Compare commits

..

1 Commits

Author SHA1 Message Date
Patrick Devine
c75b428249 fix: fixes a memory leak in bfloat16 package
This change vendors in the bfloat16 package from
github.com/d4l3k/go-bfloat16/ and fixes a memory leak which
was being caused by using unsafe pointers instead of the
math package.
2025-03-17 21:46:12 -07:00
63 changed files with 497 additions and 1060 deletions

View File

@@ -86,9 +86,9 @@ if(CMAKE_CUDA_COMPILER)
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
)
check_language(HIP)
@@ -97,7 +97,7 @@ if(CMAKE_HIP_COMPILER)
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()

View File

@@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
],

View File

@@ -394,7 +394,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
### Cloud
@@ -435,7 +434,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
### Apple Vision Pro
@@ -514,7 +512,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
### Mobile

View File

@@ -1,178 +0,0 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]interface{}{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := context.Background()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]interface{}{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -703,8 +703,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
for _, k := range keys {
var v string
switch vData := resp.ModelInfo[k].(type) {
case bool:
v = fmt.Sprintf("%t", vData)
case string:
v = vData
case float64:

View File

@@ -87,8 +87,6 @@ func TestShowInfo(t *testing.T) {
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(8_000_000_000),
"some.true_bool": true,
"some.false_bool": false,
"test.context_length": float64(1000),
"test.embedding_length": float64(11434),
},
@@ -113,8 +111,6 @@ func TestShowInfo(t *testing.T) {
Metadata
general.architecture test
general.parameter_count 8e+09
some.false_bool false
some.true_bool true
test.context_length 1000
test.embedding_length 11434

View File

@@ -201,7 +201,7 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
case "CohereForCausalLM":
conv = &commandrModel{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
return errors.New("unsupported architecture")
}
if err := json.Unmarshal(bts, conv); err != nil {

View File

@@ -11,9 +11,10 @@ import (
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/types/bfloat16"
)
type safetensorMetadata struct {

View File

@@ -558,10 +558,6 @@ Final response:
{
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"message": {
"role": "assistant",
"content": ""
},
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,

