 +587,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
slog.Error("Failed to acquire semaphore", "error", err)
}
return
}
@@ -654,7 +599,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
@@ -668,7 +612,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
@@ -690,9 +633,14 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: seq.doneReason,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numPredicted,
@@ -728,53 +676,7 @@ func (m *multiLPath) String() string {
return strings.Join(*m, ", ")
}
func (s *Server) reserveWorstCaseGraph() error {
ctx := s.model.Backend().NewContext()
defer ctx.Close()
var batch input.Batch
inputs := make([]int32, s.batchSize)
batch.Positions = make([]int32, len(inputs))
batch.Sequences = make([]int, len(inputs))
for i := range inputs {
batch.Positions[i] = int32(i)
}
batch.Outputs = make([]int32, s.parallel)
for i := range batch.Outputs {
batch.Outputs[i] = int32(i)
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return err
}
cache := s.model.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, true)
if err != nil {
return err
}
}
t, err := s.model.Forward(ctx, batch)
if err != nil {
return err
}
err = ctx.Forward(t).Reserve()
if err != nil {
return err
}
return nil
}
func (s *Server) loadModel(
ctx context.Context,
mpath string,
params ml.BackendParams,
lpath multiLPath,
@@ -784,7 +686,7 @@ func (s *Server) loadModel(
multiUserCache bool,
) {
var err error
s.model, err = model.New(ctx, mpath, params)
s.model, err = model.New(mpath, params)
if err != nil {
panic(err)
}
@@ -796,7 +698,7 @@ func (s *Server) loadModel(
panic("loras are not yet implemented")
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
if err != nil {
panic(err)
}
@@ -810,11 +712,6 @@ func (s *Server) loadModel(
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
err = s.reserveWorstCaseGraph()
if err != nil {
panic(err)
}
s.status = llm.ServerStatusReady
s.ready.Done()
}
@@ -885,9 +782,6 @@ func Execute(args []string) error {
}
params := ml.BackendParams{
Progress: func(progress float32) {
server.progress = progress
},
NumThreads: *threads,
NumGPULayers: *numGPULayers,
MainGPU: *mainGPU,
@@ -896,13 +790,13 @@ func Execute(args []string) error {
}
server.ready.Add(1)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
go server.loadModel(*mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)

View File

@@ -26,10 +26,6 @@ type Sampler struct {
}
func (s *Sampler) Sample(logits []float32) (int32, error) {
if len(logits) == 0 {
return -1, errors.New("sample: no logits provided to sample")
}
tokens := make([]token, len(logits))
for i := range logits {
tokens[i].id = int32(i)
@@ -98,6 +94,13 @@ func (s *Sampler) sample(tokens []token) (token, error) {
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var r float32
if s.rng != nil {
r = s.rng.Float32()
@@ -120,9 +123,6 @@ func (s *Sampler) sample(tokens []token) (token, error) {
return 1
})
if math.IsNaN(float64(sum)) {
return token{}, errors.New("sample: logits sum to NaN, check model output")
}
return tokens[idx], nil
}

View File

@@ -1,7 +1,6 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
)
@@ -30,29 +29,6 @@ func TestWeighted(t *testing.T) {
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
// Test very high p
logits = []float32{1.0, 0.9999999999999999, 0.5, 0.1}
// Use extremely small topP to filter out all tokens
sampler = NewSampler(1.0, 0, 1e-10, 0, 0, nil)
got, err = sampler.Sample(logits)
if err != nil {
t.Error(err)
return
}
// Should get the token with the highest logit
want = int32(0)
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
logits = []float32{float32(math.NaN()), float32(math.NaN()), float32(math.NaN())}
sampler = NewSampler(1, 0, 0.95, 0.05, 0, nil)
got, err = sampler.Sample(logits)
if err == nil {
t.Errorf("expected error, got %d", got)
return
}
}
func BenchmarkSample(b *testing.B) {

View File

@@ -168,53 +168,27 @@ func TestTopP(t *testing.T) {
softmax(tokens)
tokens = topK(tokens, 20)
// Test with very high p value
got := topP(tokens, 1.0)
// Then apply topP
tokens = topP(tokens, 0.95)
// Should keep all tokens since p is 1
if len(got) != len(input) {
t.Errorf("topP(1.0): should keep all tokens, got %d, want %d", len(got), len(input))
}
// Test with normal p value
got = topP(tokens, 0.95)
if len(got) > 3 {
// Should keep tokens until cumsum > 0.95
if len(tokens) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", got)
t.Logf("got: %v", tokens)
}
// Test edge case - ensure at least one token remains
input = []float32{-1e6, -1e6, -1e7}
input = []float32{-1e6, -1e6, -1e6} // One dominant token
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 0.0)
if len(got) < 1 {
tokens = topP(tokens, 0.0) // Very small p
if len(tokens) < 1 {
t.Error("topP should keep at least one token")
}
// Test with zero p value
got = topP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != 1 {
t.Errorf("topP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
}
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 1e-10)
if len(got) == 0 {
t.Errorf("topP(1e-10): should keep at least one token, got %d", len(got))
t.Logf("got: %v", got)
}
}
func TestMinP(t *testing.T) {
input := []float32{-2, 0, -1, -3, 2, 1, 4, 3}
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
@@ -251,48 +225,30 @@ func TestMinP(t *testing.T) {
t.Logf("got: %v", tokens)
}
// Test with single token
tokens = toTokens(input[:1])
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.1)
// Should keep only the highest probability token
if len(tokens) != 1 {
t.Errorf("minP(0.1): should return single token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
input = []float32{1e-10, 1e-10, 1e-10}
tokens = toTokens(input)
softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) < 1 {
t.Error("minP should keep at least one token even with extreme probabilities")
got := minP(tokens, 1.0)
}
}
if len(got) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(got), len(tokens))
}
func TestSortLogits(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
// Test with normal p value
got = minP(tokens, 0.2)
tokens = topK(tokens, 20)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
// Test with zero p value
got = minP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != len(tokens) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
}
}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {

