Compare commits

..

75 Commits

Author SHA1 Message Date
Blake Mizerany
49c126fde8 build.go: introduce a friendlier way to build Ollama
This commit introduces a more friendly way to build Ollama dependencies
and the binary without abusing `go generate` and removing the
unnecessary extra steps it brings with it.

This script also provides nicer feedback to the user about what is
happening during the build process.

At the end, it prints a helpful message to the user about what to do
next (e.g. run the new local Ollama).
2024-04-09 13:52:08 -07:00
writinwaters
1341ee1b56 Update README.md (#3539)
RAGFlow now supports integration with Ollama.
2024-04-08 10:58:14 -04:00
Jeffrey Morgan
63efa075a0 update generate scripts with new LLAMA_CUDA variable, set HIP_PLATFORM to avoid compiler errors (#3528) 2024-04-07 19:29:51 -04:00
Thomas Vitale
cb03fc9571 Docs: Remove wrong parameter for Chat Completion (#3515)
Fixes gh-3514

Signed-off-by: Thomas Vitale <ThomasVitale@users.noreply.github.com>
2024-04-06 09:08:35 -07:00
Michael Yang
a5ec9cfc0f Merge pull request #3508 from ollama/mxyng/rope 2024-04-05 18:46:06 -07:00
Michael Yang
be517e491c no rope parameters 2024-04-05 18:05:27 -07:00
Michael Yang
fc8e108642 Merge pull request #3496 from ollama/mxyng/cmd-r-graph
add command-r graph estimate
2024-04-05 12:26:21 -07:00
Daniel Hiltgen
c5d5c4a96c Merge pull request #3491 from dhiltgen/context_bust_test
Add test case for context exhaustion
2024-04-04 16:20:20 -07:00
Daniel Hiltgen
dfe330fa1c Merge pull request #3488 from mofanke/fix-windows-dll-compress
fix dll compress in windows building
2024-04-04 16:12:13 -07:00
Michael Yang
01f77ae25d add command-r graph estimate 2024-04-04 14:07:24 -07:00
Daniel Hiltgen
483b81a863 Merge pull request #3494 from dhiltgen/ci_release
Fail fast if mingw missing on windows
2024-04-04 10:15:40 -07:00
Daniel Hiltgen
36bd967722 Fail fast if mingw missing on windows 2024-04-04 09:51:26 -07:00
Jeffrey Morgan
b0e7d35db8 use an older version of the mac os sdk in release (#3484) 2024-04-04 09:48:54 -07:00
Daniel Hiltgen
aeb1fb5192 Add test case for context exhaustion
Confirmed this fails on 0.1.30 with known regression
but passes on main
2024-04-04 07:42:17 -07:00
Daniel Hiltgen
a2e60ebcaf Merge pull request #3490 from dhiltgen/ci_fixes
CI missing archive
2024-04-04 07:24:24 -07:00
Daniel Hiltgen
883ec4d1ef CI missing archive 2024-04-04 07:23:27 -07:00
mofanke
4de0126719 fix dll compress in windows building 2024-04-04 21:27:33 +08:00
Daniel Hiltgen
9768e2dc75 Merge pull request #3481 from dhiltgen/ci_fixes
CI subprocess path fix
2024-04-03 19:29:09 -07:00
Daniel Hiltgen
08600d5bec CI subprocess path fix 2024-04-03 19:12:53 -07:00
Daniel Hiltgen
a624e672d2 Merge pull request #3479 from dhiltgen/ci_fixes
Fix CI release glitches
2024-04-03 18:42:27 -07:00
Daniel Hiltgen
e4a7e5b2ca Fix CI release glitches
The subprocess change moved the build directory
arm64 builds weren't setting cross-compilation flags when building on x86
2024-04-03 16:41:40 -07:00
Michael Yang
a0a15cfd5b Merge pull request #3463 from ollama/mxyng/graph-estimate
update graph size estimate
2024-04-03 14:27:30 -07:00
Michael Yang
12e923e158 update graph size estimate 2024-04-03 13:34:12 -07:00
Jeffrey Morgan
cd135317d2 Fix macOS builds on older SDKs (#3467) 2024-04-03 10:45:54 -07:00
Michael Yang
4f895d633f Merge pull request #3466 from ollama/mxyng/head-kv
default head_kv to 1
2024-04-03 10:41:00 -07:00
Blake Mizerany
7d05a6ee8f cmd: provide feedback if OLLAMA_MODELS is set on non-serve command (#3470)
This also moves the checkServerHeartbeat call out of the "RunE" Cobra
stuff (that's the only word I have for that) to on-site where it's after
the check for OLLAMA_MODELS, which allows the helpful error message to
be printed before the server heartbeat check. This also arguably makes
the code more readable without the magic/superfluous "pre" function
caller.
2024-04-02 22:11:13 -07:00
Daniel Hiltgen
464d817824 Merge pull request #3464 from dhiltgen/subprocess
Fix numgpu opt miscomparison
2024-04-02 20:10:17 -07:00
Pier Francesco Contino
531324a9be feat: add OLLAMA_DEBUG in ollama server help message (#3461)
Co-authored-by: Pier Francesco Contino <pfcontino@gmail.com>
2024-04-02 18:20:03 -07:00
Daniel Hiltgen
6589eb8a8c Revert options as a ref in the server 2024-04-02 16:44:10 -07:00
Michael Yang
90f071c658 default head_kv to 1 2024-04-02 16:37:59 -07:00
Michael Yang
a039e383cd Merge pull request #3465 from ollama/mxyng/fix-metal
fix metal gpu
2024-04-02 16:29:58 -07:00
Michael Yang
80163ebcb5 fix metal gpu 2024-04-02 16:06:45 -07:00
Daniel Hiltgen
a57818d93e Merge pull request #3343 from dhiltgen/bump_more2
Bump llama.cpp to b2581
2024-04-02 15:08:26 -07:00
Daniel Hiltgen
841adda157 Fix windows lint CI flakiness 2024-04-02 12:22:16 -07:00
Daniel Hiltgen
0035e31af8 Bump to b2581 2024-04-02 11:53:07 -07:00
Daniel Hiltgen
c863c6a96d Merge pull request #3218 from dhiltgen/subprocess
Switch back to subprocessing for llama.cpp
2024-04-02 10:49:44 -07:00
Daniel Hiltgen
1f11b52511 Refined min memory from testing 2024-04-01 16:48:33 -07:00
Daniel Hiltgen
526d4eb204 Release gpu discovery library after use
Leaving the cudart library loaded kept ~30m of memory
pinned in the GPU in the main process.  This change ensures
we don't hold GPU resources when idle.
2024-04-01 16:48:33 -07:00
Daniel Hiltgen
0a74cb31d5 Safeguard for noexec
We may have users that run into problems with our current
payload model, so this gives us an escape valve.
2024-04-01 16:48:33 -07:00
Daniel Hiltgen
10ed1b6292 Detect too-old cuda driver
"cudart init failure: 35" isn't particularly helpful in the logs.
2024-04-01 16:48:33 -07:00
Daniel Hiltgen
4fec5816d6 Integration test improvements
Cleaner shutdown logic, a bit of response hardening
2024-04-01 16:48:18 -07:00
Daniel Hiltgen
0a0e9f3e0f Apply 01-cache.diff 2024-04-01 16:48:18 -07:00
Daniel Hiltgen
58d95cc9bd Switch back to subprocessing for llama.cpp
This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems.  This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.
2024-04-01 16:48:18 -07:00
Patrick Devine
3b6a9154dd Simplify model conversion (#3422) 2024-04-01 16:14:53 -07:00
Michael Yang
d6dd2ff839 Merge pull request #3241 from ollama/mxyng/mem
update memory estimations for gpu offloading
2024-04-01 13:59:14 -07:00
Michael Yang
e57a6ba89f Merge pull request #2926 from ollama/mxyng/decode-ggml-v2
refactor model parsing
2024-04-01 13:58:13 -07:00
Michael Yang
12ec2346ef Merge pull request #3442 from ollama/mxyng/generate-output
fix generate output
2024-04-01 13:56:09 -07:00
Michael Yang
1ec0df1069 fix generate output 2024-04-01 13:47:34 -07:00
Michael Yang
91b3e4d282 update memory calcualtions
count each layer independently when deciding gpu offloading
2024-04-01 13:16:32 -07:00
Michael Yang
d338d70492 refactor model parsing 2024-04-01 13:16:15 -07:00
Philipp Gillé
011bb67351 Add chromem-go to community integrations (#3437) 2024-04-01 11:17:37 -04:00
Saifeddine ALOUI
d124627202 Update README.md (#3436) 2024-04-01 11:16:31 -04:00
Jesse Zhang
b0a8246a69 Community Integration: CRAG Ollama Chat (#3423)
Corrective Retrieval Augmented Generation Demo, powered by Langgraph and Streamlit 🤗

Support: 
- Ollama
- OpenAI APIs
2024-04-01 11:16:14 -04:00
Yaroslav
e6fb39c182 Update README.md (#3378)
Plugins list updated
2024-03-31 13:10:05 -04:00
sugarforever
e1f1c374ea Community Integration: ChatOllama (#3400)
* Community Integration: ChatOllama

* fixed typo
2024-03-30 22:46:50 -04:00
Jeffrey Morgan
06a1508bfe Update 90_bug_report.yml 2024-03-29 10:11:17 -04:00
Patrick Devine
5a5efee46b Add gemma safetensors conversion (#3250)
Co-authored-by: Michael Yang <mxyng@pm.me>
2024-03-28 18:54:01 -07:00
Daniel Hiltgen
97ae517fbf Merge pull request #3398 from dhiltgen/release_latest
CI automation for tagging latest images
2024-03-28 16:25:54 -07:00
Daniel Hiltgen
44b813e459 Merge pull request #3377 from dhiltgen/rocm_v6_bump
Bump ROCm to 6.0.2 patch release
2024-03-28 16:07:54 -07:00
Daniel Hiltgen
539043f5e0 CI automation for tagging latest images 2024-03-28 16:07:37 -07:00
Daniel Hiltgen
dbcace6847 Merge pull request #3392 from dhiltgen/ci_build_win_cuda
CI windows gpu builds
2024-03-28 16:03:52 -07:00
Daniel Hiltgen
c91a4ebcff Bump ROCm to 6.0.2 patch release 2024-03-28 15:58:57 -07:00
Daniel Hiltgen
b79c7e4528 CI windows gpu builds
If we're doing generate, test windows cuda and rocm as well
2024-03-28 14:39:10 -07:00
Michael Yang
035b274b70 Merge pull request #3379 from ollama/mxyng/origins
fix: trim quotes on OLLAMA_ORIGINS
2024-03-28 14:14:18 -07:00
Michael Yang
9c6a254945 Merge pull request #3391 from ollama/mxyng-patch-1 2024-03-28 13:15:56 -07:00
Michael Yang
f31f2bedf4 Update troubleshooting link 2024-03-28 12:05:26 -07:00
Michael Yang
756c257553 Merge pull request #3380 from ollama/mxyng/conditional-generate
fix: workflows
2024-03-28 00:35:27 +01:00
Michael Yang
5255d0af8a fix: workflows 2024-03-27 16:30:01 -07:00
Michael Yang
af8a8a6b59 fix: trim quotes on OLLAMA_ORIGINS 2024-03-27 15:24:29 -07:00
Michael Yang
461ad25015 Merge pull request #3376 from ollama/mxyng/conditional-generate
only generate on changes to llm subdirectory
2024-03-27 22:12:53 +01:00
Michael Yang
8838ae787d stub stub 2024-03-27 13:59:12 -07:00
Michael Yang
db75402ade mangle arch 2024-03-27 13:44:50 -07:00
Michael Yang
1e85a140a3 only generate on changes to llm subdirectory 2024-03-27 12:45:35 -07:00
Michael Yang
c363282fdc Merge pull request #3375 from ollama/mxyng/conditional-generate
only generate cuda/rocm when changes to llm detected
2024-03-27 20:40:55 +01:00
Michael Yang
5b0c48d29e only generate cuda/rocm when changes to llm detected 2024-03-27 12:23:09 -07:00
74 changed files with 3316 additions and 3091 deletions

View File

@@ -19,7 +19,7 @@ body:
label: What did you expect to see?
description: What did you expect to see/happen instead?
validations:
required: true
required: false
- type: textarea
id: steps
attributes:

24
.github/workflows/latest.yaml vendored Normal file
View File

@@ -0,0 +1,24 @@
name: latest
on:
release:
types: [released]
jobs:
update-latest:
environment: release
runs-on: linux
steps:
- uses: actions/checkout@v4
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Tag images as latest
env:
PUSH: "1"
shell: bash
run: |
export "VERSION=${GITHUB_REF_NAME#v}"
./scripts/tag_latest.sh

View File

@@ -8,7 +8,7 @@ on:
jobs:
# Full build of the Mac assets
build-darwin:
runs-on: macos-latest
runs-on: macos-12
environment: release
steps:
- uses: actions/checkout@v4
@@ -38,9 +38,11 @@ jobs:
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
APPLE_ID: ${{ vars.APPLE_ID }}
SDKROOT: /Applications/Xcode_13.4.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_13.4.1.app/Contents/Developer
run: |
./scripts/build_darwin.sh
- uses: actions/upload-artifact@v4
with:
name: dist-darwin
@@ -48,7 +50,6 @@ jobs:
dist/*arwin*
!dist/*-cov
# Windows builds take a long time to both install the dependencies and build, so parallelize
# CPU generation step
generate-windows-cpu:
@@ -94,12 +95,15 @@ jobs:
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
go generate -x ./...
$env:GOARCH = ""; go run build.go -f -d -target=${{ matrix.arch }}
name: go generate
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cpu
path: llm/llama.cpp/build/**/lib/*
path: |
llm/build/**/bin/*
llm/build/**/*.a
# ROCm generation step
generate-windows-rocm:
@@ -138,7 +142,7 @@ jobs:
with:
go-version: '1.22'
cache: true
- name: "Install ROCm"
- name: 'Install ROCm'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
@@ -146,7 +150,7 @@ jobs:
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
- name: "Verify ROCm"
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- run: go get ./...
@@ -160,7 +164,7 @@ jobs:
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
go generate -x ./...
name: go generate
- name: "gather rocm dependencies"
- name: 'gather rocm dependencies'
run: |
$HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
md "dist\deps\bin\rocblas\library"
@@ -170,7 +174,7 @@ jobs:
- uses: actions/upload-artifact@v4
with:
name: generate-windows-rocm
path: llm/llama.cpp/build/**/lib/*
path: llm/build/**/bin/*
- uses: actions/upload-artifact@v4
with:
name: windows-rocm-deps
@@ -213,27 +217,34 @@ jobs:
with:
go-version: '1.22'
cache: true
# TODO - consider replacing this action with a ps1 snippet to install
# This actions seems to fail sometimes with "no tools in cache" but a re-run of the failed job clears it
# https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
- name: "Install CUDA"
uses: Jimver/cuda-toolkit@v0.2.14
id: cuda-toolkit
with:
cuda: '11.3.1'
- name: "Verify CUDA"
- name: 'Install CUDA'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" >> $env:GITHUB_PATH
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
- name: 'Verify CUDA'
run: nvcc -V
- run: go get ./...
- name: go generate
run: |
$gopath=(get-command go).source | split-path -parent
$cudabin=(get-command nvcc).source | split-path
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$env:PATH="$gopath;$cudabin;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
go generate -x ./...
- name: "gather cuda dependencies"
- name: 'gather cuda dependencies'
run: |
$NVIDIA_DIR=(resolve-path 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*\bin\')[0]
md "dist\deps"
@@ -243,7 +254,7 @@ jobs:
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda
path: llm/llama.cpp/build/**/lib/*
path: llm/build/**/bin/*
- uses: actions/upload-artifact@v4
with:
name: windows-cuda-deps
@@ -296,11 +307,11 @@ jobs:
- uses: actions/download-artifact@v4
with:
name: generate-windows-cpu
path: llm/llama.cpp/build
path: llm/build
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda
path: llm/llama.cpp/build
path: llm/build
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps
@@ -312,8 +323,8 @@ jobs:
- uses: actions/download-artifact@v4
with:
name: generate-windows-rocm
path: llm/llama.cpp/build
- run: dir llm/llama.cpp/build
path: llm/build
- run: dir llm/build
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
@@ -329,14 +340,14 @@ jobs:
name: dist-windows
path: dist/*.exe
# Linux x86 assets built using the container based build
# Linux x86 assets built using the container based build
build-linux-amd64:
environment: release
runs-on: linux
env:
OLLAMA_SKIP_MANIFEST_CREATE: "1"
OLLAMA_SKIP_MANIFEST_CREATE: '1'
BUILD_ARCH: amd64
PUSH: "1"
PUSH: '1'
steps:
- uses: actions/checkout@v4
with:
@@ -366,9 +377,9 @@ jobs:
environment: release
runs-on: linux-arm64
env:
OLLAMA_SKIP_MANIFEST_CREATE: "1"
OLLAMA_SKIP_MANIFEST_CREATE: '1'
BUILD_ARCH: arm64
PUSH: "1"
PUSH: '1'
steps:
- uses: actions/checkout@v4
with:
@@ -376,7 +387,7 @@ jobs:
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- name: "Install Docker"
- name: 'Install Docker'
run: |
# Add Docker's official GPG key:
env
@@ -413,7 +424,7 @@ jobs:
!dist/*-cov
# Aggregate all the assets and ship a release
release:
release:
needs:
- build-darwin
- build-windows
@@ -424,8 +435,8 @@ jobs:
permissions:
contents: write
env:
OLLAMA_SKIP_IMAGE_BUILD: "1"
PUSH: "1"
OLLAMA_SKIP_IMAGE_BUILD: '1'
PUSH: '1'
steps:
- uses: actions/checkout@v4
- name: Set Version
@@ -453,11 +464,11 @@ jobs:
with:
name: ${{ env.RELEASE_VERSION }}
allowUpdates: true
artifacts: "dist/*"
artifacts: 'dist/*'
draft: true
prerelease: true
omitBodyDuringUpdate: true
generateReleaseNotes: true
omitDraftDuringUpdate: true
omitPrereleaseDuringUpdate: true
replacesArtifacts: true
replacesArtifacts: true

View File

@@ -1,5 +1,16 @@
name: test
concurrency:
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
# cancels running CI jobs and starts all new ones.
#
# For non-PR pushes, concurrency.group needs to be unique for every distinct
# CI run we want to have happen. Use run_id, which in practice means all
# non-PR CI runs will be allowed to run without preempting each other.
group: ${{ github.workflow }}-$${{ github.pull_request.number || github.run_id }}
cancel-in-progress: true
on:
pull_request:
paths:
@@ -9,7 +20,32 @@ on:
- '!README.md'
jobs:
changes:
runs-on: ubuntu-latest
outputs:
GENERATE: ${{ steps.changes.outputs.GENERATE }}
GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }}
GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- id: changes
run: |
changed() {
git diff-tree -r --no-commit-id --name-only ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }} \
| xargs python3 -c "import sys; print(any([x.startswith('$1') for x in sys.argv[1:]]))"
}
{
echo GENERATE=$(changed llm/)
echo GENERATE_CUDA=$(changed llm/)
echo GENERATE_ROCM=$(changed llm/)
} >>$GITHUB_OUTPUT
generate:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE == 'True' }}
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
@@ -31,21 +67,29 @@ jobs:
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
$gccpath=(get-command gcc).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
go generate -x ./...
$env:PATH="$gopath;$gccpath;$env:PATH"
echo $env:PATH
$env:GOARCH = ""; go run build.go -f -d -target=${{ matrix.arch }}
if: ${{ startsWith(matrix.os, 'windows-') }}
name: "Windows Go Generate"
- run: go generate -x ./...
name: 'Windows Go Generate'
- run: |
GOARCH= go run build.go -f -d -target=${{ matrix.arch }}
if: ${{ ! startsWith(matrix.os, 'windows-') }}
name: "Unix Go Generate"
name: 'Unix Go Generate'
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: llm/llama.cpp/build/**/lib/*
path: |
llm/build/**/bin/*
llm/build/**/*.a
generate-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
strategy:
matrix:
cuda-version:
@@ -67,18 +111,20 @@ jobs:
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
GOARCH= go run build.go -f -d -target=${{ matrix.arch }}
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: cuda-${{ matrix.cuda-version }}-libraries
path: llm/llama.cpp/build/**/lib/*
path: llm/build/**/bin/*
generate-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
strategy:
matrix:
rocm-version:
- '6.0'
- '6.0.2'
runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps:
@@ -96,13 +142,95 @@ jobs:
- run: go get ./...
- run: |
git config --global --add safe.directory /__w/ollama/ollama
go generate -x ./...
GOARCH= go run build.go -f -d -target=${{ matrix.arch }}
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: rocm-${{ matrix.rocm-version }}-libraries
path: llm/llama.cpp/build/**/lib/*
path: llm/build/**/bin/*
# ROCm generation step
generate-windows-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
runs-on: windows
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: '1.22'
cache: true
- name: 'Install ROCm'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
- name: 'Verify ROCm'
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- run: go get ./...
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:GOARCH = ""; go run build.go -f -d -target=${{ matrix.arch }}
name: go run build.go
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
# TODO - do we need any artifacts?
# CUDA generation step
generate-windows-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
runs-on: windows
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: '1.22'
cache: true
- name: 'Install CUDA'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
echo "$cudaPath\bin" >> $env:GITHUB_PATH
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
- name: 'Verify CUDA'
run: nvcc -V
- run: go get ./...
- name: go run build.go
run: |
$gopath=(get-command go).source | split-path -parent
$cudabin=(get-command nvcc).source | split-path
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
cd $env:GITHUB_WORKSPACE
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
$env:PATH="$gopath;$cudabin;$env:PATH"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:GOARCH = ""; go run build.go -f -d -target=${{ matrix.arch }}
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
# TODO - do we need any artifacts?
lint:
strategy:
matrix:
@@ -128,21 +256,28 @@ jobs:
go-version: '1.22'
cache: false
- run: |
mkdir -p llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/stub.so
case ${{ matrix.arch }} in
amd64) echo ARCH=x86_64 ;;
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: |
mkdir -p llm/build/linux/$ARCH/stub/bin
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/stub.dylib
touch llm/llama.cpp/ggml-metal.metal
mkdir -p llm/build/darwin/$ARCH/stub/bin
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'macos-') }}
- run: |
mkdir -p llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/
touch llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/stub.dll
mkdir -p llm/build/windows/$ARCH/stub/bin
touch llm/build/windows/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'windows-') }}
- uses: golangci/golangci-lint-action@v3
shell: bash
- uses: golangci/golangci-lint-action@v4
with:
args: --timeout 8m0s
test:
needs: generate
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
@@ -156,6 +291,7 @@ jobs:
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
OLLAMA_CPU_TARGET: 'static'
steps:
- uses: actions/checkout@v4
with:
@@ -164,13 +300,34 @@ jobs:
with:
go-version: '1.22'
cache: true
- run: |
GOARCH= go run build.go -f -d -target=${{ matrix.arch }}
if: ${{ ! startsWith(matrix.os, 'windows-') }}
- run: |
$env:GOARCH = ""; go run build.go -f -d -target=${{ matrix.arch }}
if: ${{ startsWith(matrix.os, 'windows-') }}
- run: go get
- uses: actions/download-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: llm/llama.cpp/build
- run: go build
- run: go test -v ./...
- run: |
case ${{ matrix.arch }} in
amd64) echo ARCH=x86_64 ;;
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: |
mkdir -p llm/build/linux/$ARCH/stub/bin
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/build/darwin/$ARCH/stub/bin
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'macos-') }}
- run: |
mkdir -p llm/build/windows/$ARCH/stub/bin
touch llm/build/windows/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'windows-') }}
shell: bash
- run: |
go test -v ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-binaries