View File

@@ -1,59 +0,0 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -20,13 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
```
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
To change this when using `ollama run`, use `/set parameter`:

View File

@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama --no-pager --follow --pager-end
journalctl -u ollama --no-pager
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:

View File

@@ -413,7 +413,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
@@ -426,10 +426,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = make([]uint64, f.KV().BlockCount())
for i := range kv {
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
}
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch f.KV().Architecture() {
case "llama":
@@ -463,14 +460,16 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
for i := range kv {
if slices.Contains(crossAttentionLayers, uint32(i)) {
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
4 * // sizeof(float32)
visionTokens *
tiles
}
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
visionTokens*
tiles)
}
fullOffload = max(
@@ -506,20 +505,6 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
// engine. Gemma3 always uses the Ollama engine.
if f.KV().Architecture() == "gemma3" {
const gemma3GlobalCacheCount = 6
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
for i := range kv {
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
// layers are the smaller local (sliding) layers.
if (i+1)%gemma3GlobalCacheCount != 0 {
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
}
}
}
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),

1
go.mod
View File

@@ -16,7 +16,6 @@ require (
require (
github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/google/go-cmp v0.6.0

2
go.sum
View File

@@ -35,8 +35,6 @@ github.com/containerd/console v1.0.3 h1:lIr7SlA5PxZyMV30bDW0MGbiOPXwc63yRuCP0ARu
github.com/containerd/console v1.0.3/go.mod h1:7LqA/THxQ86k76b8c/EMSiaJ3h1eZkMkXar0TQ1gf3U=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 h1:cBzrdJPAFBsgCrDPnZxlp1dF2+k4r1kVpD7+1S1PVjY=
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1/go.mod h1:uw2gLcxEuYUlAd/EXyjc/v55nd3+47YAgWbSXVxPrNI=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=

View File

@@ -43,13 +43,8 @@ type Cache interface {
// ** cache management **
// Init sets up runtime parameters.
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
// dtype: The data type for storing cache entries
// maxSequences: The maximum number of sequences stored in the cache - across all batches
// capacity: The number of cache entries to store, per sequence
// maxBatch: The maximum number of tokens that can occur in a single batch
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
// Init sets up runtime parameters
Init(backend ml.Backend, dtype ml.DType, capacity int32)
// Close closes the cache and frees resources associated with it
Close()
@@ -57,7 +52,7 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, batch input.Batch) error
StartForward(ctx ml.Context, opts input.Options) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@@ -20,6 +20,7 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
Capacity int32
windowSize int32
opts CausalOptions
@@ -97,7 +98,7 @@ func NewSWACache(windowSize int32, shift shiftFn) *Causal {
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
@@ -118,16 +119,9 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.config.MaskDType = ml.DTypeF32
}
var cacheSize int
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
cacheSize = maxSequences * capacity
} else {
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
}
cacheSize = roundUp(cacheSize, c.config.CachePadding)
c.cells = make([]cacheCell, cacheSize)
c.DType = dtype
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
c.cells = make([]cacheCell, c.Capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
}
@@ -146,14 +140,12 @@ func (c *Causal) Close() {
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
c.opts.Except = nil
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
@@ -165,8 +157,8 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
@@ -218,51 +210,7 @@ func (c *Causal) findStartLoc() (int, error) {
}
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
}
func (c *Causal) updateSlidingWindow() {
if c.windowSize == math.MaxInt32 {
return
}
// create a map of unique sequences to the lowest position in that sequence
lowestPos := make(map[int]int32)
for i := range c.curPositions {
seq := c.curSequences[i]
pos, ok := lowestPos[seq]
if !ok {
pos = c.curPositions[i]
} else if c.curPositions[i] < pos {
pos = c.curPositions[i]
}
lowestPos[seq] = pos
}
// delete any entries that are beyond the window of the oldest position in the sequence
for seq, pos := range lowestPos {
oldRange, ok := c.cellRanges[seq]
if !ok {
continue
}
newRange := newRange()
for i := oldRange.min; i <= oldRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos < pos-c.windowSize {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
newRange.min = min(newRange.min, i)
newRange.max = max(newRange.max, i)
}
}
}
c.cellRanges[seq] = newRange
}
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
}
func roundDown(length, pad int) int {
@@ -317,7 +265,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
return maskTensor, nil
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
for i, key := range c.keys {
if key == nil {
continue
@@ -327,8 +275,8 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
@@ -336,14 +284,14 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
}
ctx.Forward(
@@ -373,8 +321,7 @@ func (c *Causal) defrag() {
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v). We also need to refer to the original
// k and v cache tensors - once per layer, not per move.
// copy for each of k and v).
layers := 0
for _, key := range c.keys {
if key == nil {
@@ -383,7 +330,7 @@ func (c *Causal) defrag() {
layers++
}
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
@@ -532,14 +479,14 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
}
}
@@ -550,7 +497,7 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
elemSize := c.values[c.curLayer].Stride(0)
value = value.Permute(ctx, 1, 2, 0, 3)
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
} else {
rowSize := c.values[c.curLayer].Stride(2)

View File

@@ -25,7 +25,7 @@ func TestStore(t *testing.T) {
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -58,11 +58,11 @@ func TestSWA(t *testing.T) {
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF32, 16)
tests := []testCase{
{
name: "FirstBatch",
name: "SlidingWindow",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
@@ -71,16 +71,6 @@ func TestSWA(t *testing.T) {
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{5, 6, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
},
}
testCache(t, backend, cache, tests)
@@ -91,7 +81,7 @@ func TestSequences(t *testing.T) {
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -126,7 +116,7 @@ func TestRemove(t *testing.T) {