View File

@@ -29,9 +29,8 @@ import (
const maxRetries = 6
var (
errMaxRetriesExceeded = errors.New("max retries exceeded")
errPartStalled = errors.New("part stalled")
errMaxRedirectsExceeded = errors.New("maximum redirects exceeded (10) for directURL")
errMaxRetriesExceeded = errors.New("max retries exceeded")
errPartStalled = errors.New("part stalled")
)
var blobDownloadManager sync.Map
@@ -237,7 +236,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
newOpts.CheckRedirect = func(req *http.Request, via []*http.Request) error {
if len(via) > 10 {
return errMaxRedirectsExceeded
return errors.New("maximum redirects exceeded (10) for directURL")
}
// if the hostname is the same, allow the redirect

View File

@@ -35,9 +35,14 @@ var (
errCapabilityCompletion = errors.New("completion")
errCapabilityTools = errors.New("tools")
errCapabilityInsert = errors.New("insert")
errCapabilityVision = errors.New("vision")
errCapabilityEmbedding = errors.New("embedding")
errInsecureProtocol = errors.New("insecure protocol http")
)
type Capability string
const (
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
)
type registryOptions struct {
@@ -60,83 +65,52 @@ type Model struct {
System string
License []string
Digest string
Options map[string]any
Options map[string]interface{}
Messages []api.Message
Template *template.Template
}
// Capabilities returns the capabilities that the model supports
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for completion capability
r, err := os.Open(m.ModelPath)
if err == nil {
defer r.Close()
f, _, err := ggml.Decode(r, 0)
if err == nil {
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
capabilities = append(capabilities, model.CapabilityCompletion)
}
if _, ok := f.KV()[fmt.Sprintf("%s.vision.block_count", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityVision)
}
} else {
slog.Error("couldn't decode ggml", "error", err)
}
} else {
slog.Error("couldn't open model file", "error", err)
}
if m.Template == nil {
return capabilities
}
// Check for tools capability
if slices.Contains(m.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
// Check for insert capability
if slices.Contains(m.Template.Vars(), "suffix") {
capabilities = append(capabilities, model.CapabilityInsert)
}
return capabilities
}
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
// any missing or unknown capabilities
func (m *Model) CheckCapabilities(want ...model.Capability) error {
available := m.Capabilities()
func (m *Model) CheckCapabilities(caps ...Capability) error {
var errs []error
for _, cap := range caps {
switch cap {
case CapabilityCompletion:
r, err := os.Open(m.ModelPath)
if err != nil {
slog.Error("couldn't open model file", "error", err)
continue
}
defer r.Close()
// Map capabilities to their corresponding error
capToErr := map[model.Capability]error{
model.CapabilityCompletion: errCapabilityCompletion,
model.CapabilityTools: errCapabilityTools,
model.CapabilityInsert: errCapabilityInsert,
model.CapabilityVision: errCapabilityVision,
model.CapabilityEmbedding: errCapabilityEmbedding,
}
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
f, _, err := ggml.Decode(r, 0)
if err != nil {
slog.Error("couldn't decode ggml", "error", err)
continue
}
for _, cap := range want {
err, ok := capToErr[cap]
if !ok {
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
errs = append(errs, errCapabilityCompletion)
}
case CapabilityTools:
if !slices.Contains(m.Template.Vars(), "tools") {
errs = append(errs, errCapabilityTools)
}
case CapabilityInsert:
vars := m.Template.Vars()
if !slices.Contains(vars, "suffix") {
errs = append(errs, errCapabilityInsert)
}
default:
slog.Error("unknown capability", "capability", cap)
return fmt.Errorf("unknown capability: %s", cap)
}
if !slices.Contains(available, cap) {
errs = append(errs, err)
}
}
if len(errs) > 0 {
if err := errors.Join(errs...); err != nil {
return fmt.Errorf("%w %w", errCapabilities, errors.Join(errs...))
}
@@ -505,7 +479,7 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
fn(api.ProgressResponse{Status: "retrieving manifest"})
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errInsecureProtocol
return errors.New("insecure protocol http")
}
manifest, _, err := GetManifest(mp)
@@ -569,7 +543,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errInsecureProtocol
return errors.New("insecure protocol http")
}
fn(api.ProgressResponse{Status: "pulling manifest"})