3
.gitignore vendored
View File

@@ -10,4 +10,5 @@ ggml-metal.metal
*.exe
.idea
test_data
*.crt
*.crt
llm/build

View File

@@ -15,13 +15,3 @@ linters:
- misspell
- nilerr
- unused
linters-settings:
errcheck:
# exclude the following functions since we don't generally
# need to be concerned with the returned errors
exclude-functions:
- encoding/binary.Read
- (*os.File).Seek
- (*bufio.Writer).WriteString
- (*github.com/spf13/pflag.FlagSet).Set
- (*github.com/ollama/ollama/llm.readSeekOffset).Seek

View File

@@ -2,7 +2,7 @@ ARG GOLANG_VERSION=1.22.1
ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1
ARG ROCM_VERSION=6.0
ARG ROCM_VERSION=6.0.2
# Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code
@@ -61,6 +61,8 @@ ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
@@ -68,28 +70,33 @@ RUN OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
FROM --platform=linux/arm64 centos:7 AS cpu-build-arm64
FROM --platform=linux/arm64 centos:7 AS cpu-builder-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
# Note, we only build the "base" CPU variant on arm since avx/avx2 are x86 features
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
ENV CGO_ENABLED 1
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/deps/ ./dist/deps/
ARG GOFLAGS
ARG CGO_CFLAGS
@@ -101,8 +108,8 @@ ENV CGO_ENABLED 1
ARG GOLANG_VERSION
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
RUN mkdir -p /go/src/github.com/ollama/ollama/dist/deps/
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build -trimpath .

View File

@@ -201,16 +201,10 @@ Install `cmake` and `go`:
brew install cmake go
```
Then generate dependencies:
```
go generate ./...
```
Then build the binary:
```
go build .
go run build.go
```
More detailed instructions can be found in the [developer guide](https://github.com/ollama/ollama/blob/main/docs/development.md)
@@ -259,6 +253,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
- [LibreChat](https://github.com/danny-avila/LibreChat)
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
@@ -289,6 +284,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [ChatOllama: Open Source Chatbot based on Ollama with Knowledge Bases](https://github.com/sugarforever/chat-ollama)
- [CRAG Ollama Chat: Simple Web Search with Corrective RAG](https://github.com/Nagi-ovo/CRAG-Ollama-Chat)
- [RAGFlow: Open-source Retrieval-Augmented Generation engine based on deep document understanding](https://github.com/infiniflow/ragflow)
### Terminal
@@ -313,6 +311,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Database
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
### Package managers
@@ -371,3 +370,4 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)

View File

@@ -121,8 +121,6 @@ type Runner struct {
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
@@ -383,8 +381,6 @@ func DefaultOptions() Options {
Runner: Runner{
// options set when the model is loaded
NumCtx: 2048,
RopeFrequencyBase: 10000.0,
RopeFrequencyScale: 1.0,
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumGQA: 1,

View File

@@ -9,6 +9,7 @@ import (
"os"
"os/exec"
"path/filepath"
"syscall"
"time"
"github.com/ollama/ollama/api"
@@ -83,6 +84,28 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
io.Copy(logFile, stderr) //nolint:errcheck
}()
// Re-wire context done behavior to attempt a graceful shutdown of the server
cmd.Cancel = func() error {
if cmd.Process != nil {
cmd.Process.Signal(os.Interrupt) //nolint:errcheck
tick := time.NewTicker(10 * time.Millisecond)
defer tick.Stop()
for {
select {
case <-tick.C:
// OS agnostic "is it still running"
if proc, err := os.FindProcess(int(cmd.Process.Pid)); err != nil || errors.Is(proc.Signal(syscall.Signal(0)), os.ErrProcessDone) {
return nil //nolint:nilerr
}
case <-time.After(5 * time.Second):
slog.Warn("graceful server shutdown timeout, killing", "pid", cmd.Process.Pid)
cmd.Process.Kill() //nolint:errcheck
}
}
}
return nil
}
// run the command and wait for it to finish
if err := cmd.Start(); err != nil {
return done, fmt.Errorf("failed to start server %w", err)
@@ -105,7 +128,7 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
select {
case <-ctx.Done():
slog.Debug(fmt.Sprintf("server shutdown with exit code %d", code))
slog.Info(fmt.Sprintf("server shutdown with exit code %d", code))
done <- code
return
default:

192
build.go Normal file
View File

@@ -0,0 +1,192 @@
//go:build ignore
package main
import (
"cmp"
"errors"
"flag"
"log"
"os"
"os/exec"
"path/filepath"
"runtime"
)
// Flags
var (
flagForce = flag.Bool("f", false, "force re-generation of dependencies")
flagSkipBuild = flag.Bool("d", false, "generate dependencies only (e.g. skip 'go build .')")
// Flags to set GOARCH and GOOS explicitly for cross-platform builds,
// e.g., in CI to target a different platform than the build matrix
// default. These allows us to run generate without a separate build
// step for building the script binary for the host ARCH and then
// runing the generate script for the target ARCH. Instead, we can
// just run `go run build.go -target=$GOARCH` to generate the
// deps.
flagGOARCH = flag.String("target", "", "sets GOARCH to use when generating dependencies and building")
)
func buildEnv() []string {
return append(os.Environ(),
"GOARCH="+cmp.Or(*flagGOARCH, runtime.GOARCH),
)
}
func main() {
log.SetFlags(0)
flag.Usage = func() {
log.Printf("Usage: go run build.go [flags]")
log.Println()
log.Println("Flags:")
flag.PrintDefaults()
log.Println()
log.Println("This script builds the Ollama server binary and generates the llama.cpp")
log.Println("bindings for the current platform. It assumes that the current working")
log.Println("directory is the root directory of the Ollama project.")
log.Println()
log.Println("If the -d flag is provided, the script will only generate the dependencies")
log.Println("and skip building the Ollama server binary.")
log.Println()
log.Println("If the -f flag is provided, the script will force re-generation of the")
log.Println("dependencies.")
log.Println()
log.Println("If the -target flag is provided, the script will set GOARCH to the value")
log.Println("of the flag. This is useful for cross-platform builds.")
log.Println()
log.Println("The script will check for the required dependencies (cmake, gcc) and")
log.Println("print their version.")
log.Println()
log.Println("The script will also check if it is being run from the root directory of")
log.Println("the Ollama project.")
log.Println()
os.Exit(1)
}
flag.Parse()
log.Printf("=== Building Ollama ===")
defer func() {
log.Printf("=== Done building Ollama ===")
log.Println()
log.Println("To run the Ollama server, use:")
log.Println()
log.Println(" ./ollama serve")
log.Println()
}()
if flag.NArg() > 0 {
flag.Usage()
}
if !inRootDir() {
log.Fatalf("Please run this script from the root directory of the Ollama project.")
}
if err := checkDependencies(); err != nil {
log.Fatalf("Failed dependency check: %v", err)
}
if err := buildLlammaCPP(); err != nil {
log.Fatalf("Failed to build llama.cpp: %v", err)
}
if err := goBuildOllama(); err != nil {
log.Fatalf("Failed to build ollama Go binary: %v", err)
}
}
// checkDependencies does a quick check to see if the required dependencies are
// installed on the system and functioning enough to print their version.
//
// TODO(bmizerany): Check the actual version of the dependencies? Seems a
// little daunting given diff versions might print diff things. This should
// be good enough for now.
func checkDependencies() error {
var err error
check := func(name string, args ...string) {
log.Printf("=== Checking for %s ===", name)
defer log.Printf("=== Done checking for %s ===\n\n", name)
cmd := exec.Command(name, args...)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
err = errors.Join(err, cmd.Run())
}
check("cmake", "--version")
check("gcc", "--version")
return err
}
func goBuildOllama() error {
log.Println("=== Building Ollama binary ===")
defer log.Printf("=== Done building Ollama binary ===\n\n")
if *flagSkipBuild {
log.Println("Skipping 'go build -o ollama .'")
return nil
}
cmd := exec.Command("go", "build", "-o", "ollama", ".")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = buildEnv()
return cmd.Run()
}
// buildLlammaCPP generates the llama.cpp bindings for the current platform.
//
// It assumes that the current working directory is the root directory of the
// Ollama project.
func buildLlammaCPP() error {
log.Println("=== Generating dependencies ===")
defer log.Printf("=== Done generating dependencies ===\n\n")
if *flagForce {
if err := os.RemoveAll(filepath.Join("llm", "build")); err != nil {
return err
}
}
if isDirectory(filepath.Join("llm", "build")) {
log.Println("llm/build already exists; skipping. Use -f to force re-generate.")
return nil
}
scriptDir, err := filepath.Abs(filepath.Join("llm", "generate"))
if err != nil {
return err
}
var cmd *exec.Cmd
switch runtime.GOOS {
case "windows":
script := filepath.Join(scriptDir, "gen_windows.ps1")
cmd = exec.Command("powershell", "-ExecutionPolicy", "Bypass", "-File", script)
case "linux":
script := filepath.Join(scriptDir, "gen_linux.sh")
cmd = exec.Command("bash", script)
case "darwin":
script := filepath.Join(scriptDir, "gen_darwin.sh")
cmd = exec.Command("bash", script)
default:
log.Fatalf("Unsupported OS: %s", runtime.GOOS)
}
cmd.Dir = filepath.Join("llm", "generate")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = buildEnv()
log.Printf("Running GOOS=%s GOARCH=%s %s", runtime.GOOS, runtime.GOARCH, cmd.Args)
return cmd.Run()
}
func isDirectory(path string) bool {
info, err := os.Stat(path)
if err != nil {
return false
}
return info.IsDir()
}
// inRootDir returns true if the current working directory is the root
// directory of the Ollama project. It looks for a file named "go.mod".
func inRootDir() bool {
_, err := os.Stat("go.mod")
return err == nil
}

View File

@@ -213,7 +213,10 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
if _, err := io.Copy(hash, bin); err != nil {
return "", err
}
bin.Seek(0, io.SeekStart)
if _, err := bin.Seek(0, io.SeekStart); err != nil {
return "", err
}
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
if err = client.CreateBlob(cmd.Context(), digest, bin); err != nil {
@@ -223,6 +226,14 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
}
func RunHandler(cmd *cobra.Command, args []string) error {
if os.Getenv("OLLAMA_MODELS") != "" {
return errors.New("OLLAMA_MODELS must only be set for 'ollama serve'")
}
if err := checkServerHeartbeat(cmd, args); err != nil {
return err
}
client, err := api.ClientFromEnvironment()
if err != nil {
return err
@@ -948,11 +959,10 @@ func NewCLI() *cobra.Command {
showCmd.Flags().Bool("system", false, "Show system message of a model")
runCmd := &cobra.Command{
Use: "run MODEL [PROMPT]",
Short: "Run a model",
Args: cobra.MinimumNArgs(1),
PreRunE: checkServerHeartbeat,
RunE: RunHandler,
Use: "run MODEL [PROMPT]",
Short: "Run a model",
Args: cobra.MinimumNArgs(1),
RunE: RunHandler,
}
runCmd.Flags().Bool("verbose", false, "Show timings for response")
@@ -973,6 +983,7 @@ Environment Variables:
OLLAMA_ORIGINS A comma separated list of allowed origins.
OLLAMA_MODELS The path to the models directory (default is "~/.ollama/models")
OLLAMA_KEEP_ALIVE The duration that models stay loaded in memory (default is "5m")
OLLAMA_DEBUG Set to 1 to enable additional debug logging
`)
pullCmd := &cobra.Command{

View File

@@ -295,10 +295,14 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.WordWrap = false
fmt.Println("Set 'nowordwrap' mode.")
case "verbose":
cmd.Flags().Set("verbose", "true")
if err := cmd.Flags().Set("verbose", "true"); err != nil {
return err
}
fmt.Println("Set 'verbose' mode.")
case "quiet":
cmd.Flags().Set("verbose", "false")
if err := cmd.Flags().Set("verbose", "false"); err != nil {
return err
}
fmt.Println("Set 'quiet' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {

View File

@@ -13,7 +13,9 @@ import (
"regexp"
"slices"
"github.com/d4l3k/go-bfloat16"
"github.com/mitchellh/mapstructure"
"github.com/x448/float16"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
@@ -30,9 +32,17 @@ type Params struct {
AttentionHeads int `json:"num_attention_heads"` // n_head
KeyValHeads int `json:"num_key_value_heads"`
NormEPS float64 `json:"rms_norm_eps"`
RopeFreqBase float64 `json:"rope_theta"`
BoSTokenID int `json:"bos_token_id"`
EoSTokenID int `json:"eos_token_id"`
HeadDimension int `json:"head_dim"`
PaddingTokenID int `json:"pad_token_id"`
ByteOrder
}
type ByteOrder interface {
binary.ByteOrder
binary.AppendByteOrder
}
type MetaData struct {
@@ -41,27 +51,43 @@ type MetaData struct {
Offsets []int `mapstructure:"data_offsets"`
}
func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
type ModelArch interface {
GetTensors() error
LoadVocab() error
WriteGGUF() (string, error)
}
type ModelData struct {
Path string
Name string
Params *Params
Vocab *Vocab
Tensors []llm.Tensor
}
func ReadSafeTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
f, err := os.Open(fn)
if err != nil {
return []llm.Tensor{}, 0, err
return nil, 0, err
}
defer f.Close()
var jsonSize uint64
binary.Read(f, binary.LittleEndian, &jsonSize)
if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
return nil, 0, err
}
buf := make([]byte, jsonSize)
_, err = io.ReadFull(f, buf)
if err != nil {
return []llm.Tensor{}, 0, err
return nil, 0, err
}
d := json.NewDecoder(bytes.NewBuffer(buf))
d.UseNumber()
var parsed map[string]interface{}
if err = d.Decode(&parsed); err != nil {
return []llm.Tensor{}, 0, err
return nil, 0, err
}
var keys []string
@@ -78,7 +104,7 @@ func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
vals := parsed[k].(map[string]interface{})
var data MetaData
if err = mapstructure.Decode(vals, &data); err != nil {
return []llm.Tensor{}, 0, err
return nil, 0, err
}
var size uint64
@@ -100,7 +126,7 @@ func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
ggufName, err := GetTensorName(k)
if err != nil {
slog.Error("%v", err)
return []llm.Tensor{}, 0, err
return nil, 0, err
}
shape := []uint64{0, 0, 0, 0}
@@ -109,14 +135,22 @@ func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
}
t := llm.Tensor{
Name: ggufName,
Kind: kind,
Offset: offset,
Shape: shape[:],
FileName: fn,
OffsetPadding: 8 + jsonSize,
FileOffsets: []uint64{uint64(data.Offsets[0]), uint64(data.Offsets[1])},
Name: ggufName,
Kind: kind,
Offset: offset,
Shape: shape[:],
}
t.WriterTo = safetensorWriterTo{
t: &t,
params: params,
bo: params.ByteOrder,
filename: fn,
start: uint64(data.Offsets[0]),
end: uint64(data.Offsets[1]),
padding: 8 + jsonSize,
}
slog.Debug(fmt.Sprintf("%v", t))
tensors = append(tensors, t)
offset += size
@@ -124,21 +158,21 @@ func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
return tensors, offset, nil
}
func GetSafeTensors(dirpath string) ([]llm.Tensor, error) {
func GetSafeTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
var tensors []llm.Tensor
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
if err != nil {
return []llm.Tensor{}, err
return nil, err
}
var offset uint64
for _, f := range files {
var t []llm.Tensor
var err error
t, offset, err = ReadSafeTensors(f, offset)
t, offset, err = ReadSafeTensors(f, offset, params)
if err != nil {
slog.Error("%v", err)
return []llm.Tensor{}, err
return nil, err
}
tensors = append(tensors, t...)
}
@@ -160,6 +194,7 @@ func GetParams(dirpath string) (*Params, error) {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
@@ -171,7 +206,7 @@ type Vocab struct {
Types []int32
}
func LoadTokens(dirpath string) (*Vocab, error) {
func LoadSentencePieceTokens(dirpath string, vocabSize int) (*Vocab, error) {
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
if err != nil {
@@ -196,6 +231,14 @@ func LoadTokens(dirpath string) (*Vocab, error) {
v.Tokens = append(v.Tokens, p.GetPiece())
v.Scores = append(v.Scores, p.GetScore())
t := p.GetType()
switch t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
case sentencepiece.ModelProto_SentencePiece_CONTROL:
case sentencepiece.ModelProto_SentencePiece_UNUSED:
case sentencepiece.ModelProto_SentencePiece_BYTE:
default:
t = sentencepiece.ModelProto_SentencePiece_NORMAL
}
v.Types = append(v.Types, int32(t))
}
@@ -243,6 +286,16 @@ func LoadTokens(dirpath string) (*Vocab, error) {
}
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
if vocabSize > len(v.Tokens) {
missingTokens := vocabSize - len(v.Tokens)
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
for cnt := 0; cnt < missingTokens; cnt++ {
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
v.Scores = append(v.Scores, -1)
v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
}
}
return v, nil
}
@@ -279,53 +332,102 @@ func GetTensorName(n string) (string, error) {
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func WriteGGUF(name string, tensors []llm.Tensor, params *Params, vocab *Vocab) (string, error) {
c := llm.ContainerGGUF{
ByteOrder: binary.LittleEndian,
}
type safetensorWriterTo struct {
t *llm.Tensor
m := llm.NewGGUFModel(&c)
m.Tensors = tensors
m.KV["general.architecture"] = "llama"
m.KV["general.name"] = name
m.KV["llama.context_length"] = uint32(params.ContextSize)
m.KV["llama.embedding_length"] = uint32(params.HiddenSize)
m.KV["llama.block_count"] = uint32(params.HiddenLayers)
m.KV["llama.feed_forward_length"] = uint32(params.IntermediateSize)
m.KV["llama.rope.dimension_count"] = uint32(128)
m.KV["llama.attention.head_count"] = uint32(params.AttentionHeads)
m.KV["llama.attention.head_count_kv"] = uint32(params.KeyValHeads)
m.KV["llama.attention.layer_norm_rms_epsilon"] = float32(params.NormEPS)
m.KV["llama.rope.freq_base"] = float32(params.RopeFreqBase)
m.KV["general.file_type"] = uint32(1)
m.KV["tokenizer.ggml.model"] = "llama"
params *Params
bo ByteOrder
m.KV["tokenizer.ggml.tokens"] = vocab.Tokens
m.KV["tokenizer.ggml.scores"] = vocab.Scores
m.KV["tokenizer.ggml.token_type"] = vocab.Types
filename string
m.KV["tokenizer.ggml.bos_token_id"] = uint32(params.BoSTokenID)
m.KV["tokenizer.ggml.eos_token_id"] = uint32(params.EoSTokenID)
m.KV["tokenizer.ggml.unknown_token_id"] = uint32(0)
m.KV["tokenizer.ggml.add_bos_token"] = true
m.KV["tokenizer.ggml.add_eos_token"] = false
start, end, padding uint64
handler func(w io.Writer, r safetensorWriterTo, f *os.File) error
}
// llamacpp sets the chat template, however we don't need to set it since we pass it in through a layer
// m.KV["tokenizer.chat_template"] = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" // XXX removeme
c.V3.NumTensor = uint64(len(tensors))
c.V3.NumKV = uint64(len(m.KV))
f, err := os.CreateTemp("", "ollama-gguf")
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
f, err := os.Open(r.filename)
if err != nil {
return "", err
return 0, err
}
defer f.Close()
err = m.Encode(f)
if err != nil {
return "", err
if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
return 0, err
}
return f.Name(), nil
// use the handler if one is present
if r.handler != nil {
return 0, r.handler(w, r, f)
}
remaining := r.end - r.start
bufSize := uint64(10240)
var finished bool
for {
data := make([]byte, min(bufSize, remaining))
b, err := io.ReadFull(f, data)
remaining -= uint64(b)
if err == io.EOF || remaining <= 0 {
finished = true
} else if err != nil {
return 0, err
}
// convert bfloat16 -> ieee float32
tDataF32 := bfloat16.DecodeFloat32(data)
switch r.t.Kind {
case 0:
if err := binary.Write(w, r.bo, tDataF32); err != nil {
return 0, err
}
case 1:
// convert float32 -> float16
tempBuf := make([]uint16, len(data)/2)
for cnt, v := range tDataF32 {
tDataF16 := float16.Fromfloat32(v)
tempBuf[cnt] = uint16(tDataF16)
}
if err := binary.Write(w, binary.LittleEndian, tempBuf); err != nil {
return 0, err
}
}
if finished {
break
}
}
return 0, nil
}
func GetModelArchFromParams(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "MistralForCausalLM":
return &MistralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
},
}, nil
case "GemmaForCausalLM":
return &GemmaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

136
convert/gemma.go Normal file
View File

@@ -0,0 +1,136 @@
package convert
import (
"encoding/binary"
"fmt"
"io"
"log/slog"
"os"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type GemmaModel struct {
ModelData
}
func gemmaLayerHandler(w io.Writer, r safetensorWriterTo, f *os.File) error {
slog.Debug(fmt.Sprintf("converting '%s'", r.t.Name))
data := make([]byte, r.end-r.start)
if err := binary.Read(f, r.bo, data); err != nil {
return err
}
tDataF32 := bfloat16.DecodeFloat32(data)
var err error
tDataF32, err = addOnes(tDataF32, int(r.t.Shape[0]))
if err != nil {
return err
}
if err := binary.Write(w, r.bo, tDataF32); err != nil {
return err
}
return nil
}
func addOnes(data []float32, vectorSize int) ([]float32, error) {
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, vectorSize)
var err error
n, err = n.Add(ones)
if err != nil {
return []float32{}, err
}
newN, err := native.SelectF32(n, 0)
if err != nil {
return []float32{}, err
}
var fullTensor []float32
for _, v := range newN {
fullTensor = append(fullTensor, v...)
}
return fullTensor, nil
}
func (m *GemmaModel) GetTensors() error {
t, err := GetSafeTensors(m.Path, m.Params)
if err != nil {
return err
}
m.Tensors = []llm.Tensor{}
for _, l := range t {
if strings.HasSuffix(l.Name, "norm.weight") {
wt := l.WriterTo.(safetensorWriterTo)
wt.handler = gemmaLayerHandler
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *GemmaModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params.VocabSize)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *GemmaModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
"gemma.context_length": uint32(m.Params.ContextSize),
"gemma.embedding_length": uint32(m.Params.HiddenSize),
"gemma.block_count": uint32(m.Params.HiddenLayers),
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
"tokenizer.ggml.unknown_token_id": uint32(3),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
return f.Name(), nil
}

173
convert/mistral.go Normal file
View File

@@ -0,0 +1,173 @@
package convert
import (
"encoding/binary"
"fmt"
"io"
"os"
"regexp"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type MistralModel struct {
ModelData
}
func mistralLayerHandler(w io.Writer, r safetensorWriterTo, f *os.File) error {
layerSize := r.end - r.start
var err error
tData := make([]uint16, layerSize/2)
if err = binary.Read(f, r.bo, tData); err != nil {
return err
}
var heads uint32
if strings.Contains(r.t.Name, "attn_q") {
heads = uint32(r.params.AttentionHeads)
} else if strings.Contains(r.t.Name, "attn_k") {
heads = uint32(r.params.KeyValHeads)
if heads == 0 {
heads = uint32(r.params.AttentionHeads)
}
} else {
return fmt.Errorf("unknown layer type")
}
tData, err = repack(tData, int(heads), r.t.Shape)
if err != nil {
return err
}
var buf []byte
for _, n := range tData {
buf = r.bo.AppendUint16(buf, n)
}
tempBuf := make([]uint16, len(tData))
tDataF32 := bfloat16.DecodeFloat32(buf)
for cnt, v := range tDataF32 {
tDataF16 := float16.Fromfloat32(v)
tempBuf[cnt] = uint16(tDataF16)
}
if err = binary.Write(w, r.bo, tempBuf); err != nil {
return err
}
return nil
}
func repack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
origShape := n.Shape().Clone()
// reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(origShape...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
newN, err := native.SelectU16(n, 1)
if err != nil {
return nil, err
}
var fullTensor []uint16
for _, v := range newN {
fullTensor = append(fullTensor, v...)
}
return fullTensor, nil
}
func (m *MistralModel) GetTensors() error {
t, err := GetSafeTensors(m.Path, m.Params)
if err != nil {
return err
}
m.Tensors = []llm.Tensor{}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.handler = mistralLayerHandler
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MistralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params.VocabSize)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MistralModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
"tokenizer.ggml.unknown_token_id": uint32(0),
}
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
return f.Name(), nil
}

View File

@@ -394,7 +394,6 @@ Advanced parameters (optional):
- `format`: the format to return a response in. Currently the only accepted value is `json`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)

View File

@@ -23,13 +23,7 @@ export OLLAMA_DEBUG=1
Get the required libraries and build the native LLM code:
```bash
go generate ./...
```
Then build ollama:
```bash
go build .
go run build.go
```
Now you can run `ollama`:
@@ -38,6 +32,16 @@ Now you can run `ollama`:
./ollama
```
### Rebuilding the native code
If at any point you need to rebuild the native code, you can run the
build.go script again using the `-f` flag to force a rebuild, and,
optionally, the `-d` flag to skip building the Go binary:
```bash
go run build.go -f -d
```
### Linux
#### Linux CUDA (NVIDIA)
@@ -53,16 +57,10 @@ specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
set set of target CUDA architectues by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then generate dependencies:
```
go generate ./...
```
Then build the binary:
```
go build .
go run build.go
```
#### Linux ROCm (AMD)
@@ -78,21 +76,17 @@ install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
```
go generate ./...
```
Then build the binary:
```
go build .
go run build.go
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go generate ./...` will compile a few different variations
By default, running `go run build.go` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
@@ -102,8 +96,7 @@ like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
go build .
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go run build.go
```
#### Containerized Linux Build
@@ -124,8 +117,7 @@ Install required tools:
```powershell
$env:CGO_ENABLED="1"
go generate ./...
go build .
go run build.go
```
#### Windows CUDA (NVIDIA)
@@ -142,4 +134,4 @@ In addition to the common Windows development tools described above, install AMD
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
- [Strawberry Perl](https://strawberryperl.com/)
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).