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -191,7 +181,7 @@ func TestDefrag(t *testing.T) {
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -239,7 +229,7 @@ func TestCopy(t *testing.T) {
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
cache.Init(backend, ml.DTypeF16, 16)
tests := []testCase{
{
@@ -280,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -362,6 +352,7 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }

View File

@@ -49,7 +49,7 @@ func NewEncoderCache() *EncoderCache {
}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
if c.config == nil {
var config ml.CacheConfig
if cc, ok := backend.(ml.BackendCacheConfig); ok {
@@ -58,10 +58,6 @@ func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, ca
c.config = &config
}
if maxSequences > 1 {
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
}
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
@@ -83,10 +79,10 @@ func (c *EncoderCache) Close() {
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch) error {
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
// We work with the most recent image
if len(batch.Multimodal) > 0 {
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
}
return nil

View File

@@ -23,9 +23,9 @@ func NewWrapperCache(caches ...Cache) *WrapperCache {
}
}
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
for _, cache := range c.caches {
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
cache.Init(backend, dtype, capacity)
}
}
@@ -41,14 +41,14 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch) error {
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, batch)
err := cache.StartForward(ctx, opts)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range batch.Positions {
_ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
}
}
return err

View File

@@ -1,103 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Saman <saman.khatir@amd.com>
Date: Wed, 19 Mar 2025 14:02:26 -0700
Subject: [PATCH] add rdna4 support
---
ggml/src/ggml-cuda/common.cuh | 6 ++++--
ggml/src/ggml-cuda/mmq.cu | 2 +-
ggml/src/ggml-cuda/mmq.cuh | 4 ++--
ggml/src/ggml-cuda/mmvq.cu | 4 ++--
ggml/src/ggml-cuda/vendors/hip.h | 4 ++++
5 files changed, 13 insertions(+), 7 deletions(-)
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index adf0d3ec..b24593fc 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -61,11 +61,13 @@
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
+#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
-#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
+#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
+#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
-#elif defined(RDNA3)
+#elif defined(RDNA3) || defined(RDNA4)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;
diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu
index 10f2ebb1..933d945c 100644
--- a/ggml/src/ggml-cuda/mmq.cu
+++ b/ggml/src/ggml-cuda/mmq.cu
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
- return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
+ return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh
index 0451c65f..66ce2bc9 100644
--- a/ggml/src/ggml-cuda/mmq.cuh
+++ b/ggml/src/ggml-cuda/mmq.cuh
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
+#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
-#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
+#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
index 4fb466ca..23ae7abc 100644
--- a/ggml/src/ggml-cuda/mmvq.cu
+++ b/ggml/src/ggml-cuda/mmvq.cu
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
-#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
-#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index 81964611..a62544b5 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -150,6 +150,10 @@
#define CDNA
#endif
+#if defined(__gfx1200__) || defined(__gfx1201__)
+#define RDNA4
+#endif
+
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -15,12 +15,12 @@ import (
)
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
estimate := EstimateGPULayers(gpus, f, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
@@ -71,7 +71,7 @@ type MemoryEstimate struct {
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
@@ -137,19 +137,13 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
if len(kv) > 0 {
layerSize += kv[0]
}
var kvTotal uint64
for _, kvLayer := range kv {
kvTotal += kvLayer
}
// KV is proportional to the number of layers
layerSize += kv / f.KV().BlockCount()
if graphPartialOffload == 0 {
graphPartialOffload = f.KV().GQA() * kvTotal / 6
graphPartialOffload = f.KV().GQA() * kv / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
@@ -223,7 +217,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.Size()
layerSize += kv[i]
layerSize += kv / f.KV().BlockCount()
memoryWeights += blk.Size()
}
@@ -321,7 +315,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
layersRequested: opts.NumGPU,
layersModel: int(f.KV().BlockCount()) + 1,
availableList: availableList,
kv: kvTotal,
kv: kv,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
@@ -380,7 +374,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
"total", format.HumanBytes2(m.memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(m.memoryWeights),
// memory of non-repeating layers

View File

@@ -61,7 +61,7 @@ func TestEstimateGPULayers(t *testing.T) {
projectors := []string{}
opts := api.DefaultOptions()
t.Run("cpu", func(t *testing.T) {
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, 0, estimate.Layers)
assert.Equal(t, uint64(0), estimate.Graph)
})
@@ -112,7 +112,7 @@ func TestEstimateGPULayers(t *testing.T) {
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
var layerSums uint64

View File

@@ -109,7 +109,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
gpus = discover.GetCPUInfo()
}
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:

View File

@@ -2,7 +2,6 @@ package ml
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"os"
@@ -61,10 +60,6 @@ type CacheConfig struct {
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// Progress is a callback function that allows reporting percentage completion
// of model loading
Progress func(float32)
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
@@ -81,9 +76,9 @@ type BackendParams struct {
FlashAttention bool
}
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
@@ -91,9 +86,9 @@ func RegisterBackend(name string, f func(context.Context, *os.File, BackendParam
backends[name] = f
}
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
func NewBackend(f *os.File, params BackendParams) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(ctx, f, params)
return backend(f, params)
}
return nil, fmt.Errorf("unsupported backend")
@@ -110,10 +105,12 @@ type Context interface {
MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating tensors that are
// inputs to the model (which includes things like output locations)
// Input returns a context appropriate for creating input tensors
Input() Context