View File

@@ -1,360 +0,0 @@
package server
import (
"bytes"
"encoding/binary"
"os"
"path/filepath"
"strings"
"testing"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
// Constants for GGUF magic bytes and version
var (
ggufMagic = []byte{0x47, 0x47, 0x55, 0x46} // "GGUF"
ggufVer = uint32(3) // Version 3
)
// Helper function to create mock GGUF data
func createMockGGUFData(architecture string, vision bool) []byte {
var buf bytes.Buffer
// Write GGUF header
buf.Write(ggufMagic)
binary.Write(&buf, binary.LittleEndian, ggufVer)
// Write tensor count (0 for our test)
var numTensors uint64 = 0
binary.Write(&buf, binary.LittleEndian, numTensors)
// Calculate number of metadata entries
numMetaEntries := uint64(1) // architecture entry
if vision {
numMetaEntries++
}
// Add embedding entry if architecture is "bert"
if architecture == "bert" {
numMetaEntries++
}
binary.Write(&buf, binary.LittleEndian, numMetaEntries)
// Write architecture metadata
archKey := "general.architecture"
keyLen := uint64(len(archKey))
binary.Write(&buf, binary.LittleEndian, keyLen)
buf.WriteString(archKey)
// String type (8)
var strType uint32 = 8
binary.Write(&buf, binary.LittleEndian, strType)
// String length
strLen := uint64(len(architecture))
binary.Write(&buf, binary.LittleEndian, strLen)
buf.WriteString(architecture)
if vision {
visionKey := architecture + ".vision.block_count"
keyLen = uint64(len(visionKey))
binary.Write(&buf, binary.LittleEndian, keyLen)
buf.WriteString(visionKey)
// uint32 type (4)
var uint32Type uint32 = 4
binary.Write(&buf, binary.LittleEndian, uint32Type)
// uint32 value (1)
var countVal uint32 = 1
binary.Write(&buf, binary.LittleEndian, countVal)
}
// Write embedding metadata if architecture is "bert"
if architecture == "bert" {
poolKey := architecture + ".pooling_type"
keyLen = uint64(len(poolKey))
binary.Write(&buf, binary.LittleEndian, keyLen)
buf.WriteString(poolKey)
// uint32 type (4)
var uint32Type uint32 = 4
binary.Write(&buf, binary.LittleEndian, uint32Type)
// uint32 value (1)
var poolingVal uint32 = 1
binary.Write(&buf, binary.LittleEndian, poolingVal)
}
return buf.Bytes()
}
func TestModelCapabilities(t *testing.T) {
// Create a temporary directory for test files
tempDir, err := os.MkdirTemp("", "model_capabilities_test")
if err != nil {
t.Fatalf("Failed to create temp directory: %v", err)
}
defer os.RemoveAll(tempDir)
// Create different types of mock model files
completionModelPath := filepath.Join(tempDir, "model.bin")
visionModelPath := filepath.Join(tempDir, "vision_model.bin")
embeddingModelPath := filepath.Join(tempDir, "embedding_model.bin")
// Create a simple model file for tests that don't depend on GGUF content
simpleModelPath := filepath.Join(tempDir, "simple_model.bin")
err = os.WriteFile(completionModelPath, createMockGGUFData("llama", false), 0o644)
if err != nil {
t.Fatalf("Failed to create completion model file: %v", err)
}
err = os.WriteFile(visionModelPath, createMockGGUFData("llama", true), 0o644)
if err != nil {
t.Fatalf("Failed to create completion model file: %v", err)
}
err = os.WriteFile(embeddingModelPath, createMockGGUFData("bert", false), 0o644)
if err != nil {
t.Fatalf("Failed to create embedding model file: %v", err)
}
err = os.WriteFile(simpleModelPath, []byte("dummy model data"), 0o644)
if err != nil {
t.Fatalf("Failed to create simple model file: %v", err)
}
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
testModels := []struct {
name string
model Model
expectedCaps []model.Capability
}{
{
name: "model with completion capability",
model: Model{
ModelPath: completionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion},
},
{
name: "model with completion, tools, and insert capability",
model: Model{
ModelPath: completionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools and insert capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsTemplate,
},
expectedCaps: []model.Capability{model.CapabilityTools},
},
{
name: "model with vision capability",
model: Model{
ModelPath: visionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision, tools, and insert capability",
model: Model{
ModelPath: visionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with embedding capability",
model: Model{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityEmbedding},
},
}
// compare two slices of model.Capability regardless of order
compareCapabilities := func(a, b []model.Capability) bool {
if len(a) != len(b) {
return false
}
aCount := make(map[model.Capability]int)
for _, cap := range a {
aCount[cap]++
}
bCount := make(map[model.Capability]int)
for _, cap := range b {
bCount[cap]++
}
for cap, count := range aCount {
if bCount[cap] != count {
return false
}
}
return true
}
for _, tt := range testModels {
t.Run(tt.name, func(t *testing.T) {
// Test Capabilities method
caps := tt.model.Capabilities()
if !compareCapabilities(caps, tt.expectedCaps) {
t.Errorf("Expected capabilities %v, got %v", tt.expectedCaps, caps)
}
})
}
}
func TestModelCheckCapabilities(t *testing.T) {
// Create a temporary directory for test files
tempDir, err := os.MkdirTemp("", "model_check_capabilities_test")
if err != nil {
t.Fatalf("Failed to create temp directory: %v", err)
}
defer os.RemoveAll(tempDir)
visionModelPath := filepath.Join(tempDir, "vision_model.bin")
simpleModelPath := filepath.Join(tempDir, "model.bin")
embeddingModelPath := filepath.Join(tempDir, "embedding_model.bin")
err = os.WriteFile(simpleModelPath, []byte("dummy model data"), 0o644)
if err != nil {
t.Fatalf("Failed to create simple model file: %v", err)
}
err = os.WriteFile(visionModelPath, createMockGGUFData("llama", true), 0o644)
if err != nil {
t.Fatalf("Failed to create vision model file: %v", err)
}
err = os.WriteFile(embeddingModelPath, createMockGGUFData("bert", false), 0o644)
if err != nil {
t.Fatalf("Failed to create embedding model file: %v", err)
}
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
tests := []struct {
name string
model Model
checkCaps []model.Capability
expectedErrMsg string
}{
{
name: "completion model without tools capability",
model: Model{
ModelPath: simpleModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityTools},
expectedErrMsg: "does not support tools",
},
{
name: "model with all needed capabilities",
model: Model{
ModelPath: simpleModelPath,
Template: toolsInsertTemplate,
},
checkCaps: []model.Capability{model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model missing insert capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsTemplate,
},
checkCaps: []model.Capability{model.CapabilityInsert},
expectedErrMsg: "does not support insert",
},
{
name: "model missing vision capability",
model: Model{
ModelPath: simpleModelPath,
Template: toolsTemplate,
},
checkCaps: []model.Capability{model.CapabilityVision},
expectedErrMsg: "does not support vision",
},
{
name: "model with vision capability",
model: Model{
ModelPath: visionModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityVision},
},
{
name: "model with embedding capability",
model: Model{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityEmbedding},
},
{
name: "unknown capability",
model: Model{
ModelPath: simpleModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{"unknown"},
expectedErrMsg: "unknown capability",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Test CheckCapabilities method
err := tt.model.CheckCapabilities(tt.checkCaps...)
if tt.expectedErrMsg == "" {
if err != nil {
t.Errorf("Expected no error, got: %v", err)
}
} else {
if err == nil {
t.Errorf("Expected error containing %q, got nil", tt.expectedErrMsg)
} else if !strings.Contains(err.Error(), tt.expectedErrMsg) {
t.Errorf("Expected error containing %q, got: %v", tt.expectedErrMsg, err)
}
}
})
}
}