View File

@@ -71,9 +71,12 @@ More examples are available in the [examples directory](../examples).
There are two ways to view `Modelfile`s underlying the models in [ollama.com/library][1]:
- Option 1: view a model's data:
1. Go to a particular model page (e.g. https://ollama.com/library/llama2)
2. There is a table that displays the model's different components
- Option 1: view a details page from a model's tags page:
1. Go to a particular model's tags (e.g. https://ollama.com/library/llama2/tags)
2. Click on a tag (e.g. https://ollama.com/library/llama2:13b)
3. Scroll down to "Layers"
- Note: if the [`FROM` instruction](#from-required) is not present,
it means the model was created from a local file
- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
```bash
@@ -212,6 +215,7 @@ MESSAGE <role> <message>
| user | An example message of what the user could have asked. |
| assistant | An example message of how the model should respond. |
#### Example conversation
```modelfile
@@ -223,6 +227,7 @@ MESSAGE user Is Ontario in Canada?
MESSAGE assistant yes
```
## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.

View File

@@ -76,3 +76,10 @@ install script which version to install.
```sh
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
```
## Linux tmp noexec
If your system is configured with the "noexec" flag where Ollama stores its
temporary executable files, you can specify an alternate location by setting
OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example
OLLAMA_TMPDIR=/usr/share/ollama/

View File

@@ -6,11 +6,15 @@ import (
)
const (
Byte = 1
Byte = 1
KiloByte = Byte * 1000
MegaByte = KiloByte * 1000
GigaByte = MegaByte * 1000
TeraByte = GigaByte * 1000
KibiByte = Byte * 1024
MebiByte = KibiByte * 1024
)
func HumanBytes(b int64) string {
@@ -45,3 +49,14 @@ func HumanBytes(b int64) string {
return fmt.Sprintf("%d %s", int(value), unit)
}
}
func HumanBytes2(b int64) string {
switch {
case b >= MebiByte:
return fmt.Sprintf("%.1f MiB", float64(b)/MebiByte)
case b >= KibiByte:
return fmt.Sprintf("%.1f KiB", float64(b)/KibiByte)
default:
return fmt.Sprintf("%d B", b)
}
}

2
go.mod
View File

@@ -9,7 +9,7 @@ require (
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/emirpasic/gods v1.18.1
github.com/gin-gonic/gin v1.9.1
github.com/golang/protobuf v1.5.0
github.com/golang/protobuf v1.5.0 // indirect
github.com/google/uuid v1.0.0
github.com/mitchellh/mapstructure v1.5.0
github.com/olekukonko/tablewriter v0.0.5

View File

@@ -100,6 +100,8 @@ func AMDGetGPUInfo(resp *GpuInfo) {
return
}
updateLibPath(libDir)
gfxOverride := os.Getenv("HSA_OVERRIDE_GFX_VERSION")
if gfxOverride == "" {
supported, err := GetSupportedGFX(libDir)
@@ -113,7 +115,7 @@ func AMDGetGPUInfo(resp *GpuInfo) {
if !slices.Contains[[]string, string](supported, v.ToGFXString()) {
slog.Warn(fmt.Sprintf("amdgpu [%d] %s is not supported by %s %v", i, v.ToGFXString(), libDir, supported))
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
skip[i] = struct{}{}
} else {
slog.Info(fmt.Sprintf("amdgpu [%d] %s is supported", i, v.ToGFXString()))
@@ -143,6 +145,21 @@ func AMDGetGPUInfo(resp *GpuInfo) {
}
}
func updateLibPath(libDir string) {
ldPaths := []string{}
if val, ok := os.LookupEnv("LD_LIBRARY_PATH"); ok {
ldPaths = strings.Split(val, ":")
}
for _, d := range ldPaths {
if d == libDir {
return
}
}
val := strings.Join(append(ldPaths, libDir), ":")
slog.Debug("updated lib path", "LD_LIBRARY_PATH", val)
os.Setenv("LD_LIBRARY_PATH", val)
}
// Walk the sysfs nodes for the available GPUs and gather information from them
// skipping over any devices in the skip map
func amdProcMemLookup(resp *GpuInfo, skip map[int]interface{}, ids []int) {

View File

@@ -11,6 +11,7 @@ import (
"strings"
"sync"
"syscall"
"time"
)
var (
@@ -21,11 +22,20 @@ var (
func PayloadsDir() (string, error) {
lock.Lock()
defer lock.Unlock()
var err error
if payloadsDir == "" {
cleanupTmpDirs()
tmpDir, err := os.MkdirTemp("", "ollama")
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
tmpDir := os.Getenv("OLLAMA_TMPDIR")
if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
}
} else {
err = os.MkdirAll(tmpDir, 0755)
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir %s: %w", tmpDir, err)
}
}
// Track our pid so we can clean up orphaned tmpdirs
@@ -84,7 +94,12 @@ func Cleanup() {
slog.Debug("cleaning up", "dir", tmpDir)
err := os.RemoveAll(tmpDir)
if err != nil {
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
// On windows, if we remove too quickly the llama.dll may still be in-use and fail to remove
time.Sleep(1000 * time.Millisecond)
err = os.RemoveAll(tmpDir)
if err != nil {
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
}
}
}
}

View File

@@ -20,6 +20,8 @@ import (
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/format"
)
type handles struct {
@@ -27,8 +29,12 @@ type handles struct {
cudart *C.cudart_handle_t
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
)
var gpuMutex sync.Mutex
var gpuHandles *handles = nil
// With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0}
@@ -78,11 +84,11 @@ var CudartWindowsGlobs = []string{
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held
func initGPUHandles() {
func initGPUHandles() *handles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
gpuHandles = &handles{nil, nil}
gpuHandles := &handles{nil, nil}
var nvmlMgmtName string
var nvmlMgmtPatterns []string
var cudartMgmtName string
@@ -109,7 +115,7 @@ func initGPUHandles() {
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
default:
return
return gpuHandles
}
slog.Info("Detecting GPU type")
@@ -119,7 +125,7 @@ func initGPUHandles() {
if cudart != nil {
slog.Info("Nvidia GPU detected via cudart")
gpuHandles.cudart = cudart
return
return gpuHandles
}
}
@@ -130,10 +136,10 @@ func initGPUHandles() {
if nvml != nil {
slog.Info("Nvidia GPU detected via nvidia-ml")
gpuHandles.nvml = nvml
return
return gpuHandles
}
}
return gpuHandles
}
func GetGPUInfo() GpuInfo {
@@ -141,9 +147,16 @@ func GetGPUInfo() GpuInfo {
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
if gpuHandles == nil {
initGPUHandles()
}
gpuHandles := initGPUHandles()
defer func() {
if gpuHandles.nvml != nil {
C.nvml_release(*gpuHandles.nvml)
}
if gpuHandles.cudart != nil {
C.cudart_release(*gpuHandles.cudart)
}
}()
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
cpuVariant := GetCPUVariant()
@@ -168,6 +181,7 @@ func GetGPUInfo() GpuInfo {
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
resp.Library = "cuda"
resp.MinimumMemory = cudaMinimumMemory
} else {
slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
}
@@ -187,6 +201,7 @@ func GetGPUInfo() GpuInfo {
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
resp.Library = "cuda"
resp.MinimumMemory = cudaMinimumMemory
} else {
slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
}
@@ -194,6 +209,7 @@ func GetGPUInfo() GpuInfo {
} else {
AMDGetGPUInfo(&resp)
if resp.Library != "" {
resp.MinimumMemory = rocmMinimumMemory
return resp
}
}
@@ -239,20 +255,7 @@ func CheckVRAM() (int64, error) {
}
gpuInfo := GetGPUInfo()
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
// leave 10% or 1024MiB of VRAM free per GPU to handle unaccounted for overhead
overhead := gpuInfo.FreeMemory / 10
gpus := uint64(gpuInfo.DeviceCount)
if overhead < gpus*1024*1024*1024 {
overhead = gpus * 1024 * 1024 * 1024
}
// Assigning full reported free memory for Tegras due to OS controlled caching.
if CudaTegra != "" {
// Setting overhead for non-Tegra devices
overhead = 0
}
avail := int64(gpuInfo.FreeMemory - overhead)
slog.Debug(fmt.Sprintf("%s detected %d devices with %dM available memory", gpuInfo.Library, gpuInfo.DeviceCount, avail/1024/1024))
return avail, nil
return int64(gpuInfo.FreeMemory), nil
}
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation

View File

@@ -62,6 +62,10 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing, please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "cudart init failure: %d", ret);
resp->err = strdup(buf);
return;
@@ -187,4 +191,10 @@ void cudart_compute_capability(cudart_handle_t h, cudart_compute_capability_t *r
}
}
void cudart_release(cudart_handle_t h) {
LOG(h.verbose, "releasing cudart library\n");
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -7,6 +7,7 @@
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_UNSUPPORTED = 1,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} cudartReturn_t;
@@ -54,6 +55,7 @@ typedef struct cudart_compute_capability {
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_check_vram(cudart_handle_t ch, mem_info_t *resp);
void cudart_compute_capability(cudart_handle_t th, cudart_compute_capability_t *cc);
void cudart_release(cudart_handle_t ch);
#endif // __GPU_INFO_CUDART_H__
#endif // __APPLE__

View File

@@ -211,4 +211,11 @@ void nvml_compute_capability(nvml_handle_t h, nvml_compute_capability_t *resp) {
}
}
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -51,6 +51,7 @@ typedef struct nvml_compute_capability {
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_check_vram(nvml_handle_t ch, mem_info_t *resp);
void nvml_compute_capability(nvml_handle_t ch, nvml_compute_capability_t *cc);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View File

@@ -14,6 +14,9 @@ type GpuInfo struct {
// Optional variant to select (e.g. versions, cpu feature flags)
Variant string `json:"variant,omitempty"`
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory int64 `json:"-"`
// TODO add other useful attributes about the card here for discovery information
}

View File

@@ -24,5 +24,5 @@ func TestOrcaMiniBlueSky(t *testing.T) {
"seed": 123,
},
}
GenerateTestHelper(ctx, t, &http.Client{}, req, []string{"rayleigh"})
GenerateTestHelper(ctx, t, &http.Client{}, req, []string{"rayleigh", "scattering"})
}

View File

@@ -0,0 +1,29 @@
//go:build integration
package integration
import (
"context"
"net/http"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestContextExhaustion(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) // TODO maybe shorter?
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Prompt: "Write me a story with a ton of emojis?",
Stream: &stream,
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
"num_ctx": 128,
},
}
GenerateTestHelper(ctx, t, &http.Client{}, req, []string{"once", "upon", "lived"})
}

View File

@@ -15,10 +15,6 @@ import (
// TODO - this would ideally be in the llm package, but that would require some refactoring of interfaces in the server
// package to avoid circular dependencies
// WARNING - these tests will fail on mac if you don't manually copy ggml-metal.metal to this dir (./server)
//
// TODO - Fix this ^^
var (
stream = false
req = [2]api.GenerateRequest{

View File

@@ -126,7 +126,7 @@ func StartServer(ctx context.Context, ollamaHost string) error {
}
func PullIfMissing(ctx context.Context, client *http.Client, scheme, testEndpoint, modelName string) error {
slog.Debug("checking status of model", "model", modelName)
slog.Info("checking status of model", "model", modelName)
showReq := &api.ShowRequest{Name: modelName}
requestJSON, err := json.Marshal(showReq)
if err != nil {
@@ -174,36 +174,51 @@ func PullIfMissing(ctx context.Context, client *http.Client, scheme, testEndpoin
return nil
}
var serverProcMutex sync.Mutex
func GenerateTestHelper(ctx context.Context, t *testing.T, client *http.Client, genReq api.GenerateRequest, anyResp []string) {
// TODO maybe stuff in an init routine?
lifecycle.InitLogging()
requestJSON, err := json.Marshal(genReq)
if err != nil {
t.Fatalf("Error serializing request: %v", err)
}
defer func() {
if t.Failed() && os.Getenv("OLLAMA_TEST_EXISTING") == "" {
// TODO
fp, err := os.Open(lifecycle.ServerLogFile)
if err != nil {
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
defer serverProcMutex.Unlock()
if t.Failed() {
fp, err := os.Open(lifecycle.ServerLogFile)
if err != nil {
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
}
data, err := io.ReadAll(fp)
if err != nil {
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
}
slog.Warn("SERVER LOG FOLLOWS")
os.Stderr.Write(data)
slog.Warn("END OF SERVER")
}
data, err := io.ReadAll(fp)
if err != nil {
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
err = os.Remove(lifecycle.ServerLogFile)
if err != nil && !os.IsNotExist(err) {
slog.Warn("failed to cleanup", "logfile", lifecycle.ServerLogFile, "error", err)
}
slog.Warn("SERVER LOG FOLLOWS")
os.Stderr.Write(data)
slog.Warn("END OF SERVER")
}
err = os.Remove(lifecycle.ServerLogFile)
if err != nil && !os.IsNotExist(err) {
slog.Warn("failed to cleanup", "logfile", lifecycle.ServerLogFile, "error", err)
}
}()
scheme, testEndpoint := GetTestEndpoint()
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
serverProcMutex.Lock()
fp, err := os.CreateTemp("", "ollama-server-*.log")
if err != nil {
t.Fatalf("failed to generate log file: %s", err)
}
lifecycle.ServerLogFile = fp.Name()
fp.Close()
assert.NoError(t, StartServer(ctx, testEndpoint))
}

View File

@@ -1,142 +0,0 @@
#include "dyn_ext_server.h"
#include <stdio.h>
#include <string.h>
#ifdef __linux__
#include <dlfcn.h>
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
#define LOAD_ERR() strdup(dlerror())
#define UNLOAD_LIBRARY(handle) dlclose(handle)
#elif _WIN32
#include <windows.h>
#define LOAD_LIBRARY(lib, flags) LoadLibrary(lib)
#define LOAD_SYMBOL(handle, sym) GetProcAddress(handle, sym)
#define UNLOAD_LIBRARY(handle) FreeLibrary(handle)
#define LOAD_ERR() ({\
LPSTR messageBuffer = NULL; \
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, \
NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL); \
char *resp = strdup(messageBuffer); \
LocalFree(messageBuffer); \
resp; \
})
#else
#include <dlfcn.h>
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
#define LOAD_ERR() strdup(dlerror())
#define UNLOAD_LIBRARY(handle) dlclose(handle)
#endif
void dyn_init(const char *libPath, struct dynamic_llama_server *s,
ext_server_resp_t *err) {
int i = 0;
struct lookup {
char *s;
void **p;
} l[] = {
{"llama_server_init", (void *)&s->llama_server_init},
{"llama_server_start", (void *)&s->llama_server_start},
{"llama_server_stop", (void *)&s->llama_server_stop},
{"llama_server_completion", (void *)&s->llama_server_completion},
{"llama_server_completion_next_result",
(void *)&s->llama_server_completion_next_result},
{"llama_server_completion_cancel",
(void *)&s->llama_server_completion_cancel},
{"llama_server_release_task_result",
(void *)&s->llama_server_release_task_result},
{"llama_server_tokenize", (void *)&s->llama_server_tokenize},
{"llama_server_detokenize", (void *)&s->llama_server_detokenize},
{"llama_server_embedding", (void *)&s->llama_server_embedding},
{"llama_server_release_json_resp",
(void *)&s->llama_server_release_json_resp},
{"", NULL},
};
printf("loading library %s\n", libPath);
s->handle = LOAD_LIBRARY(libPath, RTLD_LOCAL|RTLD_NOW);
if (!s->handle) {
err->id = -1;
char *msg = LOAD_ERR();
snprintf(err->msg, err->msg_len,
"Unable to load dynamic server library: %s", msg);
free(msg);
return;
}
for (i = 0; l[i].p != NULL; i++) {
*l[i].p = LOAD_SYMBOL(s->handle, l[i].s);
if (!l[i].p) {
UNLOAD_LIBRARY(s->handle);
err->id = -1;
char *msg = LOAD_ERR();
snprintf(err->msg, err->msg_len, "symbol lookup for %s failed: %s",
l[i].s, msg);
free(msg);
return;
}
}
}
inline void dyn_llama_server_init(struct dynamic_llama_server s,
ext_server_params_t *sparams,
ext_server_resp_t *err) {
s.llama_server_init(sparams, err);
}
inline void dyn_llama_server_start(struct dynamic_llama_server s) {
s.llama_server_start();
}
inline void dyn_llama_server_stop(struct dynamic_llama_server s) {
s.llama_server_stop();
}
inline void dyn_llama_server_completion(struct dynamic_llama_server s,
const char *json_req,
ext_server_resp_t *resp) {
s.llama_server_completion(json_req, resp);
}
inline void dyn_llama_server_completion_next_result(
struct dynamic_llama_server s, const int task_id,
ext_server_task_result_t *result) {
s.llama_server_completion_next_result(task_id, result);
}
inline void dyn_llama_server_completion_cancel(
struct dynamic_llama_server s, const int task_id, ext_server_resp_t *err) {
s.llama_server_completion_cancel(task_id, err);
}
inline void dyn_llama_server_release_task_result(
struct dynamic_llama_server s, ext_server_task_result_t *result) {
s.llama_server_release_task_result(result);
}
inline void dyn_llama_server_tokenize(struct dynamic_llama_server s,
const char *json_req,
char **json_resp,
ext_server_resp_t *err) {
s.llama_server_tokenize(json_req, json_resp, err);
}
inline void dyn_llama_server_detokenize(struct dynamic_llama_server s,
const char *json_req,
char **json_resp,
ext_server_resp_t *err) {
s.llama_server_detokenize(json_req, json_resp, err);
}
inline void dyn_llama_server_embedding(struct dynamic_llama_server s,
const char *json_req,
char **json_resp,
ext_server_resp_t *err) {
s.llama_server_embedding(json_req, json_resp, err);
}
inline void dyn_llama_server_release_json_resp(
struct dynamic_llama_server s, char **json_resp) {
s.llama_server_release_json_resp(json_resp);
}

View File

@@ -1,388 +0,0 @@
package llm
/*
#cgo CFLAGS: -I${SRCDIR}/ext_server -I${SRCDIR}/llama.cpp -I${SRCDIR}/llama.cpp/common -I${SRCDIR}/llama.cpp/examples/server
#cgo CFLAGS: -DNDEBUG -DLLAMA_SERVER_LIBRARY=1 -D_XOPEN_SOURCE=600 -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo CFLAGS: -Wmissing-noreturn -Wextra -Wcast-qual -Wno-unused-function -Wno-array-bounds
#cgo CPPFLAGS: -Ofast -Wextra -Wno-unused-function -Wno-unused-variable -Wno-deprecated-declarations
#cgo darwin CFLAGS: -D_DARWIN_C_SOURCE
#cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
#cgo darwin CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
#cgo darwin LDFLAGS: -lc++ -framework Accelerate
#cgo darwin LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
#cgo linux CFLAGS: -D_GNU_SOURCE
#cgo linux LDFLAGS: -lrt -ldl -lstdc++ -lm
#cgo linux windows LDFLAGS: -lpthread
#include <stdlib.h>
#include "dyn_ext_server.h"
*/
import "C"
import (
"bytes"
"context"
"encoding/json"
"fmt"
"log/slog"
"os"
"path/filepath"
"strings"
"sync"
"time"
"unsafe"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/gpu"
)
type dynExtServer struct {
s C.struct_dynamic_llama_server
options api.Options
}
// Note: current implementation does not support concurrent instantiations
var mutex sync.Mutex
func newExtServerResp(len C.size_t) C.ext_server_resp_t {
var resp C.ext_server_resp_t
resp.msg_len = len
bytes := make([]byte, len)
resp.msg = (*C.char)(C.CBytes(bytes))
return resp
}
func freeExtServerResp(resp C.ext_server_resp_t) {
if resp.msg_len == 0 {
return
}
C.free(unsafe.Pointer(resp.msg))
}
func extServerResponseToErr(resp C.ext_server_resp_t) error {
return fmt.Errorf(C.GoString(resp.msg))
}
func newDynExtServer(library, model string, adapters, projectors []string, opts api.Options) (LLM, error) {
if !mutex.TryLock() {
slog.Info("concurrent llm servers not yet supported, waiting for prior server to complete")
mutex.Lock()
}
gpu.UpdatePath(filepath.Dir(library))
libPath := C.CString(library)
defer C.free(unsafe.Pointer(libPath))
resp := newExtServerResp(512)
defer freeExtServerResp(resp)
var srv C.struct_dynamic_llama_server
C.dyn_init(libPath, &srv, &resp)
if resp.id < 0 {
mutex.Unlock()
return nil, fmt.Errorf("Unable to load dynamic library: %s", C.GoString(resp.msg))
}
llm := dynExtServer{
s: srv,
options: opts,
}
slog.Info(fmt.Sprintf("Loading Dynamic llm server: %s", library))
var sparams C.ext_server_params_t