// Output returns a context appropriate for creating output tensors
Output() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}

View File

@@ -9,17 +9,15 @@ package ggml
import "C"
import (
"context"
"errors"
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strconv"
"strings"
"sync/atomic"
"unicode"
"unsafe"
@@ -48,6 +46,9 @@ type Backend struct {
// input is the backend used for inputs
input *C.struct_ggml_backend_buffer_type
// output is the backend used for outputs
output *C.struct_ggml_backend_buffer_type
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
@@ -57,7 +58,7 @@ type Backend struct {
maxGraphNodes int
}
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
@@ -296,16 +297,12 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
}
var doneBytes atomic.Uint64
totalBytes := uint64(n) - meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
for i := range tts {
target := targets[t.Name][i]
for _, target := range targets[t.Name] {
g.Go(func() error {
if target == "" {
target = t.Name
}
@@ -315,44 +312,25 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
bts := C.malloc(C.size_t(t.Size()))
if bts == nil {
return errors.New("failed to allocate tensor buffer")
}
defer C.free(bts)
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
return err
buf := unsafe.Slice((*byte)(bts), t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
if err != nil || n != len(buf) {
return errors.New("read failed")
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if params.Progress != nil {
done := doneBytes.Add(uint64(n))
params.Progress(float32(done) / float32(totalBytes))
}
}
return nil
})
C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
return nil
})
}
}
// start a goroutine to cancel the errgroup if the parent context is done
go func() {
<-ctx.Done()
g.Go(func() error {
return ctx.Err()
})
}()
if err := g.Wait(); err != nil {
if g.Wait() != nil {
return nil, err
}
@@ -397,7 +375,8 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
C.size_t(maxGraphNodes),
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
),
input: deviceBufferTypes[input.d],
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
@@ -478,6 +457,19 @@ func (c Context) Input() ml.Context {
return &c
}
func (c Context) Output() ml.Context {
if c.b.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Layer(i int) ml.Context {
if buft, ok := c.b.layers[i]; ok {
return &Context{

View File

@@ -61,13 +61,11 @@
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -388,7 +386,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3) || defined(RDNA4)
#elif defined(RDNA3)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;

View File

@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)

View File

@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;

View File

@@ -150,10 +150,6 @@
#define CDNA
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#define RDNA4
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -1,7 +1,5 @@
package input
import "github.com/ollama/ollama/ml"
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
@@ -35,24 +33,11 @@ type MultimodalIndex struct {
Multimodal any
}
// Batch contains the inputs for a model forward pass
type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
Positions []int32
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
Positions []int32
Sequences []int
Outputs []int32
}

View File

@@ -1,7 +1,6 @@
package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
@@ -27,7 +26,7 @@ var ErrNoVisionModel = errors.New("this model is missing data required for image
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, input.Batch) (ml.Tensor, error)
Forward(ml.Context, input.Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
@@ -95,14 +94,14 @@ func Register(name string, f func(ml.Config) (Model, error)) {
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
func New(modelPath string, params ml.BackendParams) (Model, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
b, err := ml.NewBackend(ctx, r, params)
b, err := ml.NewBackend(r, params)
if err != nil {
return nil, err
}
@@ -281,30 +280,24 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
if len(batch.Positions) != len(batch.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
if len(batch.Positions) < 1 {
if len(opts.Positions) < 1 {
return nil, errors.New("batch size cannot be less than 1")
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return nil, err
}
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch)
err := cache.StartForward(ctx, opts)
if err != nil {
return nil, err
}
}
t, err := m.Forward(ctx, batch)
t, err := m.Forward(ctx, opts)
if err != nil {
return nil, err
}

View File

@@ -163,7 +163,7 @@ func TestGetTextProcessor(t *testing.T) {
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
panic("unimplemented")
}

View File

@@ -168,18 +168,23 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
if len(m.Layers) == gemma27BLayerCount {
@@ -206,7 +211,8 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
return hiddenState.Rows(ctx, outputs), nil
}
func init() {

View File

@@ -139,18 +139,23 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
}
func init() {

View File

@@ -171,13 +171,13 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
// set image embeddings
var except []int
for _, image := range batch.Multimodal {
for _, image := range opts.Multimodal {
visionOutputs := image.Multimodal.(ml.Tensor)
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))

View File

@@ -139,18 +139,23 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)

View File

@@ -135,27 +135,32 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(batch.Multimodal) > 0 {
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(opts.Multimodal) > 0 {
images := opts.Multimodal[len(opts.Multimodal)-1].Multimodal.([]ml.Tensor)
if len(images) > 0 {
crossAttentionStates = images[len(images)-1]
}
}
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -91,6 +91,7 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
slog.Debug("fragments", "frags", fragments)
var ids []int32
for _, frag := range fragments {
@@ -128,6 +129,8 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
slog.Debug("tokenizer", "merges", merges)
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
@@ -150,11 +153,18 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
pqv := pq.Values()
for _, v := range pqv {
e := v.(*candidate)
slog.Debug("candidate", "candidate", e)
}
for !pq.Empty() {
v, _ := pq.Dequeue()
pair := v.(*candidate)
left, right := merges[pair.a], merges[pair.b]
slog.Debug("pair", "left", left, "right", right)
if len(left.runes) == 0 || len(right.runes) == 0 {
continue
}
@@ -179,6 +189,8 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
slog.Debug("merges", "merges", merges)
for _, merge := range merges {
if len(merge.runes) > 0 {
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
@@ -229,5 +241,6 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -31,10 +31,8 @@ type InputCache struct {
cache kvcache.Cache
}