View File

@@ -37,6 +37,7 @@ import (
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/internal/backoff"
"github.com/ollama/ollama/server/internal/internal/names"
_ "embed"
@@ -59,11 +60,6 @@ var (
// ErrCached is passed to [Trace.PushUpdate] when a layer already
// exists. It is a non-fatal error and is never returned by [Registry.Push].
ErrCached = errors.New("cached")
// ErrIncomplete is returned by [Registry.Pull] when a model pull was
// incomplete due to one or more layer download failures. Users that
// want specific errors should use [WithTrace].
ErrIncomplete = errors.New("incomplete")
)
// Defaults
@@ -217,6 +213,12 @@ type Registry struct {
// request. If zero, [DefaultChunkingThreshold] is used.
ChunkingThreshold int64
// MaxChunkSize is the maximum size of a chunk to download. If zero,
// the default is [DefaultMaxChunkSize].
//
// It is only used when a layer is larger than [MaxChunkingThreshold].
MaxChunkSize int64
// Mask, if set, is the name used to convert non-fully qualified names
// to fully qualified names. If empty, [DefaultMask] is used.
Mask string
@@ -276,19 +278,8 @@ func DefaultRegistry() (*Registry, error) {
func UserAgent() string {
buildinfo, _ := debug.ReadBuildInfo()
version := buildinfo.Main.Version
if version == "(devel)" {
// When using `go run .` the version is "(devel)". This is seen
// as an invalid version by ollama.com and so it defaults to
// "needs upgrade" for some requests, such as pulls. These
// checks can be skipped by using the special version "v0.0.0",
// so we set it to that here.
version = "v0.0.0"
}
return fmt.Sprintf("ollama/%s (%s %s) Go/%s",
version,
buildinfo.Main.Version,
runtime.GOARCH,
runtime.GOOS,
runtime.Version(),
@@ -421,19 +412,26 @@ func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
return err
}
func canRetry(err error) bool {
var re *Error
if !errors.As(err, &re) {
return false
}
return re.Status >= 500
}
// trackingReader is an io.Reader that tracks the number of bytes read and
// calls the update function with the layer, the number of bytes read.
//
// It always calls update with a nil error.
type trackingReader struct {
l *Layer
r io.Reader
update func(l *Layer, n int64, err error)
r io.Reader
n *atomic.Int64
}
func (r *trackingReader) Read(p []byte) (n int, err error) {
n, err = r.r.Read(p)
r.update(r.l, int64(n), nil)
r.n.Add(int64(n))
return
}
@@ -449,11 +447,6 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
if err != nil {
return err
}
// TODO(bmizerany): decide if this should be considered valid. Maybe
// server-side we special case '{}' to have some special meaning? Maybe
// "archiving" a tag (which is how we reason about it in the registry
// already, just with a different twist).
if len(m.Layers) == 0 {
return fmt.Errorf("%w: no layers", ErrManifestInvalid)
}
@@ -463,7 +456,11 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
return err
}
// TODO(bmizerany): work to remove the need to do this
exists := func(l *Layer) bool {
info, err := c.Get(l.Digest)
return err == nil && info.Size == l.Size
}
layers := m.Layers
if m.Config != nil && m.Config.Digest.IsValid() {
layers = append(layers, m.Config)
@@ -471,124 +468,99 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
// Send initial layer trace events to allow clients to have an
// understanding of work to be done before work starts.
var expected int64
t := traceFromContext(ctx)
for _, l := range layers {
skip := make([]bool, len(layers))
for i, l := range layers {
t.update(l, 0, nil)
expected += l.Size
if exists(l) {
skip[i] = true
t.update(l, l.Size, ErrCached)
}
}
var received atomic.Int64
var g errgroup.Group
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(r.maxStreams())
for _, l := range layers {
info, err := c.Get(l.Digest)
if err == nil && info.Size == l.Size {
received.Add(l.Size)
t.update(l, l.Size, ErrCached)
for i, l := range layers {
if skip[i] {
continue
}
var wg sync.WaitGroup
chunked, err := c.Chunked(l.Digest, l.Size)
if err != nil {
t.update(l, 0, err)
continue
}
defer chunked.Close()
var progress atomic.Int64
for cs, err := range r.chunksums(ctx, name, l) {
if err != nil {
// Chunksum stream interrupted. Note in trace
// log and let in-flight downloads complete.
// This will naturally trigger ErrIncomplete
// since received < expected bytes.
t.update(l, 0, err)
t.update(l, progress.Load(), err)
break
}
cacheKey := fmt.Sprintf(
"v1 pull chunksum %s %s %d-%d",
l.Digest,
cs.Digest,
cs.Chunk.Start,
cs.Chunk.End,
)
cacheKeyDigest := blob.DigestFromBytes(cacheKey)
_, err := c.Get(cacheKeyDigest)
if err == nil {
received.Add(cs.Chunk.Size())
t.update(l, cs.Chunk.Size(), ErrCached)
continue
}
wg.Add(1)
g.Go(func() (err error) {
defer func() {
if err == nil {
// Ignore cache key write errors for now. We've already
// reported to trace that the chunk is complete.
//
// Ideally, we should only report completion to trace
// after successful cache commit. This current approach
// works but could trigger unnecessary redownloads if
// the checkpoint key is missing on next pull.
//
// Not incorrect, just suboptimal - fix this in a
// future update.
_ = blob.PutBytes(c, cacheKeyDigest, cacheKey)
defer func() { t.update(l, progress.Load(), err) }()
received.Add(cs.Chunk.Size())
} else {
t.update(l, 0, err)
for _, err := range backoff.Loop(ctx, 3*time.Second) {
if err != nil {
return err
}
wg.Done()
}()
err := func() error {
req, err := http.NewRequestWithContext(ctx, "GET", cs.URL, nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", cs.Chunk.Start, cs.Chunk.End))
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
req, err := http.NewRequestWithContext(ctx, "GET", cs.URL, nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", cs.Chunk.Start, cs.Chunk.End))
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
// Count bytes towards
// progress, as they arrive, so
// that our bytes piggyback
// other chunk updates on
// completion.
//
// This tactic is enough to
// show "smooth" progress given
// the current CLI client. In
// the near future, the server
// should report download rate
// since it knows better than
// a client that is measuring
// rate based on wall-clock
// time-since-last-update.
body := &trackingReader{r: res.Body, n: &progress}
body := &trackingReader{l: l, r: res.Body, update: t.update}
return chunked.Put(cs.Chunk, cs.Digest, body)
err = chunked.Put(cs.Chunk, cs.Digest, body)
if err != nil {
return err
}
return nil
}()
if !canRetry(err) {
return err
}
}
return nil
})
}
// Close writer immediately after downloads finish, not at Pull
// exit. Using defer would keep file descriptors open until all
// layers complete, potentially exhausting system limits with
// many layers.
//
// The WaitGroup tracks when all chunks finish downloading,
// allowing precise writer closure in a background goroutine.
// Each layer briefly uses one extra goroutine while at most
// maxStreams()-1 chunks download in parallel.
//
// This caps file descriptors at maxStreams() instead of
// growing with layer count.
g.Go(func() error {
wg.Wait()
chunked.Close()
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
if received.Load() != expected {
return fmt.Errorf("%w: received %d/%d bytes", ErrIncomplete, received.Load(), expected)
}
// store the manifest blob
md := blob.DigestFromBytes(m.Data)
if err := blob.PutBytes(c, md, m.Data); err != nil {
return err
}
// commit the manifest with a link
return c.Link(m.Name, md)
}
@@ -627,30 +599,6 @@ func (m *Manifest) Layer(d blob.Digest) *Layer {
return nil
}
func (m *Manifest) All() iter.Seq[*Layer] {
return func(yield func(*Layer) bool) {
if !yield(m.Config) {
return
}
for _, l := range m.Layers {
if !yield(l) {
return
}
}
}
}
func (m *Manifest) Size() int64 {
var size int64
if m.Config != nil {
size += m.Config.Size
}
for _, l := range m.Layers {
size += l.Size
}
return size
}
// MarshalJSON implements json.Marshaler.
//
// NOTE: It adds an empty config object to the manifest, which is required by
@@ -793,32 +741,20 @@ func (r *Registry) chunksums(ctx context.Context, name string, l *Layer) iter.Se
return
}
// The response is a sequence of chunksums.
// A chunksums response is a sequence of chunksums in a
// simple, easy to parse line-oriented format.
//
// Chunksums are chunks of a larger blob that can be
// downloaded and verified independently.
// Example:
//
// The chunksums endpoint is a GET request that returns a
// sequence of chunksums in the following format:
// >> GET /v2/<namespace>/<model>/chunksums/<digest>
//
// > GET /v2/<namespace>/<model>/chunksums/<digest>
// << HTTP/1.1 200 OK
// << Content-Location: <blobURL>
// <<
// << <digest> <start>-<end>
// << ...
//
// < HTTP/1.1 200 OK
// < Content-Location: <blobURL>
// <
// < <digest> <start>-<end>
// < ...
//
// The <blobURL> is the URL to download the chunks from and
// each <digest> is the digest of the chunk, and <start>-<end>
// is the range the chunk in the blob.
//
// Ranges may be used directly in Range headers like
// "bytes=<start>-<end>".
//
// The chunksums returned are guaranteed to be contiguous and
// include all bytes of the layer. If the stream is cut short,
// clients should retry.
// The blobURL is the URL to download the chunks from.
chunksumsURL := fmt.Sprintf("%s://%s/v2/%s/%s/chunksums/%s",
scheme,