sparams.model = C.CString(model)
defer C.free(unsafe.Pointer(sparams.model))
sparams.embedding = true
sparams.n_ctx = C.uint(opts.NumCtx)
sparams.n_batch = C.uint(opts.NumBatch)
sparams.n_gpu_layers = C.int(opts.NumGPU)
sparams.main_gpu = C.int(opts.MainGPU)
sparams.n_parallel = 1 // TODO - wire up concurrency
// Always use the value encoded in the model
sparams.rope_freq_base = 0.0
sparams.rope_freq_scale = 0.0
sparams.memory_f16 = C.bool(opts.F16KV)
sparams.use_mlock = C.bool(opts.UseMLock)
sparams.use_mmap = C.bool(opts.UseMMap)
if opts.UseNUMA {
sparams.numa = C.int(1)
} else {
sparams.numa = C.int(0)
}
sparams.lora_adapters = nil
for i := 0; i < len(adapters); i++ {
la := (*C.ext_server_lora_adapter_t)(C.malloc(C.sizeof_ext_server_lora_adapter_t))
defer C.free(unsafe.Pointer(la))
la.adapter = C.CString(adapters[i])
defer C.free(unsafe.Pointer(la.adapter))
la.scale = C.float(1.0) // TODO expose scale/weights up through ollama UX
la.next = nil
if i == 0 {
sparams.lora_adapters = la
} else {
tmp := sparams.lora_adapters
for ; tmp.next != nil; tmp = tmp.next {
}
tmp.next = la
}
}
if len(projectors) > 0 {
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
sparams.mmproj = C.CString(projectors[0])
defer C.free(unsafe.Pointer(sparams.mmproj))
} else {
sparams.mmproj = nil
}
sparams.n_threads = C.uint(opts.NumThread)
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
sparams.verbose_logging = C.bool(true)
} else {
sparams.verbose_logging = C.bool(false)
}
slog.Info("Initializing llama server")
slog.Debug(fmt.Sprintf("server params: %+v", sparams))
initResp := newExtServerResp(512)
defer freeExtServerResp(initResp)
C.dyn_llama_server_init(llm.s, &sparams, &initResp)
if initResp.id < 0 {
mutex.Unlock()
err := extServerResponseToErr(initResp)
slog.Debug(fmt.Sprintf("failure during initialization: %s", err))
return nil, err
}
slog.Info("Starting llama main loop")
C.dyn_llama_server_start(llm.s)
return &llm, nil
}
func (llm *dynExtServer) Predict(ctx context.Context, predict PredictOpts, fn func(PredictResult)) error {
resp := newExtServerResp(128)
defer freeExtServerResp(resp)
if len(predict.Images) > 0 {
slog.Info(fmt.Sprintf("loaded %d images", len(predict.Images)))
}
request := map[string]any{
"prompt": predict.Prompt,
"stream": true,
"n_predict": predict.Options.NumPredict,
"n_keep": predict.Options.NumKeep,
"temperature": predict.Options.Temperature,
"top_k": predict.Options.TopK,
"top_p": predict.Options.TopP,
"tfs_z": predict.Options.TFSZ,
"typical_p": predict.Options.TypicalP,
"repeat_last_n": predict.Options.RepeatLastN,
"repeat_penalty": predict.Options.RepeatPenalty,
"presence_penalty": predict.Options.PresencePenalty,
"frequency_penalty": predict.Options.FrequencyPenalty,
"mirostat": predict.Options.Mirostat,
"mirostat_tau": predict.Options.MirostatTau,
"mirostat_eta": predict.Options.MirostatEta,
"penalize_nl": predict.Options.PenalizeNewline,
"seed": predict.Options.Seed,
"stop": predict.Options.Stop,
"image_data": predict.Images,
"cache_prompt": true,
}
if predict.Format == "json" {
request["grammar"] = jsonGrammar
if !strings.Contains(strings.ToLower(predict.Prompt), "json") {
slog.Warn("Prompt does not specify that the LLM should response in JSON, but JSON format is expected. For best results specify that JSON is expected in the system prompt.")
}
}
retryDelay := 100 * time.Microsecond
for retries := 0; retries < maxRetries; retries++ {
if retries > 0 {
time.Sleep(retryDelay) // wait before retrying
retryDelay *= 2 // exponential backoff
}
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(request); err != nil {
return fmt.Errorf("failed to marshal data: %w", err)
}
req := C.CString(buffer.String())
defer C.free(unsafe.Pointer(req))
C.dyn_llama_server_completion(llm.s, req, &resp)
if resp.id < 0 {
return extServerResponseToErr(resp)
}
retryNeeded := false
// keep track of the last token generated, this is used to abort if the model starts looping
var lastToken string
var tokenRepeat int
out:
for {
select {
case <-ctx.Done():
return cancelCompletion(llm, resp)
default:
var result C.ext_server_task_result_t
C.dyn_llama_server_completion_next_result(llm.s, resp.id, &result)
json_resp := C.GoString(result.json_resp)
C.dyn_llama_server_release_task_result(llm.s, &result)
var p prediction
if err := json.Unmarshal([]byte(json_resp), &p); err != nil {
C.dyn_llama_server_completion_cancel(llm.s, resp.id, &resp)
if resp.id < 0 {
return fmt.Errorf("error unmarshaling llm prediction response: %w and cancel %s", err, C.GoString(resp.msg))
} else {
return fmt.Errorf("error unmarshaling llm prediction response: %w", err)
}
}
if bool(result.error) && strings.Contains(json_resp, "slot unavailable") {
retryNeeded = true
// task will already be canceled
break out
}
switch {
case strings.TrimSpace(p.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(p.Content)
tokenRepeat = 0
}
// 30 picked as an arbitrary max token repeat limit, modify as needed
if tokenRepeat > 30 {
slog.Debug("prediction aborted, token repeat limit reached")
return cancelCompletion(llm, resp)
}
if p.Content != "" {
fn(PredictResult{
Content: p.Content,
})
}
if p.Stop || bool(result.stop) {
fn(PredictResult{
Done: true,
PromptEvalCount: p.Timings.PromptN,
PromptEvalDuration: parseDurationMs(p.Timings.PromptMS),
EvalCount: p.Timings.PredictedN,
EvalDuration: parseDurationMs(p.Timings.PredictedMS),
})
return nil
}
}
}
if !retryNeeded {
return nil // success
}
}
// should never reach here ideally
return fmt.Errorf("max retries exceeded")
}
func cancelCompletion(llm *dynExtServer, resp C.ext_server_resp_t) error {
C.dyn_llama_server_completion_cancel(llm.s, resp.id, &resp)
if resp.id < 0 {
return extServerResponseToErr(resp)
} else {
return nil
}
}
func (llm *dynExtServer) Encode(ctx context.Context, prompt string) ([]int, error) {
data, err := json.Marshal(TokenizeRequest{Content: prompt})
if err != nil {
return nil, fmt.Errorf("marshaling encode data: %w", err)
}
req := C.CString(string(data))
defer C.free(unsafe.Pointer(req))
var json_resp *C.char
resp := newExtServerResp(128)
defer freeExtServerResp(resp)
C.dyn_llama_server_tokenize(llm.s, req, &json_resp, &resp)
if resp.id < 0 {
return nil, extServerResponseToErr(resp)
}
defer C.dyn_llama_server_release_json_resp(llm.s, &json_resp)
var encoded TokenizeResponse
if err2 := json.Unmarshal([]byte(C.GoString(json_resp)), &encoded); err2 != nil {
return nil, fmt.Errorf("unmarshal encode response: %w", err2)
}
return encoded.Tokens, err
}
func (llm *dynExtServer) Decode(ctx context.Context, tokens []int) (string, error) {
if len(tokens) == 0 {
return "", nil
}
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
if err != nil {
return "", fmt.Errorf("marshaling decode data: %w", err)
}
req := C.CString(string(data))
defer C.free(unsafe.Pointer(req))
var json_resp *C.char
resp := newExtServerResp(128)
defer freeExtServerResp(resp)
C.dyn_llama_server_detokenize(llm.s, req, &json_resp, &resp)
if resp.id < 0 {
return "", extServerResponseToErr(resp)
}
defer C.dyn_llama_server_release_json_resp(llm.s, &json_resp)
var decoded DetokenizeResponse
if err2 := json.Unmarshal([]byte(C.GoString(json_resp)), &decoded); err2 != nil {
return "", fmt.Errorf("unmarshal encode response: %w", err2)
}
return decoded.Content, err
}
func (llm *dynExtServer) Embedding(ctx context.Context, input string) ([]float64, error) {
data, err := json.Marshal(TokenizeRequest{Content: input})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
req := C.CString(string(data))
defer C.free(unsafe.Pointer(req))
var json_resp *C.char
resp := newExtServerResp(128)
defer freeExtServerResp(resp)
C.dyn_llama_server_embedding(llm.s, req, &json_resp, &resp)
if resp.id < 0 {
return nil, extServerResponseToErr(resp)
}
defer C.dyn_llama_server_release_json_resp(llm.s, &json_resp)
var embedding EmbeddingResponse
if err := json.Unmarshal([]byte(C.GoString(json_resp)), &embedding); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return embedding.Embedding, nil
}
func (llm *dynExtServer) Close() {
C.dyn_llama_server_stop(llm.s)
mutex.Unlock()
}

View File

@@ -1,74 +0,0 @@
#include <stdlib.h>
#include "ext_server.h"
#ifdef __cplusplus
extern "C" {
#endif
struct dynamic_llama_server {
void *handle;
void (*llama_server_init)(ext_server_params_t *sparams,
ext_server_resp_t *err);
void (*llama_server_start)();
void (*llama_server_stop)();
void (*llama_server_completion)(const char *json_req,
ext_server_resp_t *resp);
void (*llama_server_completion_next_result)(const int task_id,
ext_server_task_result_t *result);
void (*llama_server_completion_cancel)(const int task_id,
ext_server_resp_t *err);
void (*llama_server_release_task_result)(ext_server_task_result_t *result);
void (*llama_server_tokenize)(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void (*llama_server_detokenize)(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void (*llama_server_embedding)(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void (*llama_server_release_json_resp)(char **json_resp);
};
void dyn_init(const char *libPath, struct dynamic_llama_server *s,
ext_server_resp_t *err);
// No good way to call C function pointers from Go so inline the indirection
void dyn_llama_server_init(struct dynamic_llama_server s,
ext_server_params_t *sparams,
ext_server_resp_t *err);
void dyn_llama_server_start(struct dynamic_llama_server s);
void dyn_llama_server_stop(struct dynamic_llama_server s);
void dyn_llama_server_completion(struct dynamic_llama_server s,
const char *json_req,
ext_server_resp_t *resp);
void dyn_llama_server_completion_next_result(
struct dynamic_llama_server s, const int task_id,
ext_server_task_result_t *result);
void dyn_llama_server_completion_cancel(struct dynamic_llama_server s,
const int task_id,
ext_server_resp_t *err);
void dyn_llama_server_release_task_result(
struct dynamic_llama_server s, ext_server_task_result_t *result);
void dyn_llama_server_tokenize(struct dynamic_llama_server s,
const char *json_req, char **json_resp,
ext_server_resp_t *err);
void dyn_llama_server_detokenize(struct dynamic_llama_server s,
const char *json_req,
char **json_resp,
ext_server_resp_t *err);
void dyn_llama_server_embedding(struct dynamic_llama_server s,
const char *json_req, char **json_resp,
ext_server_resp_t *err);
void dyn_llama_server_release_json_resp(struct dynamic_llama_server s,
char **json_resp);
#ifdef __cplusplus
}
#endif

View File

@@ -1,21 +1,14 @@
set(TARGET ext_server)
set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
add_library(${TARGET} SHARED ext_server.cpp ../llama.cpp/llama.cpp)
else()
add_library(${TARGET} STATIC ext_server.cpp ../llama.cpp/llama.cpp)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_definitions(${TARGET} PUBLIC LLAMA_SERVER_LIBRARY=1)
target_link_libraries(${TARGET} PRIVATE ggml llava common )
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(${TARGET} PRIVATE SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>)
install(TARGETS ext_server LIBRARY)
if (CUDAToolkit_FOUND)
target_include_directories(${TARGET} PRIVATE ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
if (WIN32)
target_link_libraries(${TARGET} PRIVATE nvml)
endif()
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,18 +0,0 @@
# Extern C Server
This directory contains a thin facade we layer on top of the Llama.cpp server to
expose `extern C` interfaces to access the functionality through direct API
calls in-process. The llama.cpp code uses compile time macros to configure GPU
type along with other settings. During the `go generate ./...` execution, the
build will generate one or more copies of the llama.cpp `extern C` server based
on what GPU libraries are detected to support multiple GPU types as well as CPU
only support. The Ollama go build then embeds these different servers to support
different GPUs and settings at runtime.
If you are making changes to the code in this directory, make sure to disable
caching during your go build to ensure you pick up your changes. A typical
iteration cycle from the top of the source tree looks like:
```
go generate ./... && go build -a .
```

View File

@@ -1,377 +0,0 @@
#include "ext_server.h"
#include <atomic>
// Necessary evil since the server types are not defined in a header
#include "server.cpp"
// Low level API access to verify GPU access
#if defined(GGML_USE_CUBLAS)
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define cudaGetDevice hipGetDevice
#define cudaError_t hipError_t
#define cudaSuccess hipSuccess
#define cudaGetErrorString hipGetErrorString
#else
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
#endif // defined(GGML_USE_HIPBLAS)
#endif // GGML_USE_CUBLAS
// Expose the llama server as a callable extern "C" API
llama_server_context *llama = NULL;
std::thread ext_server_thread;
bool shutting_down = false;
std::atomic_int recv_counter;
// RAII wrapper for tracking in-flight recv calls
class atomicRecv {
public:
atomicRecv(std::atomic<int> &atomic) : atomic(atomic) {
++this->atomic;
}
~atomicRecv() {
--this->atomic;
}
private:
std::atomic<int> &atomic;
};
void llama_server_init(ext_server_params *sparams, ext_server_resp_t *err) {
recv_counter = 0;
assert(err != NULL && sparams != NULL);
log_set_target(stderr);
if (!sparams->verbose_logging) {
server_verbose = true;
log_disable();
}
LOG_TEE("system info: %s\n", llama_print_system_info());
err->id = 0;
err->msg[0] = '\0';
try {
llama = new llama_server_context;
gpt_params params;
params.n_ctx = sparams->n_ctx;
params.n_batch = sparams->n_batch;
if (sparams->n_threads > 0) {
params.n_threads = sparams->n_threads;
}
params.n_parallel = sparams->n_parallel;
params.rope_freq_base = sparams->rope_freq_base;
params.rope_freq_scale = sparams->rope_freq_scale;
if (sparams->memory_f16) {
params.cache_type_k = "f16";
params.cache_type_v = "f16";
} else {
params.cache_type_k = "f32";
params.cache_type_v = "f32";
}
params.n_gpu_layers = sparams->n_gpu_layers;
params.main_gpu = sparams->main_gpu;
params.use_mlock = sparams->use_mlock;
params.use_mmap = sparams->use_mmap;
params.numa = (ggml_numa_strategy)sparams->numa;
params.embedding = sparams->embedding;
if (sparams->model != NULL) {
params.model = sparams->model;
}
if (sparams->lora_adapters != NULL) {
for (ext_server_lora_adapter *la = sparams->lora_adapters; la != NULL;
la = la->next) {
params.lora_adapter.push_back(std::make_tuple(la->adapter, la->scale));
}
params.use_mmap = false;
}
if (sparams->mmproj != NULL) {
params.mmproj = std::string(sparams->mmproj);
}
#if defined(GGML_USE_CUBLAS)
// Before attempting to init the backend which will assert on error, verify the CUDA/ROCM GPU is accessible
LOG_TEE("Performing pre-initialization of GPU\n");
int id;
cudaError_t cudaErr = cudaGetDevice(&id);
if (cudaErr != cudaSuccess) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unable to init GPU: %s", cudaGetErrorString(cudaErr));
return;
}
#endif
llama_backend_init();
llama_numa_init(params.numa);
if (!llama->load_model(params)) {
// an error occurred that was not thrown
err->id = -1;
snprintf(err->msg, err->msg_len, "error loading model %s", params.model.c_str());
return;
}
llama->initialize();
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len,
"Unknown exception initializing llama server");
}
}
void llama_server_start() {
assert(llama != NULL);
// TODO mutex to protect thread creation
ext_server_thread = std::thread([&]() {
try {
LOG_TEE("llama server main loop starting\n");
ggml_time_init();
llama->queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, llama, std::placeholders::_1));
llama->queue_tasks.on_finish_multitask(std::bind(
&llama_server_context::on_finish_multitask, llama, std::placeholders::_1));
llama->queue_tasks.on_run_slots(std::bind(
&llama_server_context::update_slots, llama));
llama->queue_results.on_multitask_update(std::bind(
&llama_server_queue::update_multitask,
&llama->queue_tasks,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3
));
llama->queue_tasks.start_loop();
} catch (std::exception &e) {
LOG_TEE("caught exception in llama server main loop: %s\n", e.what());
} catch (...) {
LOG_TEE("caught unknown exception in llama server main loop\n");
}
LOG_TEE("\nllama server shutting down\n");
llama_backend_free();
});
}
void llama_server_stop() {
assert(llama != NULL);
// Shutdown any in-flight requests and block incoming requests.
LOG_TEE("\ninitiating shutdown - draining remaining tasks...\n");
shutting_down = true;
while (recv_counter.load() > 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
}
// This may take a while for any pending tasks to drain
// TODO - consider a timeout to cancel tasks if it's taking too long
llama->queue_tasks.terminate();
ext_server_thread.join();
delete llama;
llama = NULL;
LOG_TEE("llama server shutdown complete\n");
shutting_down = false;
}
void llama_server_completion(const char *json_req, ext_server_resp_t *resp) {
assert(llama != NULL && json_req != NULL && resp != NULL);
resp->id = -1;
resp->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
json data = json::parse(json_req);
resp->id = llama->queue_tasks.get_new_id();
llama->queue_results.add_waiting_task_id(resp->id);
llama->request_completion(resp->id, data, false, false, -1);
} catch (std::exception &e) {
snprintf(resp->msg, resp->msg_len, "exception %s", e.what());
} catch (...) {
snprintf(resp->msg, resp->msg_len, "Unknown exception during completion");
}
}
void llama_server_completion_next_result(const int task_id,
ext_server_task_result_t *resp) {
assert(llama != NULL && resp != NULL);
resp->id = -1;
resp->stop = false;
resp->error = false;
resp->json_resp = NULL;
std::string result_json;
try {
atomicRecv ar(recv_counter);
task_result result = llama->queue_results.recv(task_id);
result_json =
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace);
resp->id = result.id;
resp->stop = result.stop;
resp->error = result.error;
if (result.error) {
LOG_TEE("next result cancel on error\n");
llama->request_cancel(task_id);
LOG_TEE("next result removing waiting tak ID: %d\n", task_id);
llama->queue_results.remove_waiting_task_id(task_id);
} else if (result.stop) {
LOG_TEE("next result cancel on stop\n");
llama->request_cancel(task_id);
LOG_TEE("next result removing waiting task ID: %d\n", task_id);
llama->queue_results.remove_waiting_task_id(task_id);
} else if (shutting_down) {
LOG_TEE("aborting completion due to shutdown %d\n", task_id);
llama->request_cancel(task_id);
llama->queue_results.remove_waiting_task_id(task_id);
resp->stop = true;
}
} catch (std::exception &e) {
resp->error = true;
resp->id = -1;
result_json = "{\"error\":\"exception " + std::string(e.what()) + "\"}";
LOG_TEE("llama server completion exception %s\n", e.what());
} catch (...) {
resp->error = true;
resp->id = -1;
result_json = "{\"error\":\"Unknown exception during completion\"}";
LOG_TEE("llama server completion unknown exception\n");
}
const std::string::size_type size = result_json.size() + 1;
resp->json_resp = new char[size];
snprintf(resp->json_resp, size, "%s", result_json.c_str());
}
void llama_server_release_task_result(ext_server_task_result_t *result) {
if (result == NULL || result->json_resp == NULL) {
return;
}
delete[] result->json_resp;
}
void llama_server_completion_cancel(const int task_id, ext_server_resp_t *err) {
assert(llama != NULL && err != NULL);
err->id = 0;
err->msg[0] = '\0';
try {
llama->request_cancel(task_id);
llama->queue_results.remove_waiting_task_id(task_id);
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len,