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
numCtx := kvSize / int32(numSlots)
if numCtx < 1 {
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/int32(numSlots) < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
@@ -46,11 +44,11 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
cache := model.Config().Cache
if cache != nil {
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), numSlots, int(numCtx), batchSize)
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), kvSize)
}
return &InputCache{
numCtx: numCtx,
numCtx: kvSize / int32(numSlots),
enabled: cache != nil,
slots: slots,
multiUserCache: multiUserCache,

View File

@@ -348,8 +348,7 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var batchInputs []int32
var batch input.Batch
var options input.Options
for i, seq := range s.seqs {
if seq == nil {
@@ -396,17 +395,17 @@ func (s *Server) processBatch() error {
}
}
batchInputs = append(batchInputs, inp.Token)
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
}
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
batch.Sequences = append(batch.Sequences, seq.cache.Id)
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(batch.Outputs)
seq.iBatch = len(options.Outputs)
if j+1 == len(seq.inputs) {
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, inp)
}
@@ -414,14 +413,14 @@ func (s *Server) processBatch() error {
seq.inputs = seq.inputs[len(seq.pendingInputs):]
}
if len(batchInputs) == 0 {
if len(options.Inputs) == 0 {
return nil
}
ctx := s.model.Backend().NewContext()
defer ctx.Close()
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
modelOutput, err := model.Forward(ctx, s.model, options)
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
}
@@ -461,7 +460,7 @@ func (s *Server) processBatch() error {
}
// sample a token
vocabSize := len(logits) / len(batch.Outputs)
vocabSize := len(logits) / len(options.Outputs)
token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
if err != nil {
@@ -678,7 +677,6 @@ func (m *multiLPath) String() string {
}
func (s *Server) loadModel(
ctx context.Context,
mpath string,
params ml.BackendParams,
lpath multiLPath,
@@ -688,7 +686,7 @@ func (s *Server) loadModel(
multiUserCache bool,
) {
var err error
s.model, err = model.New(ctx, mpath, params)
s.model, err = model.New(mpath, params)
if err != nil {
panic(err)
}
@@ -700,7 +698,7 @@ func (s *Server) loadModel(
panic("loras are not yet implemented")
}
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
if err != nil {
panic(err)
}
@@ -784,9 +782,6 @@ func Execute(args []string) error {
}
params := ml.BackendParams{
Progress: func(progress float32) {
server.progress = progress
},
NumThreads: *threads,
NumGPULayers: *numGPULayers,
MainGPU: *mainGPU,
@@ -795,13 +790,13 @@ func Execute(args []string) error {
}
server.ready.Add(1)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.loadModel(ctx, *mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
go server.loadModel(*mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)

View File

@@ -26,10 +26,6 @@ type Sampler struct {
}
func (s *Sampler) Sample(logits []float32) (int32, error) {
if len(logits) == 0 {
return -1, errors.New("sample: no logits provided to sample")
}
tokens := make([]token, len(logits))
for i := range logits {
tokens[i].id = int32(i)
@@ -98,6 +94,13 @@ func (s *Sampler) sample(tokens []token) (token, error) {
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var r float32
if s.rng != nil {
r = s.rng.Float32()
@@ -120,9 +123,6 @@ func (s *Sampler) sample(tokens []token) (token, error) {
return 1
})
if math.IsNaN(float64(sum)) {
return token{}, errors.New("sample: logits sum to NaN, check model output")
}
return tokens[idx], nil
}

View File

@@ -1,7 +1,6 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
)
@@ -30,29 +29,6 @@ func TestWeighted(t *testing.T) {
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
// Test very high p
logits = []float32{1.0, 0.9999999999999999, 0.5, 0.1}
// Use extremely small topP to filter out all tokens
sampler = NewSampler(1.0, 0, 1e-10, 0, 0, nil)
got, err = sampler.Sample(logits)
if err != nil {
t.Error(err)
return
}
// Should get the token with the highest logit
want = int32(0)
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
logits = []float32{float32(math.NaN()), float32(math.NaN()), float32(math.NaN())}
sampler = NewSampler(1, 0, 0.95, 0.05, 0, nil)
got, err = sampler.Sample(logits)
if err == nil {
t.Errorf("expected error, got %d", got)
return
}
}
func BenchmarkSample(b *testing.B) {

View File

@@ -168,53 +168,27 @@ func TestTopP(t *testing.T) {
softmax(tokens)
tokens = topK(tokens, 20)
// Test with very high p value
got := topP(tokens, 1.0)
// Then apply topP
tokens = topP(tokens, 0.95)
// Should keep all tokens since p is 1
if len(got) != len(input) {
t.Errorf("topP(1.0): should keep all tokens, got %d, want %d", len(got), len(input))
}
// Test with normal p value
got = topP(tokens, 0.95)
if len(got) > 3 {
// Should keep tokens until cumsum > 0.95
if len(tokens) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", got)
t.Logf("got: %v", tokens)
}
// Test edge case - ensure at least one token remains
input = []float32{-1e6, -1e6, -1e7}
input = []float32{-1e6, -1e6, -1e6} // One dominant token
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 0.0)
if len(got) < 1 {
tokens = topP(tokens, 0.0) // Very small p
if len(tokens) < 1 {
t.Error("topP should keep at least one token")
}
// Test with zero p value
got = topP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != 1 {
t.Errorf("topP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
}
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 1e-10)
if len(got) == 0 {
t.Errorf("topP(1e-10): should keep at least one token, got %d", len(got))
t.Logf("got: %v", got)
}
}
func TestMinP(t *testing.T) {
input := []float32{-2, 0, -1, -3, 2, 1, 4, 3}
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
@@ -251,48 +225,30 @@ func TestMinP(t *testing.T) {
t.Logf("got: %v", tokens)
}
// Test with single token
tokens = toTokens(input[:1])
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.1)
// Should keep only the highest probability token
if len(tokens) != 1 {
t.Errorf("minP(0.1): should return single token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
input = []float32{1e-10, 1e-10, 1e-10}
tokens = toTokens(input)
softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) < 1 {
t.Error("minP should keep at least one token even with extreme probabilities")
got := minP(tokens, 1.0)
}
}
if len(got) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(got), len(tokens))
}
func TestSortLogits(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
// Test with normal p value
got = minP(tokens, 0.2)
tokens = topK(tokens, 20)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
// Test with zero p value
got = minP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != len(tokens) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
}
}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {

View File

@@ -29,9 +29,8 @@ import (