View File

@@ -9,41 +9,21 @@ import (
"fmt"
"io"
"io/fs"
"net"
"math/rand/v2"
"net/http"
"net/http/httptest"
"os"
"path"
"reflect"
"slices"
"strings"
"sync/atomic"
"testing"
"time"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/testutil"
)
func ExampleRegistry_cancelOnFirstError() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
ctx = WithTrace(ctx, &Trace{
Update: func(l *Layer, n int64, err error) {
if err != nil {
// Discontinue pulling layers if there is an
// error instead of continuing to pull more
// data.
cancel()
}
},
})
var r Registry
if err := r.Pull(ctx, "model"); err != nil {
// panic for demo purposes
panic(err)
}
}
func TestManifestMarshalJSON(t *testing.T) {
// All manifests should contain an "empty" config object.
var m Manifest
@@ -76,21 +56,21 @@ func (rr recordRoundTripper) RoundTrip(req *http.Request) (*http.Response, error
// newClient constructs a cache with predefined manifests for testing. The manifests are:
//
// empty: no data
// zero: no layers
// single: one layer with the contents "exists"
// multiple: two layers with the contents "exists" and "here"
// notfound: a layer that does not exist in the cache
// null: one null layer (e.g. [null])
// sizemismatch: one valid layer, and one with a size mismatch (file size is less than the reported size)
// invalid: a layer with invalid JSON data
// empty: no data
// zero: no layers
// single: one layer with the contents "exists"
// multiple: two layers with the contents "exists" and "here"
// notfound: a layer that does not exist in the cache
// null: one null layer (e.g. [null])
// sizemismatch: one valid layer, and one with a size mismatch (file size is less than the reported size)
// invalid: a layer with invalid JSON data
//
// Tests that want to ensure the client does not communicate with the upstream
// registry should pass a nil handler, which will cause a panic if
// communication is attempted.
//
// To simulate a network error, pass a handler that returns a 499 status code.
func newClient(t *testing.T, upstreamRegistry http.HandlerFunc) (*Registry, *blob.DiskCache) {
func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
t.Helper()
c, err := blob.Open(t.TempDir())
@@ -108,7 +88,7 @@ func newClient(t *testing.T, upstreamRegistry http.HandlerFunc) (*Registry, *blo
r := &Registry{
Cache: c,
HTTPClient: &http.Client{
Transport: recordRoundTripper(upstreamRegistry),
Transport: recordRoundTripper(h),
},
}
@@ -335,8 +315,15 @@ func TestPushCommitRoundtripError(t *testing.T) {
}
}
func checkNotExist(t *testing.T, err error) {
t.Helper()
if !errors.Is(err, fs.ErrNotExist) {
t.Fatalf("err = %v; want fs.ErrNotExist", err)
}
}
func TestRegistryPullInvalidName(t *testing.T) {
rc, _ := newRegistryClient(t, nil)
rc, _ := newClient(t, nil)
err := rc.Pull(t.Context(), "://")
if !errors.Is(err, ErrNameInvalid) {
t.Errorf("err = %v; want %v", err, ErrNameInvalid)
@@ -352,16 +339,197 @@ func TestRegistryPullInvalidManifest(t *testing.T) {
}
for _, resp := range cases {
rc, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, resp)
})
err := rc.Pull(t.Context(), "http://example.com/a/b")
err := rc.Pull(t.Context(), "x")
if !errors.Is(err, ErrManifestInvalid) {
t.Errorf("err = %v; want invalid manifest", err)
}
}
}
func TestRegistryPullNotCached(t *testing.T) {
check := testutil.Checker(t)
var c *blob.DiskCache
var rc *Registry
d := blob.DigestFromBytes("some data")
rc, c = newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
io.WriteString(w, "some data")
return
}
fmt.Fprintf(w, `{"layers":[{"digest":%q,"size":9}]}`, d)
})
// Confirm that the layer does not exist locally
_, err := rc.ResolveLocal("model")
checkNotExist(t, err)
_, err = c.Get(d)
checkNotExist(t, err)
err = rc.Pull(t.Context(), "model")
check(err)
mw, err := rc.Resolve(t.Context(), "model")
check(err)
mg, err := rc.ResolveLocal("model")
check(err)
if !reflect.DeepEqual(mw, mg) {
t.Errorf("mw = %v; mg = %v", mw, mg)
}
// Confirm successful download
info, err := c.Get(d)
check(err)
if info.Digest != d {
t.Errorf("info.Digest = %v; want %v", info.Digest, d)
}
if info.Size != 9 {
t.Errorf("info.Size = %v; want %v", info.Size, 9)
}
data, err := os.ReadFile(c.GetFile(d))
check(err)
if string(data) != "some data" {
t.Errorf("data = %q; want %q", data, "exists")
}
}
func TestRegistryPullCached(t *testing.T) {
cached := blob.DigestFromBytes("exists")
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/blobs/") {
w.WriteHeader(499) // should not be called
return
}
if strings.Contains(r.URL.Path, "/manifests/") {
fmt.Fprintf(w, `{"layers":[{"digest":%q,"size":6}]}`, cached)
}
})
var errs []error
var reads []int64
ctx := WithTrace(t.Context(), &Trace{
Update: func(d *Layer, n int64, err error) {
t.Logf("update %v %d %v", d, n, err)
reads = append(reads, n)
errs = append(errs, err)
},
})
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
err := rc.Pull(ctx, "single")
testutil.Check(t, err)
want := []int64{0, 6}
if !errors.Is(errors.Join(errs...), ErrCached) {
t.Errorf("errs = %v; want %v", errs, ErrCached)
}
if !slices.Equal(reads, want) {
t.Errorf("pairs = %v; want %v", reads, want)
}
}
func TestRegistryPullManifestNotFound(t *testing.T) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusNotFound)
})
err := rc.Pull(t.Context(), "notfound")
checkErrCode(t, err, 404, "")
}
func TestRegistryPullResolveRemoteError(t *testing.T) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusInternalServerError)
io.WriteString(w, `{"errors":[{"code":"an_error"}]}`)
})
err := rc.Pull(t.Context(), "single")
checkErrCode(t, err, 500, "an_error")
}
func TestRegistryPullResolveRoundtripError(t *testing.T) {
rc, _ := newClient(t, func(w http.ResponseWriter, r *http.Request) {
if strings.Contains(r.URL.Path, "/manifests/") {