"Unknown exception completion cancel in llama server");
}
}
void llama_server_tokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err) {
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
*json_resp = NULL;
err->id = 0;
err->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
const json body = json::parse(json_req);
std::vector<llama_token> tokens;
if (body.count("content") != 0) {
tokens = llama->tokenize(body["content"], false);
}
const json data = format_tokenizer_response(tokens);
std::string result_json = data.dump();
const std::string::size_type size = result_json.size() + 1;
*json_resp = new char[size];
snprintf(*json_resp, size, "%s", result_json.c_str());
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unknown exception during tokenize");
}
}
void llama_server_release_json_resp(char **json_resp) {
if (json_resp == NULL || *json_resp == NULL) {
return;
}
delete[] *json_resp;
}
void llama_server_detokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err) {
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
*json_resp = NULL;
err->id = 0;
err->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
const json body = json::parse(json_req);
std::string content;
if (body.count("tokens") != 0) {
const std::vector<llama_token> tokens = body["tokens"];
content = tokens_to_str(llama->ctx, tokens.cbegin(), tokens.cend());
}
const json data = format_detokenized_response(content);
std::string result_json = data.dump();
const std::string::size_type size = result_json.size() + 1;
*json_resp = new char[size];
snprintf(*json_resp, size, "%s", result_json.c_str());
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unknown exception during detokenize");
}
}
void llama_server_embedding(const char *json_req, char **json_resp,
ext_server_resp_t *err) {
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
*json_resp = NULL;
err->id = 0;
err->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
const json body = json::parse(json_req);
json prompt;
if (body.count("content") != 0) {
prompt = body["content"];
} else {
prompt = "";
}
const int task_id = llama->queue_tasks.get_new_id();
llama->queue_results.add_waiting_task_id(task_id);
llama->request_completion(task_id, {{"prompt", prompt}, {"n_predict", 0}}, false, true, -1);
atomicRecv ar(recv_counter);
task_result result = llama->queue_results.recv(task_id);
std::string result_json = result.result_json.dump();
const std::string::size_type size = result_json.size() + 1;
*json_resp = new char[size];
snprintf(*json_resp, size, "%s", result_json.c_str());
llama->queue_results.remove_waiting_task_id(task_id);
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unknown exception during embedding");
}
}

View File

@@ -1,95 +0,0 @@
#if defined(LLAMA_SERVER_LIBRARY)
#ifndef LLAMA_SERVER_H
#define LLAMA_SERVER_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
int __main(int argc, char **argv);
// This exposes extern C entrypoints into the llama_server
// To enable the server compile with LLAMA_SERVER_LIBRARY
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ext_server_resp {
int id; // < 0 on error
size_t msg_len; // caller must allocate msg and set msg_len
char *msg;
} ext_server_resp_t;
// Allocated and freed by caller
typedef struct ext_server_lora_adapter {
char *adapter;
float scale;
struct ext_server_lora_adapter *next;
} ext_server_lora_adapter_t;
// Allocated and freed by caller
typedef struct ext_server_params {
char *model;
uint32_t n_ctx; // token context window, 0 = from model
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
int32_t n_parallel; // number of parallel sequences to decodewra
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
bool memory_f16; // use f16 instead of f32 for memory kv
int32_t n_gpu_layers; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu; // the GPU that is used for scratch and small tensors
bool use_mlock; // force system to keep model in RAM
bool use_mmap; // use mmap if possible
int numa; // attempt optimizations that help on some NUMA systems
bool embedding; // get only sentence embedding
ext_server_lora_adapter_t *lora_adapters;
char *mmproj;
bool verbose_logging; // Enable verbose logging of the server
} ext_server_params_t;
typedef struct ext_server_task_result {
int id;
bool stop;
bool error;
char *json_resp; // null terminated, memory managed by ext_server
} ext_server_task_result_t;
// Initialize the server once per process
// err->id = 0 for success and err->msg[0] = NULL
// err->id != 0 for failure, and err->msg contains error message
void llama_server_init(ext_server_params_t *sparams, ext_server_resp_t *err);
// Run the main loop, called once per init
void llama_server_start();
// Stop the main loop and free up resources allocated in init and start. Init
// must be called again to reuse
void llama_server_stop();
// json_req null terminated string, memory managed by caller
// resp->id >= 0 on success (task ID)
// resp->id < 0 on error, and resp->msg contains error message
void llama_server_completion(const char *json_req, ext_server_resp_t *resp);
// Caller must call llama_server_release_task_result to free resp->json_resp
void llama_server_completion_next_result(const int task_id,
ext_server_task_result_t *result);
void llama_server_completion_cancel(const int task_id, ext_server_resp_t *err);
void llama_server_release_task_result(ext_server_task_result_t *result);
// Caller must call llama_server_releaes_json_resp to free json_resp if err.id <
// 0
void llama_server_tokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void llama_server_detokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void llama_server_embedding(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void llama_server_release_json_resp(char **json_resp);
#ifdef __cplusplus
}
#endif
#endif
#endif // LLAMA_SERVER_LIBRARY

View File

@@ -1007,13 +1007,15 @@ struct llama_server_context
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
}
slot.add_token_string(result);
if (slot.params.stream)
{
send_partial_response(slot, result);
}
}
slot.add_token_string(result);
if (incomplete)
{
slot.has_next_token = true;
@@ -2768,7 +2770,7 @@ inline void signal_handler(int signal) {
shutdown_handler(signal);
}
int _main(int argc, char **argv)
int main(int argc, char **argv)
{
#if SERVER_VERBOSE != 1
log_disable();

View File

@@ -14,7 +14,7 @@ init_vars() {
LLAMACPP_DIR=../llama.cpp
CMAKE_DEFS=""
CMAKE_TARGETS="--target ext_server"
CMAKE_TARGETS="--target ollama_llama_server"
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
else
@@ -81,27 +81,24 @@ apply_patches() {
build() {
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
mkdir -p ${BUILD_DIR}/lib/
ls ${BUILD_DIR}
g++ -fPIC -g -shared -o ${BUILD_DIR}/lib/libext_server.${LIB_EXT} \
${GCC_ARCH} \
${WHOLE_ARCHIVE} ${BUILD_DIR}/ext_server/libext_server.a ${NO_WHOLE_ARCHIVE} \
${BUILD_DIR}/common/libcommon.a \
${BUILD_DIR}/libllama.a \
-Wl,-rpath,\$ORIGIN \
-lpthread -ldl -lm \
${EXTRA_LIBS}
}
compress_libs() {
compress() {
echo "Compressing payloads to reduce overall binary size..."
pids=""
rm -rf ${BUILD_DIR}/lib/*.${LIB_EXT}*.gz
for lib in ${BUILD_DIR}/lib/*.${LIB_EXT}* ; do
gzip -n --best -f ${lib} &
rm -rf ${BUILD_DIR}/bin/*.gz
for f in ${BUILD_DIR}/bin/* ; do
gzip -n --best -f ${f} &
pids+=" $!"
done
echo
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
gzip -n --best -f ${f} &
pids+=" $!"
done
fi
echo
for pid in ${pids}; do
wait $pid
done

View File

@@ -1,6 +1,6 @@
#!/bin/bash
# This script is intended to run inside the go generate
# working directory must be ./llm/generate/
# This script is intended to run inside the `go run build.go` script, which
# sets the working directory to the correct location: ./llm/generate/.
# TODO - add hardening to detect missing tools (cmake, etc.)
@@ -18,21 +18,31 @@ sign() {
fi
}
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 -DCMAKE_SYSTEM_NAME=Darwin"
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on"
case "${GOARCH}" in
"amd64")
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_NATIVE=off"
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library"
build
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu"
BUILD_DIR="../build/darwin/${ARCH}/cpu"
echo "Building LCD CPU"
build
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu/lib/libext_server.dylib
compress_libs
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
#
# ~2011 CPU Dynamic library with more capabilities turned on to optimize performance
@@ -40,11 +50,11 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
echo "Building AVX CPU"
build
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx/lib/libext_server.dylib
compress_libs
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
#
# ~2013 CPU Dynamic library
@@ -52,26 +62,37 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx2"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
build
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx2/lib/libext_server.dylib
compress_libs
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
;;
"arm64")
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DLLAMA_METAL_EMBED_LIBRARY=on -DLLAMA_ACCELERATE=on -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=on ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/metal"
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library"
build
init_vars
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DLLAMA_ACCELERATE=on -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=on ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/metal"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
build
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/metal/lib/libext_server.dylib
compress_libs
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
;;
*)
echo "GOARCH must be set"
echo "this script is meant to be run from within go generate"
echo "this script is meant to be run from within 'go run build.go'"
exit 1
;;
esac
cleanup
echo "code generation completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@@ -1,6 +1,6 @@
#!/bin/bash
# This script is intended to run inside the go generate
# working directory must be llm/generate/
# This script is intended to run with the `go run build.go` script, which
# sets the working directory to the correct location: ./llm/generate/.
# First we build one or more CPU based LLM libraries
#
@@ -57,16 +57,31 @@ init_vars
git_module_setup
apply_patches
init_vars
if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "static" ]; then
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}_static"
echo "Building static library"
build
fi
# Users building from source can tune the exact flags we pass to cmake for configuring
# llama.cpp, and we'll build only 1 CPU variant in that case as the default.
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
init_vars
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu"
BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building custom CPU"
build
compress_libs
compress
else
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
@@ -83,11 +98,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu"
BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building LCD CPU"
build
compress_libs
compress
fi
if [ "${ARCH}" == "x86_64" ]; then
@@ -101,10 +117,10 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu_avx"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
echo "Building AVX CPU"
build
compress_libs
compress
fi
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu_avx2" ]; then
@@ -114,10 +130,10 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu_avx2"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU"
build
compress_libs
compress
fi
fi
fi
@@ -156,8 +172,8 @@ if [ -d "${CUDA_LIB_DIR}" ]; then
# Disabling has minimal performance effect while maintaining compatibility.
ARM64_DEFS="-DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_CUDA_F16=off"
fi
CMAKE_DEFS="-DLLAMA_CUBLAS=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS}"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cuda${CUDA_VARIANT}"
CMAKE_DEFS="-DLLAMA_CUDA=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
EXTRA_LIBS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
build
@@ -165,20 +181,20 @@ if [ -d "${CUDA_LIB_DIR}" ]; then
#
# TODO - in the future we may shift to packaging these separately and conditionally
# downloading them in the install script.
DEPS="$(ldd ${BUILD_DIR}/lib/libext_server.so )"
DEPS="$(ldd ${BUILD_DIR}/bin/ollama_llama_server )"
for lib in libcudart.so libcublas.so libcublasLt.so ; do
DEP=$(echo "${DEPS}" | grep ${lib} | cut -f1 -d' ' | xargs || true)
if [ -n "${DEP}" -a -e "${CUDA_LIB_DIR}/${DEP}" ]; then
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/lib/"
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" ]; then
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/lib/"
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDART_LIB_DIR}/${lib}" ]; then
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/lib/"
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/bin/"
else
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/lib/"
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/bin/"
fi
done
compress_libs
compress
fi
@@ -201,23 +217,24 @@ if [ -d "${ROCM_PATH}" ]; then
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DLLAMA_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/rocm${ROCM_VARIANT}"
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
EXTRA_LIBS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -Wl,-rpath,\$ORIGIN/../../rocm/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
build
# Record the ROCM dependencies
rm -f "${BUILD_DIR}/lib/deps.txt"
touch "${BUILD_DIR}/lib/deps.txt"
for dep in $(ldd "${BUILD_DIR}/lib/libext_server.so" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do
echo "${dep}" >> "${BUILD_DIR}/lib/deps.txt"
rm -f "${BUILD_DIR}/bin/deps.txt"
touch "${BUILD_DIR}/bin/deps.txt"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do
echo "${dep}" >> "${BUILD_DIR}/bin/deps.txt"
done
# bomb out if for some reason we didn't get a few deps
if [ $(cat "${BUILD_DIR}/lib/deps.txt" | wc -l ) -lt 8 ] ; then
cat "${BUILD_DIR}/lib/deps.txt"
if [ $(cat "${BUILD_DIR}/bin/deps.txt" | wc -l ) -lt 8 ] ; then
cat "${BUILD_DIR}/bin/deps.txt"
echo "ERROR: deps file short"
exit 1
fi
compress_libs
compress
fi
cleanup
echo "code generation completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@@ -33,7 +33,7 @@ function init_vars {
"-DBUILD_SHARED_LIBS=on",
"-DLLAMA_NATIVE=off"
)
$script:cmakeTargets = @("ext_server")
$script:cmakeTargets = @("ollama_llama_server")
$script:ARCH = "amd64" # arm not yet supported.
if ($env:CGO_CFLAGS -contains "-g") {
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
@@ -97,16 +97,14 @@ function apply_patches {
}
# Checkout each file
Set-Location -Path ${script:llamacppDir}
foreach ($file in $filePaths) {
git checkout $file
git -C "${script:llamacppDir}" checkout $file
}
}
# Apply each patch
foreach ($patch in $patches) {
Set-Location -Path ${script:llamacppDir}
git apply $patch.FullName
git -C "${script:llamacppDir}" apply $patch.FullName
}
}
@@ -115,41 +113,41 @@ function build {
& cmake --version
& cmake -S "${script:llamacppDir}" -B $script:buildDir $script:cmakeDefs
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
write-host "building with: cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ })"
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ })"
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ })
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
function install {
rm -ea 0 -recurse -force -path "${script:buildDir}/lib"
md "${script:buildDir}/lib" -ea 0 > $null
cp "${script:buildDir}/bin/${script:config}/ext_server.dll" "${script:buildDir}/lib"
cp "${script:buildDir}/bin/${script:config}/llama.dll" "${script:buildDir}/lib"
# Display the dll dependencies in the build log
if ($script:DUMPBIN -ne $null) {
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/${script:config}/ext_server.dll" | select-string ".dll"
# Rearrange output to be consistent between different generators
if ($null -ne ${script:config} -And (test-path -path "${script:buildDir}/bin/${script:config}" ) ) {
mv -force "${script:buildDir}/bin/${script:config}/*" "${script:buildDir}/bin/"
remove-item "${script:buildDir}/bin/${script:config}"
}
}
function sign {
if ("${env:KEY_CONTAINER}") {
write-host "Signing ${script:buildDir}/lib/*.dll"
foreach ($file in (get-childitem "${script:buildDir}/lib/*.dll")){
& "${script:SignTool}" sign /v /debug /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
write-host "Signing ${script:buildDir}/bin/*.exe ${script:buildDir}/bin/*.dll"
foreach ($file in @(get-childitem "${script:buildDir}/bin/*.exe") + @(get-childitem "${script:buildDir}/bin/*.dll")){
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc "${env:KEY_CONTAINER}" $file
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function compress_libs {
function compress {
if ($script:GZIP -eq $null) {
write-host "gzip not installed, not compressing files"
return
}
write-host "Compressing binaries..."
$binaries = dir "${script:buildDir}/bin/*.exe"
foreach ($file in $binaries) {
& "$script:GZIP" --best -f $file
}
write-host "Compressing dlls..."
$libs = dir "${script:buildDir}/lib/*.dll"
foreach ($file in $libs) {
$dlls = dir "${script:buildDir}/bin/*.dll"
foreach ($file in $dlls) {
& "$script:GZIP" --best -f $file
}
}
@@ -164,14 +162,11 @@ function cleanup {
}
# Checkout each file
Set-Location -Path ${script:llamacppDir}
foreach ($file in $filePaths) {
git checkout $file
git -C "${script:llamacppDir}" checkout $file
}
git -C "${script:llamacppDir}" checkout CMakeLists.txt
}
Set-Location "${script:llamacppDir}/"
git checkout CMakeLists.txt
}
init_vars
@@ -179,7 +174,6 @@ git_module_setup
apply_patches
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
# -DLLAMA_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
# -DLLAMA_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
# -DLLAMA_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
@@ -187,32 +181,54 @@ $script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
if ($null -eq ${env:OLLAMA_SKIP_CPU_GENERATE}) {
# GCC build for direct linking into the Go binary
init_vars
# cmake will silently fallback to msvc compilers if mingw isn't in the path, so detect and fail fast
# as we need this to be compiled by gcc for golang to be able to link with itx
write-host "Checking for MinGW..."
# error action ensures we exit on failure
get-command gcc
get-command mingw32-make
$script:cmakeTargets = @("llama", "ggml")
$script:cmakeDefs = @(
"-G", "MinGW Makefiles"
"-DCMAKE_C_COMPILER=gcc.exe",
"-DCMAKE_CXX_COMPILER=g++.exe",
"-DBUILD_SHARED_LIBS=off",
"-DLLAMA_NATIVE=off",
"-DLLAMA_AVX=off",
"-DLLAMA_AVX2=off",
"-DLLAMA_AVX512=off",
"-DLLAMA_F16C=off",
"-DLLAMA_FMA=off")
$script:buildDir="../build/windows/${script:ARCH}_static"
write-host "Building static library"
build
# remaining llama.cpp builds use MSVC
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cpu"
$script:buildDir="../build/windows/${script:ARCH}/cpu"
write-host "Building LCD CPU"
build
install
sign
compress_libs
compress
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cpu_avx"
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx"
write-host "Building AVX CPU"
build
install
sign
compress_libs
compress