const maxRetries = 6
var (
errMaxRetriesExceeded = errors.New("max retries exceeded")
errPartStalled = errors.New("part stalled")
errMaxRedirectsExceeded = errors.New("maximum redirects exceeded (10) for directURL")
errMaxRetriesExceeded = errors.New("max retries exceeded")
errPartStalled = errors.New("part stalled")
)
var blobDownloadManager sync.Map
@@ -237,7 +236,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
newOpts.CheckRedirect = func(req *http.Request, via []*http.Request) error {
if len(via) > 10 {
return errMaxRedirectsExceeded
return errors.New("maximum redirects exceeded (10) for directURL")
}
// if the hostname is the same, allow the redirect

View File

@@ -35,7 +35,6 @@ var (
errCapabilityCompletion = errors.New("completion")
errCapabilityTools = errors.New("tools")
errCapabilityInsert = errors.New("insert")
errInsecureProtocol = errors.New("insecure protocol http")
)
type Capability string
@@ -480,7 +479,7 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
fn(api.ProgressResponse{Status: "retrieving manifest"})
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errInsecureProtocol
return errors.New("insecure protocol http")
}
manifest, _, err := GetManifest(mp)
@@ -544,7 +543,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errInsecureProtocol
return errors.New("insecure protocol http")
}
fn(api.ProgressResponse{Status: "pulling manifest"})

View File

@@ -37,6 +37,7 @@ import (
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/internal/backoff"
"github.com/ollama/ollama/server/internal/internal/names"
_ "embed"
@@ -59,11 +60,6 @@ var (
// ErrCached is passed to [Trace.PushUpdate] when a layer already
// exists. It is a non-fatal error and is never returned by [Registry.Push].
ErrCached = errors.New("cached")
// ErrIncomplete is returned by [Registry.Pull] when a model pull was
// incomplete due to one or more layer download failures. Users that
// want specific errors should use [WithTrace].
ErrIncomplete = errors.New("incomplete")
)
// Defaults
@@ -217,6 +213,12 @@ type Registry struct {
// request. If zero, [DefaultChunkingThreshold] is used.
ChunkingThreshold int64
// MaxChunkSize is the maximum size of a chunk to download. If zero,
// the default is [DefaultMaxChunkSize].
//
// It is only used when a layer is larger than [MaxChunkingThreshold].
MaxChunkSize int64
// Mask, if set, is the name used to convert non-fully qualified names
// to fully qualified names. If empty, [DefaultMask] is used.
Mask string
@@ -276,19 +278,8 @@ func DefaultRegistry() (*Registry, error) {
func UserAgent() string {
buildinfo, _ := debug.ReadBuildInfo()
version := buildinfo.Main.Version
if version == "(devel)" {
// When using `go run .` the version is "(devel)". This is seen
// as an invalid version by ollama.com and so it defaults to
// "needs upgrade" for some requests, such as pulls. These
// checks can be skipped by using the special version "v0.0.0",
// so we set it to that here.
version = "v0.0.0"
}
return fmt.Sprintf("ollama/%s (%s %s) Go/%s",
version,
buildinfo.Main.Version,
runtime.GOARCH,
runtime.GOOS,
runtime.Version(),
@@ -434,14 +425,13 @@ func canRetry(err error) bool {
//
// It always calls update with a nil error.
type trackingReader struct {
l *Layer
r io.Reader
update func(l *Layer, n int64, err error)
r io.Reader
n *atomic.Int64
}
func (r *trackingReader) Read(p []byte) (n int, err error) {
n, err = r.r.Read(p)
r.update(r.l, int64(n), nil)
r.n.Add(int64(n))
return
}
@@ -457,11 +447,6 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
if err != nil {
return err
}
// TODO(bmizerany): decide if this should be considered valid. Maybe
// server-side we special case '{}' to have some special meaning? Maybe
// "archiving" a tag (which is how we reason about it in the registry
// already, just with a different twist).
if len(m.Layers) == 0 {
return fmt.Errorf("%w: no layers", ErrManifestInvalid)
}
@@ -471,7 +456,11 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
return err
}
// TODO(bmizerany): work to remove the need to do this
exists := func(l *Layer) bool {
info, err := c.Get(l.Digest)
return err == nil && info.Size == l.Size
}
layers := m.Layers
if m.Config != nil && m.Config.Digest.IsValid() {
layers = append(layers, m.Config)
@@ -479,97 +468,99 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
// Send initial layer trace events to allow clients to have an
// understanding of work to be done before work starts.
var expected int64
t := traceFromContext(ctx)
for _, l := range layers {
skip := make([]bool, len(layers))
for i, l := range layers {
t.update(l, 0, nil)
expected += l.Size
if exists(l) {
skip[i] = true
t.update(l, l.Size, ErrCached)
}
}
var received atomic.Int64
var g errgroup.Group
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(r.maxStreams())
for _, l := range layers {
info, err := c.Get(l.Digest)
if err == nil && info.Size == l.Size {
received.Add(l.Size)
t.update(l, l.Size, ErrCached)
for i, l := range layers {
if skip[i] {
continue
}
var wg sync.WaitGroup
chunked, err := c.Chunked(l.Digest, l.Size)
if err != nil {
t.update(l, 0, err)
continue
}
defer chunked.Close()
var progress atomic.Int64
for cs, err := range r.chunksums(ctx, name, l) {
if err != nil {
// Chunksum stream interrupted. Note in trace
// log and let in-flight downloads complete.
// This will naturally trigger ErrIncomplete
// since received < expected bytes.
t.update(l, 0, err)
t.update(l, progress.Load(), err)
break
}
wg.Add(1)
g.Go(func() (err error) {
defer func() {
if err == nil {
received.Add(cs.Chunk.Size())
} else {
err = fmt.Errorf("error downloading %s: %w", cs.Digest.Short(), err)
defer func() { t.update(l, progress.Load(), err) }()
for _, err := range backoff.Loop(ctx, 3*time.Second) {
if err != nil {
return err
}
wg.Done()
}()
err := func() error {
req, err := http.NewRequestWithContext(ctx, "GET", cs.URL, nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", cs.Chunk.Start, cs.Chunk.End))
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
req, err := http.NewRequestWithContext(ctx, "GET", cs.URL, nil)
if err != nil {
return err
}
req.Header.Set("Range", fmt.Sprintf("bytes=%d-%d", cs.Chunk.Start, cs.Chunk.End))
res, err := sendRequest(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
// Count bytes towards
// progress, as they arrive, so
// that our bytes piggyback
// other chunk updates on
// completion.
//
// This tactic is enough to
// show "smooth" progress given
// the current CLI client. In
// the near future, the server
// should report download rate
// since it knows better than
// a client that is measuring
// rate based on wall-clock
// time-since-last-update.
body := &trackingReader{r: res.Body, n: &progress}
body := &trackingReader{l: l, r: res.Body, update: t.update}
return chunked.Put(cs.Chunk, cs.Digest, body)
err = chunked.Put(cs.Chunk, cs.Digest, body)
if err != nil {
return err
}
return nil
}()
if !canRetry(err) {
return err
}
}
return nil
})
}
// Close writer immediately after downloads finish, not at Pull