w.WriteHeader(499) // force RoundTrip error
return
}
})
err := rc.Pull(t.Context(), "single")
if !errors.Is(err, errRoundTrip) {
t.Errorf("err = %v; want %v", err, errRoundTrip)
}
}
// TestRegistryPullMixedCachedNotCached tests that cached layers do not
// interfere with pulling layers that are not cached
func TestRegistryPullMixedCachedNotCached(t *testing.T) {
x := blob.DigestFromBytes("xxxxxx")
e := blob.DigestFromBytes("exists")
y := blob.DigestFromBytes("yyyyyy")
for i := range 10 {
t.Logf("iteration %d", i)
digests := []blob.Digest{x, e, y}
rand.Shuffle(len(digests), func(i, j int) {
digests[i], digests[j] = digests[j], digests[i]
})
manifest := fmt.Sprintf(`{
"layers": [
{"digest":"%s","size":6},
{"digest":"%s","size":6},
{"digest":"%s","size":6}
]
}`, digests[0], digests[1], digests[2])
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
switch path.Base(r.URL.Path) {
case "latest":
io.WriteString(w, manifest)
case x.String():
io.WriteString(w, "xxxxxx")
case e.String():
io.WriteString(w, "exists")
case y.String():
io.WriteString(w, "yyyyyy")
default:
panic(fmt.Sprintf("unexpected request: %v", r))
}
})
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Logf("update %v %d %v", l, n, err)
},
})
// Check that we pull all layers that we can.
err := rc.Pull(ctx, "mixed")
if err != nil {
t.Fatal(err)
}
for _, d := range digests {
info, err := c.Get(d)
if err != nil {
t.Fatalf("Get(%v): %v", d, err)
}
if info.Size != 6 {
t.Errorf("info.Size = %v; want %v", info.Size, 6)
}
}
}
}
func TestRegistryResolveByDigest(t *testing.T) {
check := testutil.Checker(t)
@@ -399,6 +567,26 @@ func TestInsecureSkipVerify(t *testing.T) {
testutil.Check(t, err)
}
func TestCanRetry(t *testing.T) {
cases := []struct {
err error
want bool
}{
{nil, false},
{errors.New("x"), false},
{ErrCached, false},
{ErrManifestInvalid, false},
{ErrNameInvalid, false},
{&Error{Status: 100}, false},
{&Error{Status: 500}, true},
}
for _, tt := range cases {
if got := canRetry(tt.err); got != tt.want {
t.Errorf("CanRetry(%v) = %v; want %v", tt.err, got, tt.want)
}
}
}
func TestErrorUnmarshal(t *testing.T) {
cases := []struct {
name string
@@ -550,23 +738,17 @@ func TestParseNameExtended(t *testing.T) {
func TestUnlink(t *testing.T) {
t.Run("found by name", func(t *testing.T) {
check := testutil.Checker(t)
rc, _ := newRegistryClient(t, nil)
// make a blob and link it
d := blob.DigestFromBytes("{}")
err := blob.PutBytes(rc.Cache, d, "{}")
check(err)
err = rc.Cache.Link("registry.ollama.ai/library/single:latest", d)
check(err)
rc, _ := newClient(t, nil)
// confirm linked
_, err = rc.ResolveLocal("single")
check(err)
_, err := rc.ResolveLocal("single")
if err != nil {
t.Errorf("unexpected error: %v", err)
}
// unlink
_, err = rc.Unlink("single")
check(err)
testutil.Check(t, err)
// confirm unlinked
_, err = rc.ResolveLocal("single")
@@ -575,7 +757,7 @@ func TestUnlink(t *testing.T) {
}
})
t.Run("not found by name", func(t *testing.T) {
rc, _ := newRegistryClient(t, nil)
rc, _ := newClient(t, nil)
ok, err := rc.Unlink("manifestNotFound")
if err != nil {
t.Fatal(err)
@@ -585,369 +767,3 @@ func TestUnlink(t *testing.T) {
}
})
}
// Many tests from here out, in this file are based on a single blob, "abc",
// with the checksum of its sha256 hash. The checksum is:
//
// "abc" -> sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad
//
// Using the literal value instead of a constant with fmt.Xprintf calls proved
// to be the most readable and maintainable approach. The sum is consistently
// used in the tests and unique so searches do not yield false positives.
func checkRequest(t *testing.T, req *http.Request, method, path string) {
t.Helper()
if got := req.URL.Path; got != path {
t.Errorf("URL = %q, want %q", got, path)
}
if req.Method != method {
t.Errorf("Method = %q, want %q", req.Method, method)
}
}
func newRegistryClient(t *testing.T, h http.HandlerFunc) (*Registry, context.Context) {
s := httptest.NewServer(h)
t.Cleanup(s.Close)
cache, err := blob.Open(t.TempDir())
if err != nil {
t.Fatal(err)
}
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
},
})
rc := &Registry{
Cache: cache,
HTTPClient: &http.Client{Transport: &http.Transport{
Dial: func(network, addr string) (net.Conn, error) {
return net.Dial(network, s.Listener.Addr().String())
},
}},
}
return rc, ctx
}
func TestPullChunked(t *testing.T) {
var steps atomic.Int64
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch steps.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
checkRequest(t, r, "GET", "/v2/library/abc/chunksums/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab"))
fmt.Fprintf(w, "%s 2-2\n", blob.DigestFromBytes("c"))
case 3, 4:
checkRequest(t, r, "GET", "/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
switch rng := r.Header.Get("Range"); rng {
case "bytes=0-1":
io.WriteString(w, "ab")
case "bytes=2-2":
t.Logf("writing c")
io.WriteString(w, "c")
default:
t.Errorf("unexpected range %q", rng)
}
default:
t.Errorf("unexpected steps %d: %v", steps.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.ChunkingThreshold = 1 // force chunking
err := c.Pull(ctx, "http://o.com/library/abc")
testutil.Check(t, err)
_, err = c.Cache.Resolve("o.com/library/abc:latest")
testutil.Check(t, err)
if g := steps.Load(); g != 4 {
t.Fatalf("got %d steps, want 4", g)
}
}
func TestPullCached(t *testing.T) {
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
})
check := testutil.Checker(t)
// Premeptively cache the blob
d, err := blob.ParseDigest("sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
check(err)
err = blob.PutBytes(c.Cache, d, []byte("abc"))
check(err)
// Pull only the manifest, which should be enough to resolve the cached blob
err = c.Pull(ctx, "http://o.com/library/abc")
check(err)
}
func TestPullManifestError(t *testing.T) {