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=on", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=on", "-DLLAMA_F16C=on") + $script:cmakeDefs
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cpu_avx2"
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx2"
write-host "Building AVX2 CPU"
build
install
sign
compress_libs
compress
} else {
write-host "Skipping CPU generation step as requested"
}
@@ -225,13 +241,11 @@ if ($null -ne $script:CUDA_LIB_DIR) {
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION
}
init_vars
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT"
$script:cmakeDefs += @("-A", "x64", "-DLLAMA_CUBLAS=ON", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR", "-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}")
write-host "Building CUDA"
$script:buildDir="../build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT"
$script:cmakeDefs += @("-A", "x64", "-DLLAMA_CUDA=ON", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR", "-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}")
build
install
sign
compress_libs
compress
}
if ($null -ne $env:HIP_PATH) {
@@ -241,12 +255,13 @@ if ($null -ne $env:HIP_PATH) {
}
init_vars
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/rocm$script:ROCM_VARIANT"
$script:buildDir="../build/windows/${script:ARCH}/rocm$script:ROCM_VARIANT"
$script:cmakeDefs += @(
"-G", "Ninja",
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DLLAMA_HIPBLAS=on",
"-DHIP_PLATFORM=amd",
"-DLLAMA_AVX=on",
"-DLLAMA_AVX2=off",
"-DCMAKE_POSITION_INDEPENDENT_CODE=on",
@@ -264,13 +279,13 @@ if ($null -ne $env:HIP_PATH) {
build
# Ninja doesn't prefix with config name
${script:config}=""
install
if ($null -ne $script:DUMPBIN) {
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/${script:config}/ext_server.dll" | select-string ".dll"
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/ollama_llama_server.exe" | select-string ".dll"
}
sign
compress_libs
compress
}
cleanup
write-host "`ngo generate completed. LLM runners: $(get-childitem -path ${script:SRC_DIR}\llm\llama.cpp\build\windows\${script:ARCH})"
write-host "`ncode generation completed. LLM runners: $(get-childitem -path ${script:SRC_DIR}\llm\build\windows\${script:ARCH})"

View File

@@ -1,3 +0,0 @@
package generate
//go:generate sh ./gen_darwin.sh

View File

@@ -1,3 +0,0 @@
package generate
//go:generate bash ./gen_linux.sh

View File

@@ -1,3 +0,0 @@
package generate
//go:generate powershell -ExecutionPolicy Bypass -File ./gen_windows.ps1

View File

@@ -7,16 +7,18 @@ import (
"slices"
)
type ContainerGGLA struct {
type containerGGLA struct {
version uint32
}
func (c *ContainerGGLA) Name() string {
func (c *containerGGLA) Name() string {
return "ggla"
}
func (c *ContainerGGLA) Decode(rs io.ReadSeeker) (model, error) {
binary.Read(rs, binary.LittleEndian, &c.version)
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
return nil, err
}
switch c.version {
case 1:
@@ -24,37 +26,45 @@ func (c *ContainerGGLA) Decode(rs io.ReadSeeker) (model, error) {
return nil, errors.New("invalid version")
}
model := newModelGGLA(c)
model := newGGLA(c)
err := model.decode(rs)
return model, err
}
type ModelGGLA struct {
*ContainerGGLA
type ggla struct {
*containerGGLA
kv KV
tensors []Tensor
tensors []*Tensor
}
func newModelGGLA(container *ContainerGGLA) *ModelGGLA {
return &ModelGGLA{
ContainerGGLA: container,
func newGGLA(container *containerGGLA) *ggla {
return &ggla{
containerGGLA: container,
kv: make(KV),
}
}
func (m *ModelGGLA) decode(rs io.ReadSeeker) error {
func (llm *ggla) KV() KV {
return llm.kv
}
func (llm *ggla) Tensors() []*Tensor {
return llm.tensors
}
func (llm *ggla) decode(rs io.ReadSeeker) error {
var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err
}
m.kv["r"] = r
llm.kv["r"] = r
var alpha uint32
if err := binary.Read(rs, binary.LittleEndian, &alpha); err != nil {
return err
}
m.kv["alpha"] = alpha
llm.kv["alpha"] = alpha
for {
var dims uint32
@@ -109,54 +119,10 @@ func (m *ModelGGLA) decode(rs io.ReadSeeker) error {
t.Offset = uint64(offset)
if _, err := rs.Seek(int64(t.Size()), io.SeekCurrent); err != nil {
if _, err := rs.Seek(int64(t.size()), io.SeekCurrent); err != nil {
return err
}
m.tensors = append(m.tensors, t)
llm.tensors = append(llm.tensors, &t)
}
}
func (m *ModelGGLA) KV() KV {
return m.kv
}
func (m *ModelGGLA) Tensor() []Tensor {
return m.tensors
}
func (*ModelGGLA) ModelFamily() string {
return "ggla"
}
func (*ModelGGLA) ModelType() string {
panic("not implemented")
}
func (*ModelGGLA) FileType() string {
panic("not implemented")
}
func (*ModelGGLA) NumLayers() uint32 {
panic("not implemented")
}
func (*ModelGGLA) NumGQA() uint32 {
panic("not implemented")
}
func (*ModelGGLA) NumEmbed() uint32 {
panic("not implemented")
}
func (*ModelGGLA) NumHead() uint32 {
panic("not implemented")
}
func (*ModelGGLA) NumHeadKv() uint32 {
panic("not implemented")
}
func (*ModelGGLA) NumCtx() uint32 {
panic("not implemented")
}

View File

@@ -3,14 +3,24 @@ package llm
import (
"encoding/binary"
"errors"
"fmt"
"io"
"strings"
)
type GGML struct {
container
model
}
Size int64
func (ggml *GGML) LayerSize(prefix string) (n int64) {
for _, t := range ggml.Tensors() {
if strings.HasPrefix(t.Name, prefix) {
n += int64(t.size())
}
}
return
}
const (
@@ -90,15 +100,148 @@ func fileType(fileType uint32) string {
}
type model interface {
ModelFamily() string
ModelType() string
FileType() string
NumLayers() uint32
NumGQA() uint32
NumEmbed() uint32
NumHead() uint32
NumHeadKv() uint32
NumCtx() uint32
KV() KV
Tensors() []*Tensor
}
type KV map[string]any
func (kv KV) u64(key string) uint64 {
switch v := kv[key].(type) {
case uint64:
return v
case uint32:
return uint64(v)
case float64:
return uint64(v)
default:
return 0
}
}
func (kv KV) Architecture() string {
if s, ok := kv["general.architecture"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count")
}
func (kv KV) FileType() string {
if u64 := kv.u64("general.file_type"); u64 > 0 {
return fileType(uint32(u64))
}
return "unknown"
}
func (kv KV) BlockCount() uint64 {
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
}
func (kv KV) HeadCount() uint64 {
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
}
func (kv KV) HeadCountKV() uint64 {
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
return headCountKV
}
return 1
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) EmbeddingLength() uint64 {
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
}
func (kv KV) ContextLength() uint64 {
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
}
type Tensor struct {
Name string `json:"name"`
Kind uint32 `json:"kind"`
Offset uint64 `json:"-"`
// Shape is the number of elements in each dimension
Shape []uint64 `json:"shape"`
io.WriterTo `json:"-"`
}
func (t Tensor) blockSize() uint64 {
switch {
case t.Kind < 2:
return 1
case t.Kind < 10:
return 32
default:
return 256
}
}
func (t Tensor) typeSize() uint64 {
blockSize := t.blockSize()
switch t.Kind {
case 0: // FP32
return 4
case 1: // FP16
return 2
case 2: // Q4_0
return 2 + blockSize/2
case 3: // Q4_1
return 2 + 2 + blockSize/2
case 6: // Q5_0
return 2 + 4 + blockSize/2
case 7: // Q5_1
return 2 + 2 + 4 + blockSize/2
case 8: // Q8_0
return 2 + blockSize
case 9: // Q8_1
return 4 + 4 + blockSize
case 10: // Q2_K
return blockSize/16 + blockSize/4 + 2 + 2
case 11: // Q3_K
return blockSize/8 + blockSize/4 + 12 + 2
case 12: // Q4_K
return 2 + 2 + 12 + blockSize/2
case 13: // Q5_K
return 2 + 2 + 12 + blockSize/8 + blockSize/2
case 14: // Q6_K
return blockSize/2 + blockSize/4 + blockSize/16 + 2
case 15: // Q8_K
return 2 + blockSize + 2*blockSize/16
case 16: // IQ2_XXS
return 2 + 2*blockSize/8
case 17: // IQ2_XS
return 2 + 2*blockSize/8 + blockSize/32
case 18: // IQ3_XXS
return 2 + 3*blockSize/8
default:
return 0
}
}
func (t Tensor) parameters() uint64 {
var count uint64 = 1
for _, n := range t.Shape {
count *= n
}
return count
}
func (t Tensor) size() uint64 {
return t.parameters() * t.typeSize() / t.blockSize()
}
type container interface {
@@ -122,42 +265,88 @@ const (
var ErrUnsupportedFormat = errors.New("unsupported model format")
func DecodeGGML(rs io.ReadSeeker) (*GGML, error) {
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, err
return nil, 0, err
}
var c container
switch magic {
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
return nil, ErrUnsupportedFormat
return nil, 0, ErrUnsupportedFormat
case FILE_MAGIC_GGLA:
c = &ContainerGGLA{}
c = &containerGGLA{}
case FILE_MAGIC_GGUF_LE:
c = &ContainerGGUF{ByteOrder: binary.LittleEndian}
c = &containerGGUF{ByteOrder: binary.LittleEndian}
case FILE_MAGIC_GGUF_BE:
c = &ContainerGGUF{ByteOrder: binary.BigEndian}
c = &containerGGUF{ByteOrder: binary.BigEndian}
default:
return nil, errors.New("invalid file magic")
return nil, 0, errors.New("invalid file magic")
}
model, err := c.Decode(rs)
if errors.Is(err, io.EOF) {
// noop
} else if err != nil {
return nil, err
return nil, 0, err
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return nil, err
return nil, 0, err
}
// final model type
return &GGML{
container: c,
model: model,
Size: offset,
}, nil
}, offset, nil
}
func (llm GGML) GraphSize(context, batch int) (int64, bool) {
embeddingLength := llm.KV().EmbeddingLength()
headCount := llm.KV().HeadCount()
headCountKV := llm.KV().HeadCountKV()
vocabLength := len(llm.KV()["tokenizer.ggml.tokens"].([]any))
var attnQKVWeight1 uint64 = 0
for _, t := range llm.Tensors() {
if strings.HasSuffix(t.Name, ".attn_qkv.weight") && len(t.Shape) >= 2 {
attnQKVWeight1 = t.Shape[1]
break
}
}
var ffnGate1 uint64 = 0
for _, t := range llm.Tensors() {
if strings.Index(t.Name, ".ffn_gate") > 0 && len(t.Shape) >= 2 {
ffnGate1 = t.Shape[1]
break
}
}
switch llm.KV().Architecture() {
case "gemma", "command-r":
return 4 * int64(batch) * int64(embeddingLength+uint64(vocabLength)), true
case "phi2":
return max(
4*int64(batch)*int64(embeddingLength+uint64(vocabLength)),
4*int64(batch)*int64(1+4*embeddingLength+uint64(context)+attnQKVWeight1+uint64(context)*headCount),
), true
case "qwen2":
return max(
4*int64(batch)*int64(embeddingLength+uint64(vocabLength)),
4*int64(batch)*int64(1+2*embeddingLength+uint64(context)+uint64(context)*headCount),
), true
case "llama":
if ffnGate1 > 0 {
// moe
return 4 * int64(batch) * int64(2+3*embeddingLength+uint64(context)+uint64(context)*headCount+2*headCountKV+ffnGate1), true
}
return 4 * int64(batch) * int64(1+4*embeddingLength+uint64(context)+uint64(context)*headCount), true
}
return 0, false
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,100 +0,0 @@
package llm
import (
_ "embed"
"fmt"
"time"
"github.com/ollama/ollama/api"
)
const jsonGrammar = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
}
var payloadMissing = fmt.Errorf("expected dynamic library payloads not included in this build of ollama")
type prediction struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
const maxRetries = 3
type PredictOpts struct {
Prompt string
Format string
Images []ImageData
Options api.Options
}
type PredictResult struct {
Content string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}

View File

@@ -1,175 +1,15 @@
package llm
import (
"context"
"fmt"
"log/slog"
"os"
"runtime"
"slices"
// #cgo CFLAGS: -Illama.cpp
// #cgo darwin,arm64 LDFLAGS: ${SRCDIR}/build/darwin/arm64_static/libllama.a -lstdc++
// #cgo darwin,amd64 LDFLAGS: ${SRCDIR}/build/darwin/x86_64_static/libllama.a -lstdc++
// #cgo windows,amd64 LDFLAGS: ${SRCDIR}/build/windows/amd64_static/libllama.a -static -lstdc++
// #cgo linux,amd64 LDFLAGS: ${SRCDIR}/build/linux/x86_64_static/libllama.a -lstdc++
// #cgo linux,arm64 LDFLAGS: ${SRCDIR}/build/linux/arm64_static/libllama.a -lstdc++
// #include "llama.h"
import "C"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/gpu"
)
type LLM interface {
Predict(context.Context, PredictOpts, func(PredictResult)) error
Embedding(context.Context, string) ([]float64, error)
Encode(context.Context, string) ([]int, error)
Decode(context.Context, []int) (string, error)
Close()
}
var cpuOnlyFamilies = []string{
"mamba",
}
func New(model string, adapters, projectors []string, opts api.Options) (LLM, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, err := DecodeGGML(f)
if err != nil {
return nil, err
}
if opts.NumCtx > int(ggml.NumCtx()) {
slog.Warn(fmt.Sprintf("requested context length is greater than model's max context length (%d > %d), using %d instead", opts.NumCtx, ggml.NumCtx(), ggml.NumCtx()))
opts.NumCtx = int(ggml.NumCtx())
}
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
vram, _ := gpu.CheckVRAM()
size := ggml.Size
// fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(max(ggml.NumHead(), 1))
// this amount is the overhead + tensors in memory
// TODO: get this from the llama.cpp's graph calculations instead of
// estimating it's 1/6 * kv_cache_size * num_gqa
graph := int64(ggml.NumGQA()) * kv / 6
// certain model architectures don't support gpu inference yet
if slices.Contains(cpuOnlyFamilies, ggml.ModelFamily()) {
opts.NumGPU = 0
}
info := gpu.GetGPUInfo()
switch runtime.GOOS {
case "darwin":
if opts.NumGPU == 0 {
break
}
if size+kv+graph > vram {
slog.Info("not enough vram available, setting num_gpu=0")
opts.NumGPU = 0
break
}
// TODO: implement layer splitting on macOS
opts.NumGPU = 999
default:
if info.Library == "cpu" {
slog.Info("GPU not available, falling back to CPU")
opts.NumGPU = 0
break
}
// don't use GPU at all if no layers are loaded
if opts.NumGPU == 0 {
info.Library = "cpu"
info.Variant = gpu.GetCPUVariant()
break
}
// user-defined GPU count
if opts.NumGPU != -1 {
break
}
// the "main" GPU needs the most memory and determines the limit
// of how many layers can be loaded. It needs to fit:
// 1. the full compute graph allocation for all devices (graph)
// 2. the proportional kv cache for all devices (kv * % layers)
// 3. the proportional model (size * % layers / # devices)
// This estimates the number of layers
maxlayers := int64(ggml.NumLayers()) + 1
devices := int64(info.DeviceCount)
avg := vram / devices
layers := maxlayers * (avg - graph) / (kv + size/devices)
if layers > maxlayers {
layers = maxlayers
}
// 1 + 2 must fit on the main gpu
min := graph + kv*layers/maxlayers
if layers <= 0 || min > avg {
slog.Info("not enough vram available, falling back to CPU only")
info.Library = "cpu"
info.Variant = gpu.GetCPUVariant()
opts.NumGPU = 0
break
}
opts.NumGPU = int(layers)
}
opts.RopeFrequencyBase = 0.0
opts.RopeFrequencyScale = 0.0
return newLlmServer(info, model, adapters, projectors, opts)
}
// Give any native cgo implementations an opportunity to initialize
func Init() error {
return nativeInit()
}
func newLlmServer(gpuInfo gpu.GpuInfo, model string, adapters, projectors []string, opts api.Options) (LLM, error) {
dynLibs := getDynLibs(gpuInfo)
// Check to see if the user has requested a specific library instead of auto-detecting
demandLib := os.Getenv("OLLAMA_LLM_LIBRARY")
if demandLib != "" {
libPath := availableDynLibs[demandLib]
if libPath == "" {
slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
} else {
slog.Info(fmt.Sprintf("Loading OLLAMA_LLM_LIBRARY=%s", demandLib))
dynLibs = []string{libPath}
}
}
// We stage into a temp directory, and if we've been idle for a while, it may have been reaped
_, err := os.Stat(dynLibs[0])
if err != nil {
slog.Info(fmt.Sprintf("%s has disappeared, reloading libraries", dynLibs[0]))
err = nativeInit()
if err != nil {
return nil, err
}
}
err2 := fmt.Errorf("unable to locate suitable llm library")
for _, dynLib := range dynLibs {
srv, err := newDynExtServer(dynLib, model, adapters, projectors, opts)
if err == nil {
return srv, nil
}
slog.Warn(fmt.Sprintf("Failed to load dynamic library %s %s", dynLib, err))
err2 = err
}
return nil, err2
// SystemInfo is an unused example of calling llama.cpp functions using CGo
func SystemInfo() string {
return C.GoString(C.llama_print_system_info())
}

View File

@@ -4,5 +4,5 @@ import (
"embed"
)
//go:embed llama.cpp/build/linux/*/*/lib/*
//go:embed build/darwin/x86_64/*/bin/*
var libEmbed embed.FS

View File

@@ -4,5 +4,5 @@ import (
"embed"
)
//go:embed llama.cpp/build/windows/*/*/lib/*.dll*
//go:embed build/darwin/arm64/*/bin/*
var libEmbed embed.FS

6
llm/llm_linux.go Normal file
View File

@@ -0,0 +1,6 @@
package llm
import "embed"
//go:embed build/linux/*/*/bin/*
var libEmbed embed.FS

6
llm/llm_windows.go Normal file
View File

@@ -0,0 +1,6 @@
package llm
import "embed"
//go:embed build/windows/*/*/bin/*
var libEmbed embed.FS

View File

@@ -1,13 +0,0 @@
diff --git a/llama.cpp b/llama.cpp
index b27aa272..99372f9c 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -9360,7 +9360,7 @@ struct llm_tokenizer_wpm {
}
uint32_t to_lower(uint32_t code) {
- static const std::locale locale("en_US.UTF-8");
+ static const std::locale locale("");
#if defined(_WIN32)
if (code > 0xFFFF) {
return code;

211
llm/payload.go Normal file
View File

@@ -0,0 +1,211 @@
package llm
import (
"compress/gzip"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"strings"
"golang.org/x/exp/slices"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/gpu"
)
var errPayloadMissing = fmt.Errorf("expected payloads not included in this build of ollama")
func Init() error {
payloadsDir, err := gpu.PayloadsDir()
if err != nil {
return err
}
slog.Info("extracting embedded files", "dir", payloadsDir)
binGlob := "build/*/*/*/bin/*"
// extract server libraries
err = extractFiles(payloadsDir, binGlob)
if err != nil {
return fmt.Errorf("extract binaries: %v", err)
}
var variants []string
for v := range availableServers() {
variants = append(variants, v)
}
slog.Info(fmt.Sprintf("Dynamic LLM libraries %v", variants))
slog.Debug("Override detection logic by setting OLLAMA_LLM_LIBRARY")
return nil
}
// binary names may contain an optional variant separated by '_'
// For example, "ollama_rocm_v6" and "ollama_rocm_v5" or "ollama_cpu" and "ollama_cpu_avx2"
// Any library without a variant is the lowest common denominator
func availableServers() map[string]string {
payloadsDir, err := gpu.PayloadsDir()
if err != nil {
slog.Error("payload lookup error", "error", err)
return nil
}
// glob payloadsDir for files that start with ollama_
pattern := filepath.Join(payloadsDir, "*")
files, err := filepath.Glob(pattern)
if err != nil {
slog.Debug("could not glob", "pattern", pattern, "error", err)
return nil
}
servers := make(map[string]string)
for _, file := range files {
slog.Debug("availableServers : found", "file", file)
servers[filepath.Base(file)] = file
}
return servers
}
// serversForGpu returns a list of compatible servers give the provided GPU
// info, ordered by performance. assumes Init() has been called
// TODO - switch to metadata based mapping
func serversForGpu(info gpu.GpuInfo) []string {
// glob workDir for files that start with ollama_
availableServers := availableServers()
requested := info.Library
if info.Variant != "" {
requested += "_" + info.Variant
}
servers := []string{}
// exact match first
for a := range availableServers {
if a == requested {
servers = []string{a}
if a == "metal" {
return servers
}
break
}
}
alt := []string{}
// Then for GPUs load alternates and sort the list for consistent load ordering
if info.Library != "cpu" {
for a := range availableServers {
if info.Library == strings.Split(a, "_")[0] && a != requested {
alt = append(alt, a)
}
}
slices.Sort(alt)
servers = append(servers, alt...)
}
// Load up the best CPU variant if not primary requested
if info.Library != "cpu" {
variant := gpu.GetCPUVariant()
// If no variant, then we fall back to default