// exit. Using defer would keep file descriptors open until all
// layers complete, potentially exhausting system limits with
// many layers.
//
// The WaitGroup tracks when all chunks finish downloading,
// allowing precise writer closure in a background goroutine.
// Each layer briefly uses one extra goroutine while at most
// maxStreams()-1 chunks download in parallel.
//
// This caps file descriptors at maxStreams() instead of
// growing with layer count.
g.Go(func() error {
wg.Wait()
chunked.Close()
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
if received.Load() != expected {
return fmt.Errorf("%w: received %d/%d", ErrIncomplete, received.Load(), expected)
}
// store the manifest blob
md := blob.DigestFromBytes(m.Data)
if err := blob.PutBytes(c, md, m.Data); err != nil {
return err
}
// commit the manifest with a link
return c.Link(m.Name, md)
}

View File

@@ -17,7 +17,6 @@ import (
"reflect"
"slices"
"strings"
"sync"
"testing"
"time"
@@ -25,28 +24,6 @@ import (
"github.com/ollama/ollama/server/internal/testutil"
)
func ExampleRegistry_cancelOnFirstError() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
ctx = WithTrace(ctx, &Trace{
Update: func(l *Layer, n int64, err error) {
if err != nil {
// Discontinue pulling layers if there is an
// error instead of continuing to pull more
// data.
cancel()
}
},
})
var r Registry
if err := r.Pull(ctx, "model"); err != nil {
// panic for demo purposes
panic(err)
}
}
func TestManifestMarshalJSON(t *testing.T) {
// All manifests should contain an "empty" config object.
var m Manifest
@@ -79,21 +56,21 @@ func (rr recordRoundTripper) RoundTrip(req *http.Request) (*http.Response, error
// newClient constructs a cache with predefined manifests for testing. The manifests are:
//
// empty: no data
// zero: no layers
// single: one layer with the contents "exists"
// multiple: two layers with the contents "exists" and "here"
// notfound: a layer that does not exist in the cache
// null: one null layer (e.g. [null])
// sizemismatch: one valid layer, and one with a size mismatch (file size is less than the reported size)
// invalid: a layer with invalid JSON data
// empty: no data
// zero: no layers
// single: one layer with the contents "exists"
// multiple: two layers with the contents "exists" and "here"
// notfound: a layer that does not exist in the cache
// null: one null layer (e.g. [null])
// sizemismatch: one valid layer, and one with a size mismatch (file size is less than the reported size)
// invalid: a layer with invalid JSON data
//
// Tests that want to ensure the client does not communicate with the upstream
// registry should pass a nil handler, which will cause a panic if
// communication is attempted.
//
// To simulate a network error, pass a handler that returns a 499 status code.
func newClient(t *testing.T, upstreamRegistry http.HandlerFunc) (*Registry, *blob.DiskCache) {
func newClient(t *testing.T, h http.HandlerFunc) (*Registry, *blob.DiskCache) {
t.Helper()
c, err := blob.Open(t.TempDir())
@@ -111,7 +88,7 @@ func newClient(t *testing.T, upstreamRegistry http.HandlerFunc) (*Registry, *blo
r := &Registry{
Cache: c,
HTTPClient: &http.Client{
Transport: recordRoundTripper(upstreamRegistry),
Transport: recordRoundTripper(h),
},
}
@@ -790,79 +767,3 @@ func TestUnlink(t *testing.T) {
}
})
}
func TestPullChunksums(t *testing.T) {
check := testutil.Checker(t)
content := "hello"
var chunksums string
contentDigest := func() blob.Digest {
return blob.DigestFromBytes(content)
}
rc, c := newClient(t, func(w http.ResponseWriter, r *http.Request) {
switch {
case strings.Contains(r.URL.Path, "/manifests/latest"):
fmt.Fprintf(w, `{"layers":[{"digest":%q,"size":%d}]}`, contentDigest(), len(content))
case strings.HasSuffix(r.URL.Path, "/chunksums/"+contentDigest().String()):
loc := fmt.Sprintf("http://blob.store/v2/library/test/blobs/%s", contentDigest())
w.Header().Set("Content-Location", loc)
io.WriteString(w, chunksums)
case strings.Contains(r.URL.Path, "/blobs/"+contentDigest().String()):
http.ServeContent(w, r, contentDigest().String(), time.Time{}, strings.NewReader(content))
default:
t.Errorf("unexpected request: %v", r)
http.NotFound(w, r)
}
})
rc.MaxStreams = 1 // prevent concurrent chunk downloads
rc.ChunkingThreshold = 1 // for all blobs to be chunked
var mu sync.Mutex
var reads []int64
ctx := WithTrace(t.Context(), &Trace{
Update: func(l *Layer, n int64, err error) {
t.Logf("Update: %v %d %v", l, n, err)
mu.Lock()
reads = append(reads, n)
mu.Unlock()
},
})
chunksums = fmt.Sprintf("%s 0-2\n%s 3-4\n",
blob.DigestFromBytes("hel"),
blob.DigestFromBytes("lo"),
)
err := rc.Pull(ctx, "test")
check(err)
wantReads := []int64{
0, // initial signaling of layer pull starting
3, // first chunk read
2, // second chunk read
}
if !slices.Equal(reads, wantReads) {
t.Errorf("reads = %v; want %v", reads, wantReads)
}
mw, err := rc.Resolve(t.Context(), "test")
check(err)
mg, err := rc.ResolveLocal("test")
check(err)
if !reflect.DeepEqual(mw, mg) {
t.Errorf("mw = %v; mg = %v", mw, mg)
}
for i := range mg.Layers {
_, err = c.Get(mg.Layers[i].Digest)
if err != nil {
t.Errorf("Get(%v): %v", mg.Layers[i].Digest, err)
}
}
// missing chunks
content = "llama"
chunksums = fmt.Sprintf("%s 0-1\n", blob.DigestFromBytes("ll"))
err = rc.Pull(ctx, "missingchunks")
if err == nil {
t.Error("expected error because of missing chunks")
}
}

View File

@@ -200,7 +200,7 @@ type params struct {
//
// Unfortunately, this API was designed to be a bit awkward. Stream is
// defined to default to true if not present, so we need a way to check
// if the client decisively set it to false. So, we use a pointer to a
// if the client decisively it to false. So, we use a pointer to a
// bool. Gross.
//
// Use [stream()] to get the correct value for this field.
@@ -280,17 +280,17 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
progress := make(map[*ollama.Layer]int64)
progressCopy := make(map[*ollama.Layer]int64, len(progress))
flushProgress := func() {
pushUpdate := func() {
defer maybeFlush()
// TODO(bmizerany): Flushing every layer in one update doesn't
// scale well. We could flush only the modified layers or track
// the full download. Needs further consideration, though it's
// fine for now.
// TODO(bmizerany): This scales poorly with more layers due to
// needing to flush out them all in one big update. We _could_
// just flush on the changed ones, or just track the whole
// download. Needs more thought. This is fine for now.
mu.Lock()
maps.Copy(progressCopy, progress)
mu.Unlock()
for l, n := range progressCopy {
for l, n := range progress {
enc.Encode(progressUpdateJSON{
Digest: l.Digest,
Total: l.Size,
@@ -298,26 +298,19 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
})
}
}
defer flushProgress()
t := time.NewTicker(1000 * time.Hour) // "unstarted" timer
t := time.NewTicker(time.Hour) // "unstarted" timer
start := sync.OnceFunc(func() {
flushProgress() // flush initial state
pushUpdate()
t.Reset(100 * time.Millisecond)
})
ctx := ollama.WithTrace(r.Context(), &ollama.Trace{