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
w.WriteHeader(http.StatusNotFound)
io.WriteString(w, `{"errors":[{"code":"MANIFEST_UNKNOWN"}]}`)
})
err := c.Pull(ctx, "http://o.com/library/abc")
if err == nil {
t.Fatalf("expected error")
}
var got *Error
if !errors.Is(err, ErrModelNotFound) {
t.Fatalf("err = %v, want %v", got, ErrModelNotFound)
}
}
func TestPullLayerError(t *testing.T) {
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `!`)
})
err := c.Pull(ctx, "http://o.com/library/abc")
if err == nil {
t.Fatalf("expected error")
}
var want *json.SyntaxError
if !errors.As(err, &want) {
t.Fatalf("err = %T, want %T", err, want)
}
}
func TestPullLayerChecksumError(t *testing.T) {
var step atomic.Int64
c, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
checkRequest(t, r, "GET", "/v2/library/abc/chunksums/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab"))
fmt.Fprintf(w, "%s 2-2\n", blob.DigestFromBytes("c"))
case 3:
w.WriteHeader(http.StatusNotFound)
io.WriteString(w, `{"errors":[{"code":"BLOB_UNKNOWN"}]}`)
case 4:
io.WriteString(w, "c")
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.MaxStreams = 1
c.ChunkingThreshold = 1 // force chunking
var written atomic.Int64
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
written.Add(n)
},
})
err := c.Pull(ctx, "http://o.com/library/abc")
var got *Error
if !errors.As(err, &got) || got.Code != "BLOB_UNKNOWN" {
t.Fatalf("err = %v, want %v", err, got)
}
if g := written.Load(); g != 1 {
t.Fatalf("wrote %d bytes, want 1", g)
}
}
func TestPullChunksumStreamError(t *testing.T) {
var step atomic.Int64
c, ctx := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
// Write one valid chunksum and one invalid chunksum
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab")) // valid
fmt.Fprint(w, "sha256:!") // invalid
case 3:
io.WriteString(w, "ab")
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.ChunkingThreshold = 1 // force chunking
got := c.Pull(ctx, "http://o.com/library/abc")
if !errors.Is(got, ErrIncomplete) {
t.Fatalf("err = %v, want %v", got, ErrIncomplete)
}
}
type flushAfterWriter struct {
w io.Writer
}
func (f *flushAfterWriter) Write(p []byte) (n int, err error) {
n, err = f.w.Write(p)
f.w.(http.Flusher).Flush() // panic if not a flusher
return
}
func TestPullChunksumStreaming(t *testing.T) {
csr, csw := io.Pipe()
defer csw.Close()
var step atomic.Int64
c, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fw := &flushAfterWriter{w} // ensure client gets data as it arrives by aggressively flushing
_, err := io.Copy(fw, csr)
if err != nil {
t.Errorf("copy: %v", err)
}
case 3:
io.WriteString(w, "ab")
case 4:
io.WriteString(w, "c")
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.ChunkingThreshold = 1 // force chunking
update := make(chan int64, 1)
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
if n > 0 {
update <- n
}
},
})
errc := make(chan error, 1)
go func() {
errc <- c.Pull(ctx, "http://o.com/library/abc")
}()
// Send first chunksum and ensure it kicks off work immediately
fmt.Fprintf(csw, "%s 0-1\n", blob.DigestFromBytes("ab"))
if g := <-update; g != 2 {
t.Fatalf("got %d, want 2", g)
}
// now send the second chunksum and ensure it kicks off work immediately
fmt.Fprintf(csw, "%s 2-2\n", blob.DigestFromBytes("c"))
if g := <-update; g != 1 {
t.Fatalf("got %d, want 1", g)
}
csw.Close()
testutil.Check(t, <-errc)
}
func TestPullChunksumsCached(t *testing.T) {
var step atomic.Int64
c, _ := newRegistryClient(t, func(w http.ResponseWriter, r *http.Request) {
switch step.Add(1) {
case 1:
checkRequest(t, r, "GET", "/v2/library/abc/manifests/latest")
io.WriteString(w, `{"layers":[{"size":3,"digest":"sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"}]}`)
case 2:
w.Header().Set("Content-Location", "http://blob.store/v2/library/abc/blobs/sha256:ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
fmt.Fprintf(w, "%s 0-1\n", blob.DigestFromBytes("ab"))
fmt.Fprintf(w, "%s 2-2\n", blob.DigestFromBytes("c"))
case 3, 4:
switch rng := r.Header.Get("Range"); rng {
case "bytes=0-1":
io.WriteString(w, "ab")
case "bytes=2-2":
io.WriteString(w, "c")
default:
t.Errorf("unexpected range %q", rng)
}
default:
t.Errorf("unexpected steps %d: %v", step.Load(), r)
http.Error(w, "unexpected steps", http.StatusInternalServerError)
}
})
c.MaxStreams = 1 // force serial processing of chunksums
c.ChunkingThreshold = 1 // force chunking
ctx, cancel := context.WithCancel(t.Context())
defer cancel()
// Cancel the pull after the first chunksum is processed, but before
// the second chunksum is processed (which is waiting because
// MaxStreams=1). This should cause the second chunksum to error out
// leaving the blob incomplete.
ctx = WithTrace(ctx, &Trace{
Update: func(l *Layer, n int64, err error) {
if n > 0 {
cancel()
}
},
})
err := c.Pull(ctx, "http://o.com/library/abc")
if !errors.Is(err, context.Canceled) {
t.Fatalf("err = %v, want %v", err, context.Canceled)
}
_, err = c.Cache.Resolve("o.com/library/abc:latest")
if !errors.Is(err, fs.ErrNotExist) {
t.Fatalf("err = %v, want nil", err)
}
// Reset state and pull again to ensure the blob chunks that should
// have been cached are, and the remaining chunk was downloaded, making
// the blob complete.
step.Store(0)
var written atomic.Int64
var cached atomic.Int64
ctx = WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Log("trace:", l.Digest.Short(), n, err)
if errors.Is(err, ErrCached) {
cached.Add(n)
}
written.Add(n)
},
})
check := testutil.Checker(t)
err = c.Pull(ctx, "http://o.com/library/abc")
check(err)
_, err = c.Cache.Resolve("o.com/library/abc:latest")
check(err)
if g := written.Load(); g != 3 {
t.Fatalf("wrote %d bytes, want 3", g)
}
if g := cached.Load(); g != 2 { // "ab" should have been cached
t.Fatalf("cached %d bytes, want 3", g)
}
}