// If we have a variant, try that if we find an exact match
// Attempting to run the wrong CPU instructions will panic the
// process
if variant != "" {
for cmp := range availableServers {
if cmp == "cpu_"+variant {
servers = append(servers, cmp)
break
}
}
} else {
servers = append(servers, "cpu")
}
}
if len(servers) == 0 {
servers = []string{"cpu"}
}
return servers
}
// extract extracts the embedded files to the target directory
func extractFiles(targetDir string, glob string) error {
files, err := fs.Glob(libEmbed, glob)
if err != nil || len(files) == 0 {
return errPayloadMissing
}
if err := os.MkdirAll(targetDir, 0o755); err != nil {
return fmt.Errorf("extractFiles could not mkdir %s: %v", targetDir, err)
}
g := new(errgroup.Group)
// build/$OS/$GOARCH/$VARIANT/{bin,lib}/$FILE
for _, file := range files {
filename := file
variant := filepath.Base(filepath.Dir(filepath.Dir(filename)))
slog.Debug("extracting", "variant", variant, "file", filename)
g.Go(func() error {
srcf, err := libEmbed.Open(filename)
if err != nil {
return err
}
defer srcf.Close()
src := io.Reader(srcf)
if strings.HasSuffix(filename, ".gz") {
src, err = gzip.NewReader(src)
if err != nil {
return fmt.Errorf("decompress payload %s: %v", filename, err)
}
filename = strings.TrimSuffix(filename, ".gz")
}
variantDir := filepath.Join(targetDir, variant)
if err := os.MkdirAll(variantDir, 0o755); err != nil {
return fmt.Errorf("extractFiles could not mkdir %s: %v", variantDir, err)
}
base := filepath.Base(filename)
destFilename := filepath.Join(variantDir, base)
_, err = os.Stat(destFilename)
switch {
case errors.Is(err, os.ErrNotExist):
destFile, err := os.OpenFile(destFilename, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
return fmt.Errorf("write payload %s: %v", filename, err)
}
defer destFile.Close()
if _, err := io.Copy(destFile, src); err != nil {
return fmt.Errorf("copy payload %s: %v", filename, err)
}
case err != nil:
return fmt.Errorf("stat payload %s: %v", filename, err)
}
return nil
})
}
err = g.Wait()
if err != nil {
// If we fail to extract, the payload dir is unusable, so cleanup whatever we extracted
gpu.Cleanup()
return err
}
return nil
}

View File

@@ -1,233 +0,0 @@
package llm
import (
"compress/gzip"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
"sync"
"golang.org/x/exp/slices"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/gpu"
)
// Libraries names may contain an optional variant separated by '_'
// For example, "rocm_v6" and "rocm_v5" or "cpu" and "cpu_avx2"
// Any library without a variant is the lowest common denominator
var availableDynLibs = map[string]string{}
const pathComponentCount = 7
// getDynLibs returns an ordered list of LLM libraries to try, starting with the best
func getDynLibs(gpuInfo gpu.GpuInfo) []string {
// Short circuit if we know we're using the default built-in (darwin only)
if gpuInfo.Library == "default" {
return []string{"default"}
}
// TODO - temporary until we have multiple CPU variations for Darwin
// Short circuit on darwin with metal only
if len(availableDynLibs) == 1 {
if _, onlyMetal := availableDynLibs["metal"]; onlyMetal {
return []string{availableDynLibs["metal"]}
}
}
exactMatch := ""
dynLibs := []string{}
altDynLibs := []string{}
requested := gpuInfo.Library
if gpuInfo.Variant != "" {
requested += "_" + gpuInfo.Variant
}
// Try to find an exact match
for cmp := range availableDynLibs {
if requested == cmp {
exactMatch = cmp
dynLibs = []string{availableDynLibs[cmp]}
break
}
}
// Then for GPUs load alternates and sort the list for consistent load ordering
if gpuInfo.Library != "cpu" {
for cmp := range availableDynLibs {
if gpuInfo.Library == strings.Split(cmp, "_")[0] && cmp != exactMatch {
altDynLibs = append(altDynLibs, cmp)
}
}
slices.Sort(altDynLibs)
for _, altDynLib := range altDynLibs {
dynLibs = append(dynLibs, availableDynLibs[altDynLib])
}
}
// Load up the best CPU variant if not primary requested
if gpuInfo.Library != "cpu" {
variant := gpu.GetCPUVariant()
// If no variant, then we fall back to default
// If we have a variant, try that if we find an exact match
// Attempting to run the wrong CPU instructions will panic the
// process
if variant != "" {
for cmp := range availableDynLibs {
if cmp == "cpu_"+variant {
dynLibs = append(dynLibs, availableDynLibs[cmp])
break
}
}
} else {
dynLibs = append(dynLibs, availableDynLibs["cpu"])
}
}
// Finally, if we didn't find any matches, LCD CPU FTW
if len(dynLibs) == 0 {
dynLibs = []string{availableDynLibs["cpu"]}
}
slog.Debug(fmt.Sprintf("ordered list of LLM libraries to try %v", dynLibs))
return dynLibs
}
func rocmDynLibPresent() bool {
for dynLibName := range availableDynLibs {
if strings.HasPrefix(dynLibName, "rocm") {
return true
}
}
return false
}
func nativeInit() error {
payloadsDir, err := gpu.PayloadsDir()
if err != nil {
return err
}
slog.Info(fmt.Sprintf("Extracting dynamic libraries to %s ...", payloadsDir))
libs, err := extractDynamicLibs(payloadsDir, "llama.cpp/build/*/*/*/lib/*")
if err != nil {
if errors.Is(err, payloadMissing) {
slog.Info(fmt.Sprintf("%s", payloadMissing))
return nil
}
return err
}
for _, lib := range libs {
// The last dir component is the variant name
variant := filepath.Base(filepath.Dir(lib))
availableDynLibs[variant] = lib
}
if err := verifyDriverAccess(); err != nil {
return err
}
// Report which dynamic libraries we have loaded to assist troubleshooting
variants := make([]string, len(availableDynLibs))
i := 0
for variant := range availableDynLibs {
variants[i] = variant
i++
}
slog.Info(fmt.Sprintf("Dynamic LLM libraries %v", variants))
slog.Debug("Override detection logic by setting OLLAMA_LLM_LIBRARY")
return nil
}
func extractDynamicLibs(payloadsDir, glob string) ([]string, error) {
files, err := fs.Glob(libEmbed, glob)
if err != nil || len(files) == 0 {
return nil, payloadMissing
}
var mu sync.Mutex
var libs []string
var g errgroup.Group
for _, file := range files {
pathComps := strings.Split(file, "/")
if len(pathComps) != pathComponentCount {
slog.Error(fmt.Sprintf("unexpected payload components: %v", pathComps))
continue
}
file := file
g.Go(func() error {
// llama.cpp/build/$OS/$GOARCH/$VARIANT/lib/$LIBRARY
// Include the variant in the path to avoid conflicts between multiple server libs
targetDir := filepath.Join(payloadsDir, pathComps[pathComponentCount-3])
srcFile, err := libEmbed.Open(file)
if err != nil {
return fmt.Errorf("read payload %s: %v", file, err)
}
defer srcFile.Close()
if err := os.MkdirAll(targetDir, 0o755); err != nil {
return fmt.Errorf("create payload lib dir %s: %v", payloadsDir, err)
}
src := io.Reader(srcFile)
filename := file
if strings.HasSuffix(file, ".gz") {
src, err = gzip.NewReader(src)
if err != nil {
return fmt.Errorf("decompress payload %s: %v", file, err)
}
filename = strings.TrimSuffix(filename, ".gz")
}
destFile := filepath.Join(targetDir, filepath.Base(filename))
if strings.Contains(destFile, "server") {
mu.Lock()
libs = append(libs, destFile)
mu.Unlock()
}
destFp, err := os.OpenFile(destFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
return fmt.Errorf("write payload %s: %v", file, err)
}
defer destFp.Close()
if _, err := io.Copy(destFp, src); err != nil {
return fmt.Errorf("copy payload %s: %v", file, err)
}
return nil
})
}
err = g.Wait()
if err != nil {
// If we fail to extract, the payload dir is unusable, so cleanup whatever we extracted
gpu.Cleanup()
return nil, err
}
return libs, nil
}
func verifyDriverAccess() error {
if runtime.GOOS != "linux" {
return nil
}
// Only check ROCm access if we have the dynamic lib loaded
if rocmDynLibPresent() {
// Verify we have permissions - either running as root, or we have group access to the driver
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0666)
if err != nil {
if errors.Is(err, fs.ErrPermission) {
return fmt.Errorf("Radeon card detected, but permissions not set up properly. Either run ollama as root, or add you user account to the render group.")
} else if errors.Is(err, fs.ErrNotExist) {
// expected behavior without a radeon card
return nil
}
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
}
fd.Close()
}
return nil
}

View File

@@ -1,8 +0,0 @@
package llm
import (
"embed"
)
//go:embed llama.cpp/build/darwin/x86_64/*/lib/*.dylib*
var libEmbed embed.FS

View File

@@ -1,8 +0,0 @@
package llm
import (
"embed"
)
//go:embed llama.cpp/ggml-metal.metal llama.cpp/build/darwin/arm64/*/lib/*.dylib*
var libEmbed embed.FS

View File

@@ -1,58 +0,0 @@
package llm
import (
"testing"
"github.com/ollama/ollama/gpu"
"github.com/stretchr/testify/assert"
)
func TestGetDynLibs(t *testing.T) {
availableDynLibs = map[string]string{
"cpu": "X_cpu",
}
assert.Equal(t, false, rocmDynLibPresent())
res := getDynLibs(gpu.GpuInfo{Library: "cpu"})
assert.Len(t, res, 1)
assert.Equal(t, availableDynLibs["cpu"], res[0])
variant := gpu.GetCPUVariant()
if variant != "" {
variant = "_" + variant
}
availableDynLibs = map[string]string{
"rocm_v5": "X_rocm_v5",
"rocm_v6": "X_rocm_v6",
"cpu" + variant: "X_cpu",
}
assert.Equal(t, true, rocmDynLibPresent())
res = getDynLibs(gpu.GpuInfo{Library: "rocm"})
assert.Len(t, res, 3)
assert.Equal(t, availableDynLibs["rocm_v5"], res[0])
assert.Equal(t, availableDynLibs["rocm_v6"], res[1])
assert.Equal(t, availableDynLibs["cpu"+variant], res[2])
res = getDynLibs(gpu.GpuInfo{Library: "rocm", Variant: "v6"})
assert.Len(t, res, 3)
assert.Equal(t, availableDynLibs["rocm_v6"], res[0])
assert.Equal(t, availableDynLibs["rocm_v5"], res[1])
assert.Equal(t, availableDynLibs["cpu"+variant], res[2])
res = getDynLibs(gpu.GpuInfo{Library: "cuda"})
assert.Len(t, res, 1)
assert.Equal(t, availableDynLibs["cpu"+variant], res[0])
res = getDynLibs(gpu.GpuInfo{Library: "default"})
assert.Len(t, res, 1)
assert.Equal(t, "default", res[0])
availableDynLibs = map[string]string{
"rocm": "X_rocm_v5",
"cpu" + variant: "X_cpu",
}
assert.Equal(t, true, rocmDynLibPresent())
res = getDynLibs(gpu.GpuInfo{Library: "rocm", Variant: "v6"})
assert.Len(t, res, 2)
assert.Equal(t, availableDynLibs["rocm"], res[0])
assert.Equal(t, availableDynLibs["cpu"+variant], res[1])
}

847
llm/server.go Normal file
View File

@@ -0,0 +1,847 @@
package llm
import (
"bufio"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"log"
"log/slog"
"math/rand"
"net"
"net/http"
"os"
"os/exec"
"path/filepath"
"runtime"
"slices"
"strconv"
"strings"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
// LlamaServer is an instance of the llama.cpp server
type LlamaServer struct {
port int
cmd *exec.Cmd
done chan error // Channel to signal when the process exits
status *StatusWriter
options api.Options
}
var cpuOnlyFamilies = []string{
"mamba",
}
func NewLlamaServer(model string, adapters, projectors []string, opts api.Options) (*LlamaServer, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, _, err := DecodeGGML(f)
if err != nil {
return nil, err
}
if opts.NumCtx > int(ggml.KV().ContextLength()) {
slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
opts.NumCtx = int(ggml.KV().ContextLength())
}
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
availableMemory, _ := gpu.CheckVRAM()
info := gpu.GetGPUInfo()
usedMemory := info.MinimumMemory
for _, projector := range projectors {
usedMemory += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.KV().BlockCount()) * int64(ggml.KV().EmbeddingLength()) / int64(ggml.KV().HeadCount()) * int64(ggml.KV().HeadCountKV())
graph, ok := ggml.GraphSize(opts.NumCtx, min(opts.NumCtx, opts.NumBatch))
if !ok {
graph = int64(ggml.KV().GQA()) * kv / 6
}
usedMemory += graph
if (usedMemory > availableMemory || slices.Contains(cpuOnlyFamilies, ggml.KV().Architecture())) && info.Library != "metal" {
info.Library = "cpu"
}
requiredMemory := usedMemory
var layers int
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
layerMemory := ggml.LayerSize(fmt.Sprintf("blk.%d.", i)) + kv/int64(ggml.KV().BlockCount())
requiredMemory += layerMemory
if availableMemory > usedMemory+layerMemory && (opts.NumGPU < 0 || layers < opts.NumGPU) {
usedMemory += layerMemory
layers++
}
}
memOutputLayer := ggml.LayerSize("output.")
requiredMemory += memOutputLayer
// only offload output layer if all repeating layers are offloaded
if layers >= int(ggml.KV().BlockCount()) && availableMemory > usedMemory+memOutputLayer {
usedMemory += memOutputLayer
layers++
}
slog.Info(
"offload to gpu",
"layers", layers,
"required", format.HumanBytes2(requiredMemory),
"used", format.HumanBytes2(usedMemory),
"available", format.HumanBytes2(availableMemory),
"kv", format.HumanBytes2(kv),
"graph", format.HumanBytes2(graph),
)
if opts.NumGPU < 0 && info.Library != "cpu" {
opts.NumGPU = layers
}
if len(adapters) > 1 {
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
}
availableServers := availableServers()
servers := serversForGpu(info)
demandLib := os.Getenv("OLLAMA_LLM_LIBRARY")
if demandLib != "" {
serverPath := availableServers[demandLib]
if serverPath == "" {
slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
} else {
slog.Info("user override", "OLLAMA_LLM_LIBRARY", demandLib, "path", serverPath)
servers = []string{demandLib}
}
}
if len(servers) == 0 {
return nil, fmt.Errorf("no servers found for %v", info)
}
params := []string{
"--model", model,
"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
"--embedding",
}
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
params = append(params, "--log-format", "json")
} else {
params = append(params, "--log-disable")
}
if opts.NumGPU >= 0 {
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
}
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
params = append(params, "--verbose")
}
if opts.MainGPU > 0 {
params = append(params, "--main-gpu", fmt.Sprintf("%d", opts.MainGPU))
}
if len(adapters) > 0 {
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
params = append(params, "--lora", adapters[0])
}
if len(projectors) > 0 {
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
params = append(params, "--mmproj", projectors[0])
}
if opts.NumThread > 0 {
params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
}
if !opts.F16KV {
params = append(params, "--memory-f32")
}
if opts.UseMLock {
params = append(params, "--mlock")
}
if !opts.UseMMap {
params = append(params, "--no-mmap")
}
if opts.UseNUMA {
params = append(params, "--numa")
}
// Loop through potential servers
var finalErr error
for i := 0; i < len(servers); i++ {
dir := availableServers[servers[i]]
// Find an availableServers port, retry on each iterration in case the failure was a port conflict race
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed ", "error", err)
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := append(params, "--port", strconv.Itoa(port))
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// append the server directory to LD_LIBRARY_PATH/PATH
libraryPaths := []string{dir}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// Append our runner directory to the path
// This will favor system libraries over our bundled library dependencies
libraryPaths = append(filepath.SplitList(libraryPath), libraryPaths...)
}
server := filepath.Join(dir, "ollama_llama_server")
if runtime.GOOS == "windows" {
server = server + ".exe"
}
s := &LlamaServer{
port: port,
cmd: exec.Command(server, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
}
libEnv := fmt.Sprintf("%s=%s", pathEnv, strings.Join(libraryPaths, string(filepath.ListSeparator)))
slog.Debug(libEnv)
s.cmd.Env = append(os.Environ(), libEnv)
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
slog.Info("starting llama server", "cmd", s.cmd.String())
if err = s.cmd.Start(); err != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
err = fmt.Errorf("error starting the external llama server: %v %s", err, msg)
finalErr = err
continue
}
// reap subprocess when it exits
go func() {
// Exit status managed via getServerStatus
_ = s.cmd.Wait()
}()
if err = s.waitUntilRunning(); err != nil {
slog.Error("error starting llama server", "server", servers[i], "error", err)
s.Close()
finalErr = err
continue
}
return s, nil
}
slog.Error("unable to load any llama server", "error", finalErr)
return nil, finalErr
}
func projectorMemoryRequirements(filename string) int64 {
file, err := os.Open(filename)
if err != nil {
return 0
}
defer file.Close()
ggml, _, err := DecodeGGML(file)
if err != nil {
return 0
}
prefixes := make(map[string]struct{})
for _, layer := range ggml.Tensors() {
parts := strings.Split(layer.Name, ".")
prefixes[strings.Join(parts[:2], ".")] = struct{}{}
}
var ask int64
for prefix := range prefixes {
ask += ggml.LayerSize(prefix)
}
return ask
}
type ServerStatus int
const ( // iota is reset to 0
ServerStatusReady ServerStatus = iota
ServerStatusNoSlotsAvaialble
ServerStatusLoadingModel
ServerStatusNotResponding
ServerStatusError
)
type ServerStatusResp struct {
Status string `json:"status"`
SlotsIdle int `json:"slots_idle"`
SlotsProcessing int `json:"slots_processing"`
Error string `json:"error"`
}
func (s *LlamaServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
// Fail fast if its exited
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
if err != nil {
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
if errors.Is(err, context.DeadlineExceeded) {
return ServerStatusNotResponding, fmt.Errorf("server not responding")
}
return ServerStatusError, fmt.Errorf("health resp: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return ServerStatusError, fmt.Errorf("read health request: %w", err)
}
var status ServerStatusResp
if err := json.Unmarshal(body, &status); err != nil {
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
}
switch status.Status {
case "ok":
return ServerStatusReady, nil
case "no slot available":
return ServerStatusNoSlotsAvaialble, nil
case "loading model":
return ServerStatusLoadingModel, nil
default:
return ServerStatusError, fmt.Errorf("server error: %+v", status)
}
}
func (s *LlamaServer) Ping(ctx context.Context) error {
_, err := s.getServerStatus(ctx)
if err != nil {
slog.Debug("server unhealthy", "error", err)
return err
}
return nil
}
func (s *LlamaServer) waitUntilRunning() error {
start := time.Now()
expiresAt := time.Now().Add(3 * time.Minute) // be generous with timeout, large models can take a while to load
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
slog.Info("waiting for llama runner to start responding")
var lastStatus ServerStatus = -1
for {
select {
case err := <-s.done:
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
case <-ticker.C:
if time.Now().After(expiresAt) {
// timeout
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("timed out waiting for llama runner to start: %s", msg)
}
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
ctx, cancel := context.WithTimeout(context.Background(), 200*time.Millisecond)
defer cancel()
status, err := s.getServerStatus(ctx)
if err != nil && lastStatus != status {
slog.Debug("server not yet available", "error", err)
lastStatus = status
continue
}
switch status {
case ServerStatusLoadingModel:
// TODO - this state never seems to happen with the current server.cpp code (bug?)
// it doesn't respond to the health endpoint until after the model is loaded
slog.Debug("loading model")
case ServerStatusReady:
slog.Debug(fmt.Sprintf("llama runner started in %f seconds", time.Since(start).Seconds()))
return nil
}
}
}
}
const jsonGrammar = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
const maxBufferSize = 512 * format.KiloByte
const maxRetries = 3
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
}