Update: func(l *ollama.Layer, n int64, err error) {
if n > 0 {
// Block flushing progress updates until every
// layer is accounted for. Clients depend on a
// complete model size to calculate progress
// correctly; if they use an incomplete total,
// progress indicators would erratically jump
// as new layers are registered.
start()
start() // flush initial state
}
mu.Lock()
progress[l] += n
progress[l] = n
mu.Unlock()
},
})
@@ -330,9 +323,9 @@ func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
for {
select {
case <-t.C:
flushProgress()
pushUpdate()
case err := <-done:
flushProgress()
pushUpdate()
if err != nil {
var status string
if errors.Is(err, ollama.ErrModelNotFound) {

View File

@@ -82,7 +82,7 @@ func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) {
for _, layer := range layers {
if s := layer.GGML.KV().ChatTemplate(); s != "" {
if t, err := template.Named(s); err != nil {
slog.Debug("template detection", "error", err, "template", s)
slog.Debug("template detection", "error", err)
} else {
layer, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template")
if err != nil {

View File

@@ -31,10 +31,9 @@ const (
var (
ErrInvalidImageFormat = errors.New("invalid image format")
ErrInvalidDigestFormat = errors.New("invalid digest format")
ErrInvalidProtocol = errors.New("invalid protocol scheme")
ErrInsecureProtocol = errors.New("insecure protocol http")
ErrModelPathInvalid = errors.New("invalid model path")
ErrInvalidDigestFormat = errors.New("invalid digest format")
)
func ParseModelPath(name string) ModelPath {
@@ -74,6 +73,8 @@ func ParseModelPath(name string) ModelPath {
return mp
}
var errModelPathInvalid = errors.New("invalid model path")
func (mp ModelPath) GetNamespaceRepository() string {
return fmt.Sprintf("%s/%s", mp.Namespace, mp.Repository)
}

View File

@@ -777,7 +777,7 @@ func (s *Server) ShowHandler(c *gin.Context) {
func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
name := model.ParseName(req.Model)
if !name.IsValid() {
return nil, ErrModelPathInvalid
return nil, errModelPathInvalid
}
name, err := getExistingName(name)
if err != nil {

View File

@@ -711,7 +711,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuIn
req.opts.NumCtx = req.origNumCtx * p
if !envconfig.SchedSpread() {
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return []discover.GpuInfo{g}
@@ -727,7 +727,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuIn
// Now try all the GPUs
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return sgl
@@ -750,7 +750,7 @@ func pickBestPartialFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.Gp
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := llm.PredictServerFit(gl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, *numParallel)
_, estimatedVRAM := llm.PredictServerFit(gl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
@@ -825,7 +825,7 @@ func (s *Scheduler) expireRunner(model *Model) {
// If not, pick a runner to unload, else return nil and the request can be loaded
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList) *runnerRef {
slog.Debug("evaluating if CPU model load will fit in available system memory")
estimate := llm.EstimateGPULayers(gpus, f, req.model.ProjectorPaths, req.opts, req.opts.NumCtx/req.origNumCtx)
estimate := llm.EstimateGPULayers(gpus, f, req.model.ProjectorPaths, req.opts)
if estimate.TotalSize <= gpus[0].FreeMemory {
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
return nil

View File

@@ -1,13 +0,0 @@
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 }}
{{- if eq .Role "user" }}<start_of_turn>user
{{- if and (eq $i 1) $.System }}
{{ $.System }}
{{ end }}
{{ .Content }}<end_of_turn>
{{ else if eq .Role "assistant" }}<start_of_turn>model
{{ .Content }}<end_of_turn>
{{ end }}
{{- if $last }}<start_of_turn>model
{{ end }}
{{- end }}

View File

@@ -1,6 +0,0 @@
{
"stop": [
"<end_of_turn>"
],
"temperature": 0.1
}

View File

@@ -87,10 +87,6 @@
"template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
"name": "gemma-instruct"
},
{
"template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n",
"name": "gemma3-instruct"
},
{
"template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
"name": "llama3-instruct"

View File

@@ -1,10 +0,0 @@
<start_of_turn>user
You are a helpful assistant.
Hello, how are you?<end_of_turn>
<start_of_turn>model
I'm doing great. How can I help you today?<end_of_turn>
<start_of_turn>user
I'd like to show off how chat templating works!<end_of_turn>
<start_of_turn>model

View File

@@ -1,4 +0,0 @@
<start_of_turn>user
Hello, how are you?<end_of_turn>
<start_of_turn>model

View File

@@ -1,8 +0,0 @@
<start_of_turn>user
Hello, how are you?<end_of_turn>
<start_of_turn>model
I'm doing great. How can I help you today?<end_of_turn>
<start_of_turn>user
I'd like to show off how chat templating works!<end_of_turn>
<start_of_turn>model

21
types/bfloat16/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021 Tristan Rice
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,57 @@
// Vendored code from https://github.com/d4l3k/go-bfloat16
// unsafe pointer replaced by "math"
package bfloat16
import "math"
type BF16 uint16
func FromBytes(buf []byte) BF16 {
return BF16(uint16(buf[0]) + uint16(buf[1])<<8)
}
func ToBytes(b BF16) []byte {
return []byte{byte(b & 0xFF), byte(b >> 8)}
}
func Decode(buf []byte) []BF16 {
var out []BF16
for i := 0; i < len(buf); i += 2 {
out = append(out, FromBytes(buf[i:]))
}
return out
}
func Encode(f []BF16) []byte {
var out []byte
for _, a := range f {
out = append(out, ToBytes(a)...)
}
return out
}
func DecodeFloat32(buf []byte) []float32 {
var out []float32
for i := 0; i < len(buf); i += 2 {
out = append(out, ToFloat32(FromBytes(buf[i:])))
}
return out
}
func EncodeFloat32(f []float32) []byte {
var out []byte
for _, a := range f {
out = append(out, ToBytes(FromFloat32(a))...)
}
return out
}
func ToFloat32(b BF16) float32 {
u32 := uint32(b) << 16
return math.Float32frombits(u32)
}
func FromFloat32(f float32) BF16 {
u32 := math.Float32bits(f)
return BF16(u32 >> 16)
}

View File

@@ -0,0 +1,53 @@
package bfloat16
import (
"crypto/rand"
"reflect"
"testing"
)
func randomBytes(n int) []byte {
out := make([]byte, n)
if _, err := rand.Read(out); err != nil {
panic(err)
}
return out
}
func TestEncodeDecode(t *testing.T) {
b := randomBytes(1024)
bf16 := Decode(b)
out := Encode(bf16)
if !reflect.DeepEqual(b, out) {
t.Fatalf("%+v != %+v", b, out)
}
}
func TestEncodeDecodeFloat32(t *testing.T) {
b := randomBytes(1024)
bf16 := DecodeFloat32(b)
out := EncodeFloat32(bf16)
if !reflect.DeepEqual(b, out) {
t.Fatalf("%+v != %+v", b, out)
}
}
func TestBasicFloat32(t *testing.T) {
var in float32 = 1.0
out := ToFloat32(FromFloat32(in))
if !reflect.DeepEqual(in, out) {
t.Fatalf("%+v != %+v", in, out)
}
}
func TestComplexFloat32(t *testing.T) {
var in float32 = 123456789123456789.123456789
var want float32 = 123286039799267328.0
out := ToFloat32(FromFloat32(in))
if in == out {
t.Fatalf("no loss of precision")
}
if out != want {
t.Fatalf("%.16f != %.16f", want, out)
}
}