View File

@@ -200,7 +200,7 @@ type params struct {
//
// Unfortunately, this API was designed to be a bit awkward. Stream is
// defined to default to true if not present, so we need a way to check
// if the client decisively set it to false. So, we use a pointer to a
// if the client decisively it to false. So, we use a pointer to a
// bool. Gross.
//
// Use [stream()] to get the correct value for this field.
@@ -280,17 +280,17 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
progress := make(map[*ollama.Layer]int64)
progressCopy := make(map[*ollama.Layer]int64, len(progress))
flushProgress := func() {
pushUpdate := func() {
defer maybeFlush()
// TODO(bmizerany): Flushing every layer in one update doesn't
// scale well. We could flush only the modified layers or track
// the full download. Needs further consideration, though it's
// fine for now.
// TODO(bmizerany): This scales poorly with more layers due to
// needing to flush out them all in one big update. We _could_
// just flush on the changed ones, or just track the whole
// download. Needs more thought. This is fine for now.
mu.Lock()
maps.Copy(progressCopy, progress)
mu.Unlock()
for l, n := range progressCopy {
for l, n := range progress {
enc.Encode(progressUpdateJSON{
Digest: l.Digest,
Total: l.Size,
@@ -298,26 +298,19 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
})
}
}
defer flushProgress()
t := time.NewTicker(1000 * time.Hour) // "unstarted" timer
t := time.NewTicker(time.Hour) // "unstarted" timer
start := sync.OnceFunc(func() {
flushProgress() // flush initial state
pushUpdate()
t.Reset(100 * time.Millisecond)
})
ctx := ollama.WithTrace(r.Context(), &ollama.Trace{
Update: func(l *ollama.Layer, n int64, err error) {
if n > 0 {
// Block flushing progress updates until every
// layer is accounted for. Clients depend on a
// complete model size to calculate progress
// correctly; if they use an incomplete total,
// progress indicators would erratically jump
// as new layers are registered.
start()
start() // flush initial state
}
mu.Lock()
progress[l] += n
progress[l] = n
mu.Unlock()
},
})
@@ -330,9 +323,9 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
for {
select {
case <-t.C:
flushProgress()
pushUpdate()
case err := <-done:
flushProgress()
pushUpdate()
if err != nil {
var status string
if errors.Is(err, ollama.ErrModelNotFound) {

Some files were not shown because too many files have changed in this diff Show More