type completion struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
type CompletionRequest struct {
Prompt string
Format string
Images []ImageData
Options api.Options
}
type CompletionResponse struct {
Content string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
func (s *LlamaServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
request := map[string]any{
"prompt": req.Prompt,
"stream": true,
"n_predict": req.Options.NumPredict,
"n_keep": req.Options.NumKeep,
"main_gpu": req.Options.MainGPU,
"temperature": req.Options.Temperature,
"top_k": req.Options.TopK,
"top_p": req.Options.TopP,
"tfs_z": req.Options.TFSZ,
"typical_p": req.Options.TypicalP,
"repeat_last_n": req.Options.RepeatLastN,
"repeat_penalty": req.Options.RepeatPenalty,
"presence_penalty": req.Options.PresencePenalty,
"frequency_penalty": req.Options.FrequencyPenalty,
"mirostat": req.Options.Mirostat,
"mirostat_tau": req.Options.MirostatTau,
"mirostat_eta": req.Options.MirostatEta,
"penalize_nl": req.Options.PenalizeNewline,
"seed": req.Options.Seed,
"stop": req.Options.Stop,
"image_data": req.Images,
"cache_prompt": true,
}
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return err
} else if status != ServerStatusReady {
return fmt.Errorf("unexpected server status: %d", status)
}
if req.Format == "json" {
request["grammar"] = jsonGrammar
if !strings.Contains(strings.ToLower(req.Prompt), "json") {
slog.Warn("Prompt does not specify that the LLM should response in JSON, but JSON format is expected. For best results specify that JSON is expected in the system prompt.")
}
}
retryDelay := 100 * time.Microsecond
for retries := 0; retries < maxRetries; retries++ {
if retries > 0 {
time.Sleep(retryDelay) // wait before retrying
retryDelay *= 2 // exponential backoff
}
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(request); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
if err != nil {
return fmt.Errorf("error creating POST request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
}
defer resp.Body.Close()
if resp.StatusCode >= 400 {
bodyBytes, err := io.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("failed reading llm error response: %w", err)
}
log.Printf("llm predict error: %s", bodyBytes)
return fmt.Errorf("%s", bodyBytes)
}
scanner := bufio.NewScanner(resp.Body)
buf := make([]byte, 0, maxBufferSize)
scanner.Buffer(buf, maxBufferSize)
retryNeeded := false
// keep track of the last token generated, this is used to abort if the model starts looping
var lastToken string
var tokenRepeat int
for scanner.Scan() {
select {
case <-ctx.Done():
// This handles the request cancellation
return ctx.Err()
default:
line := scanner.Bytes()
if len(line) == 0 {
continue
}
// try again on slot unavailable
if bytes.Contains(line, []byte("slot unavailable")) {
retryNeeded = true
break
}
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
return fmt.Errorf("error parsing llm response stream: %s", line)
}
var c completion
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
}
switch {
case strings.TrimSpace(c.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(c.Content)
tokenRepeat = 0
}
// 30 picked as an arbitrary max token repeat limit, modify as needed
if tokenRepeat > 30 {
slog.Debug("prediction aborted, token repeat limit reached")
return ctx.Err()
}
if c.Content != "" {
fn(CompletionResponse{
Content: c.Content,
})
}
if c.Stop {
fn(CompletionResponse{
Done: true,
PromptEvalCount: c.Timings.PromptN,
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
EvalCount: c.Timings.PredictedN,
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
})
return nil
}
}
}
if err := scanner.Err(); err != nil {
if strings.Contains(err.Error(), "unexpected EOF") {
s.Close()
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("an unknown error was encountered while running the model %s", msg)
}
return fmt.Errorf("error reading llm response: %v", err)
}
if !retryNeeded {
return nil // success
}
}
// should never reach here ideally
return fmt.Errorf("max retries exceeded")
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
func (s *LlamaServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %d", status)
}
data, err := json.Marshal(TokenizeRequest{Content: prompt})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("error creating embed request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("do embedding request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("error reading embed response: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var embedding EmbeddingResponse
if err := json.Unmarshal(body, &embedding); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return embedding.Embedding, nil
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
func (s *LlamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %d", status)
}
data, err := json.Marshal(TokenizeRequest{Content: content})
if err != nil {
return nil, fmt.Errorf("marshaling encode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("encode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("do encode request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("read encode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var encoded TokenizeResponse
if err := json.Unmarshal(body, &encoded); err != nil {
return nil, fmt.Errorf("unmarshal encode response: %w", err)
}
return encoded.Tokens, nil
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
func (s *LlamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return "", err
} else if status != ServerStatusReady {
return "", fmt.Errorf("unexpected server status: %d", status)
}
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
if err != nil {
return "", fmt.Errorf("marshaling decode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/detokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return "", fmt.Errorf("decode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("do decode request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return "", fmt.Errorf("read decode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm decode error: %s", body)
return "", fmt.Errorf("%s", body)
}
var decoded DetokenizeResponse
if err := json.Unmarshal(body, &decoded); err != nil {
return "", fmt.Errorf("unmarshal encode response: %w", err)
}
return decoded.Content, nil
}
func (s *LlamaServer) Close() error {
if s.cmd != nil {
slog.Debug("stopping llama server")
return s.cmd.Process.Kill()
}
return nil
}
func parseDurationMs(ms float64) time.Duration {
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
if err != nil {
panic(err)
}
return dur
}

42
llm/status.go Normal file
View File

@@ -0,0 +1,42 @@
package llm
import (
"bytes"
"os"
)
// StatusWriter is a writer that captures error messages from the llama runner process
type StatusWriter struct {
LastErrMsg string
out *os.File
}
func NewStatusWriter(out *os.File) *StatusWriter {
return &StatusWriter{
out: out,
}
}
// TODO - regex matching to detect errors like
// libcublasLt.so.11: cannot open shared object file: No such file or directory
var errorPrefixes = []string{
"error:",
"CUDA error",
"cudaMalloc failed",
"\"ERR\"",
}
func (w *StatusWriter) Write(b []byte) (int, error) {
var errMsg string
for _, prefix := range errorPrefixes {
if _, after, ok := bytes.Cut(b, []byte(prefix)); ok {
errMsg = prefix + string(bytes.TrimSpace(after))
}
}
if errMsg != "" {
w.LastErrMsg = errMsg
}
return w.out.Write(b)
}

View File

@@ -1,15 +0,0 @@
package llm
import (
"fmt"
"time"
)
func parseDurationMs(ms float64) time.Duration {
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
if err != nil {
panic(err)
}
return dur
}

View File

@@ -142,7 +142,9 @@ func (h *History) Save() error {
for cnt := 0; cnt < h.Size(); cnt++ {
v, _ := h.Buf.Get(cnt)
line, _ := v.([]rune)
buf.WriteString(string(line) + "\n")
if _, err := buf.WriteString(string(line) + "\n"); err != nil {
return err
}
}
buf.Flush()
f.Close()

View File

@@ -10,7 +10,7 @@ export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$V
# For developers, you can override the DOCKER_ORG to generate multiarch manifests
# DOCKER_ORG=jdoe PUSH=1 ./scripts/build_docker.sh
DOCKER_ORG=${DOCKER_ORG:-"ollama"}
ARCH_IMAGE_REPO=${ARCH_IMAGE_REPO:-"${DOCKER_ORG}/release"}
RELEASE_IMAGE_REPO=${RELEASE_IMAGE_REPO:-"${DOCKER_ORG}/release"}
FINAL_IMAGE_REPO=${FINAL_IMAGE_REPO:-"${DOCKER_ORG}/ollama"}
BUILD_ARCH=${BUILD_ARCH:-"amd64 arm64"}
@@ -25,7 +25,7 @@ OLLAMA_SKIP_IMAGE_BUILD=${OLLAMA_SKIP_IMAGE_BUILD:-""}
if [ -z "${PUSH}" ] ; then
LOAD_OR_PUSH="--load"
else
echo "Will be pushing ${ARCH_IMAGE_REPO}:$VERSION for ${BUILD_ARCH}"
echo "Will be pushing ${RELEASE_IMAGE_REPO}:$VERSION for ${BUILD_ARCH}"
LOAD_OR_PUSH="--push"
fi
@@ -37,7 +37,7 @@ if [ -z "${OLLAMA_SKIP_IMAGE_BUILD}" ]; then
--build-arg=VERSION \
--build-arg=GOFLAGS \
-f Dockerfile \
-t ${ARCH_IMAGE_REPO}:$VERSION-${TARGETARCH} \
-t ${RELEASE_IMAGE_REPO}:$VERSION-${TARGETARCH} \
.
done
@@ -49,7 +49,7 @@ if [ -z "${OLLAMA_SKIP_IMAGE_BUILD}" ]; then
--build-arg=GOFLAGS \
--target runtime-rocm \
-f Dockerfile \
-t ${ARCH_IMAGE_REPO}:$VERSION-rocm \
-t ${RELEASE_IMAGE_REPO}:$VERSION-rocm \
.
fi
fi
@@ -57,21 +57,21 @@ fi
if [ -z "${OLLAMA_SKIP_MANIFEST_CREATE}" ]; then
if [ -n "${PUSH}" ]; then
docker manifest create ${FINAL_IMAGE_REPO}:$VERSION \
${ARCH_IMAGE_REPO}:$VERSION-amd64 \
${ARCH_IMAGE_REPO}:$VERSION-arm64
${RELEASE_IMAGE_REPO}:$VERSION-amd64 \
${RELEASE_IMAGE_REPO}:$VERSION-arm64
docker manifest push ${FINAL_IMAGE_REPO}:$VERSION
# For symmetry, tag/push the rocm image
if [ "${ARCH_IMAGE_REPO}" != "${FINAL_IMAGE_REPO}" ]; then
if [ "${RELEASE_IMAGE_REPO}" != "${FINAL_IMAGE_REPO}" ]; then
echo "Tagging and pushing rocm image"
docker pull ${ARCH_IMAGE_REPO}:$VERSION-rocm
docker tag ${ARCH_IMAGE_REPO}:$VERSION-rocm ${FINAL_IMAGE_REPO}:$VERSION-rocm
docker pull ${RELEASE_IMAGE_REPO}:$VERSION-rocm
docker tag ${RELEASE_IMAGE_REPO}:$VERSION-rocm ${FINAL_IMAGE_REPO}:$VERSION-rocm
docker push ${FINAL_IMAGE_REPO}:$VERSION-rocm
fi
else
echo "Skipping manifest generation when not pushing images are available locally as "
echo " ${ARCH_IMAGE_REPO}:$VERSION-amd64"
echo " ${ARCH_IMAGE_REPO}:$VERSION-arm64"
echo " ${ARCH_IMAGE_REPO}:$VERSION-rocm"
echo " ${RELEASE_IMAGE_REPO}:$VERSION-amd64"
echo " ${RELEASE_IMAGE_REPO}:$VERSION-arm64"
echo " ${RELEASE_IMAGE_REPO}:$VERSION-rocm"
fi
fi

33
scripts/tag_latest.sh Executable file
View File

@@ -0,0 +1,33 @@
#!/bin/sh
set -eu
# We use 2 different image repositories to handle combining architecture images into multiarch manifest
# (The ROCm image is x86 only and is not a multiarch manifest)
# For developers, you can override the DOCKER_ORG to generate multiarch manifests
# DOCKER_ORG=jdoe VERSION=0.1.30 PUSH=1 ./scripts/tag_latest.sh
DOCKER_ORG=${DOCKER_ORG:-"ollama"}
RELEASE_IMAGE_REPO=${RELEASE_IMAGE_REPO:-"${DOCKER_ORG}/release"}
FINAL_IMAGE_REPO=${FINAL_IMAGE_REPO:-"${DOCKER_ORG}/ollama"}
# Set PUSH to a non-empty string to trigger push instead of load
PUSH=${PUSH:-""}
echo "Assembling manifest and tagging latest"
docker manifest rm ${FINAL_IMAGE_REPO}:latest || true
docker manifest create ${FINAL_IMAGE_REPO}:latest \
${RELEASE_IMAGE_REPO}:$VERSION-amd64 \
${RELEASE_IMAGE_REPO}:$VERSION-arm64
docker pull ${RELEASE_IMAGE_REPO}:$VERSION-rocm
docker tag ${RELEASE_IMAGE_REPO}:$VERSION-rocm ${FINAL_IMAGE_REPO}:rocm
if [ -n "${PUSH}" ]; then
echo "Pushing latest tags up..."
docker manifest push ${FINAL_IMAGE_REPO}:latest
docker push ${FINAL_IMAGE_REPO}:rocm
else
echo "Not pushing ${FINAL_IMAGE_REPO}:latest and ${FINAL_IMAGE_REPO}:rocm"
fi

View File

@@ -26,6 +26,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/version"
@@ -321,7 +322,7 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
pathName := realpath(modelFileDir, c.Args)
ggufName, err := convertSafetensors(name, pathName)
ggufName, err := convertSafetensors(name, pathName, fn)
if err != nil {
var pathErr *fs.PathError
switch {
@@ -336,6 +337,7 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
if ggufName != "" {
pathName = ggufName
slog.Debug(fmt.Sprintf("new image layer path: %s", pathName))
defer os.RemoveAll(ggufName)
}
@@ -419,34 +421,32 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
defer bin.Close()
var offset int64
CREATE:
for {
fn(api.ProgressResponse{Status: "creating model layer"})
if _, err := bin.Seek(offset, io.SeekStart); err != nil {
return err
}
bin.Seek(offset, io.SeekStart)
ggml, err := llm.DecodeGGML(bin)
if err != nil {
switch {
case errors.Is(err, io.EOF):
break CREATE
case errors.Is(err, llm.ErrUnsupportedFormat):
return fmt.Errorf("model binary specified in FROM field is not a valid gguf format model, %w", err)
default:
return err
}
ggml, size, err := llm.DecodeGGML(bin)
if errors.Is(err, io.EOF) {
break
} else if errors.Is(err, llm.ErrUnsupportedFormat) {
return fmt.Errorf("model binary specified in FROM field is not a valid gguf format model, %w", err)
} else if err != nil {
return err
}
config.SetModelFormat(ggml.Name())
config.SetModelFamily(ggml.ModelFamily())
config.SetModelType(ggml.ModelType())
config.SetFileType(ggml.FileType())
config.SetModelFamily(ggml.KV().Architecture())
config.SetModelType(format.HumanNumber(ggml.KV().ParameterCount()))
config.SetFileType(ggml.KV().FileType())
mediatype := mediatype
if ggml.ModelFamily() == "clip" {
if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector"
}
sr := io.NewSectionReader(bin, offset, ggml.Size)
sr := io.NewSectionReader(bin, offset, size)
layer, err := NewLayer(sr, mediatype)
if err != nil {
return err
@@ -454,7 +454,7 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
layers.Add(layer)
offset += ggml.Size
offset += size
}
case "adapter":
if strings.HasPrefix(c.Args, "@") {
@@ -473,12 +473,12 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
}
defer bin.Close()
ggml, err := llm.DecodeGGML(bin)
_, size, err := llm.DecodeGGML(bin)
if err != nil {
return err
}
sr := io.NewSectionReader(bin, 0, ggml.Size)
sr := io.NewSectionReader(bin, 0, size)
layer, err := NewLayer(sr, mediatype)
if err != nil {
return err
@@ -550,13 +550,6 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
}
}
// xxx - can this be removed?
if config.ModelType == "65B" {
if gqa, ok := formattedParams["gqa"].(int); ok && gqa == 8 {
config.ModelType = "70B"
}
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(formattedParams); err != nil {
return err
@@ -621,8 +614,8 @@ func CreateModel(ctx context.Context, name, modelFileDir string, commands []pars
return nil
}
func convertSafetensors(name, fn string) (string, error) {
r, err := zip.OpenReader(fn)
func convertSafetensors(name, path string, fn func(resp api.ProgressResponse)) (string, error) {
r, err := zip.OpenReader(path)
if err != nil {
return "", err
}
@@ -634,6 +627,7 @@ func convertSafetensors(name, fn string) (string, error) {
}
defer os.RemoveAll(tempDir)
fn(api.ProgressResponse{Status: "unpacking model metadata"})
for _, f := range r.File {
fpath := filepath.Join(tempDir, f.Name)
outFile, err := os.OpenFile(fpath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, f.Mode())
@@ -660,32 +654,27 @@ func convertSafetensors(name, fn string) (string, error) {
return "", err
}
SupportedArchs := []string{
"MistralForCausalLM",
}
for _, arch := range params.Architectures {
if !slices.Contains(SupportedArchs, arch) {
return "", fmt.Errorf("this safetensors model is not yet supported")
}
}
t, err := convert.GetSafeTensors(tempDir)
mArch, err := convert.GetModelArchFromParams(name, tempDir, params)
if err != nil {
return "", err
}
vocab, err := convert.LoadTokens(tempDir)
fn(api.ProgressResponse{Status: "processing safetensors"})
if err := mArch.GetTensors(); err != nil {
return "", err
}
if err := mArch.LoadVocab(); err != nil {
return "", err
}
fn(api.ProgressResponse{Status: "converting model"})
path, err = mArch.WriteGGUF()
if err != nil {
return "", err
}
fn, err = convert.WriteGGUF(name, t, params, vocab)
if err != nil {
return "", err
}
return fn, nil
return path, nil
}
func CopyModel(src, dest string) error {

View File

@@ -56,12 +56,13 @@ func init() {
var loaded struct {
mu sync.Mutex
runner llm.LLM
llama *llm.LlamaServer
expireAt time.Time
expireTimer *time.Timer
*Model
model string
adapters []string
projectors []string
*api.Options
}
@@ -69,21 +70,28 @@ var defaultSessionDuration = 5 * time.Minute
// load a model into memory if it is not already loaded, it is up to the caller to lock loaded.mu before calling this function
func load(c *gin.Context, model *Model, opts api.Options, sessionDuration time.Duration) error {
needLoad := loaded.runner == nil || // is there a model loaded?
loaded.ModelPath != model.ModelPath || // has the base model changed?
!reflect.DeepEqual(loaded.AdapterPaths, model.AdapterPaths) || // have the adapters changed?
!reflect.DeepEqual(loaded.Options.Runner, opts.Runner) // have the runner options changed?
ctx, cancel := context.WithTimeout(c, 10*time.Second)
defer cancel()
needLoad := loaded.llama == nil || // is there a model loaded?
loaded.model != model.ModelPath || // has the base model changed?
!reflect.DeepEqual(loaded.adapters, model.AdapterPaths) || // have the adapters changed?
!reflect.DeepEqual(loaded.projectors, model.ProjectorPaths) || // have the adapters changed?
!reflect.DeepEqual(loaded.Options.Runner, opts.Runner) || // have the runner options changed?
loaded.llama.Ping(ctx) != nil
if needLoad {
if loaded.runner != nil {
if loaded.llama != nil {
slog.Info("changing loaded model")
loaded.runner.Close()
loaded.runner = nil
loaded.Model = nil
loaded.llama.Close()
loaded.llama = nil
loaded.model = ""
loaded.adapters = nil
loaded.projectors = nil
loaded.Options = nil
}
llmRunner, err := llm.New(model.ModelPath, model.AdapterPaths, model.ProjectorPaths, opts)
llama, err := llm.NewLlamaServer(model.ModelPath, model.AdapterPaths, model.ProjectorPaths, opts)
if err != nil {
// some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to
@@ -95,28 +103,26 @@ func load(c *gin.Context, model *Model, opts api.Options, sessionDuration time.D
return err
}
loaded.Model = model
loaded.runner = llmRunner
loaded.model = model.ModelPath
loaded.adapters = model.AdapterPaths
loaded.projectors = model.ProjectorPaths
loaded.llama = llama
loaded.Options = &opts
}
loaded.expireAt = time.Now().Add(sessionDuration)
if loaded.expireTimer == nil {
loaded.expireTimer = time.AfterFunc(sessionDuration, func() {
loaded.mu.Lock()
defer loaded.mu.Unlock()
if time.Now().Before(loaded.expireAt) {
return
if loaded.llama != nil {
loaded.llama.Close()
}
if loaded.runner != nil {
loaded.runner.Close()
}
loaded.runner = nil
loaded.Model = nil
loaded.llama = nil
loaded.model = ""
loaded.adapters = nil
loaded.projectors = nil
loaded.Options = nil
})
}
@@ -265,7 +271,7 @@ func GenerateHandler(c *gin.Context) {
sb.Reset()
if req.Context != nil {
prev, err := loaded.runner.Decode(c.Request.Context(), req.Context)
prev, err := loaded.llama.Detokenize(c.Request.Context(), req.Context)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
@@ -286,9 +292,8 @@ func GenerateHandler(c *gin.Context) {
go func() {
defer close(ch)
fn := func(r llm.PredictResult) {
fn := func(r llm.CompletionResponse) {
// Update model expiration
loaded.expireAt = time.Now().Add(sessionDuration)
loaded.expireTimer.Reset(sessionDuration)
// Build up the full response
@@ -322,7 +327,7 @@ func GenerateHandler(c *gin.Context) {
}
// TODO (jmorganca): encode() should not strip special tokens
tokens, err := loaded.runner.Encode(c.Request.Context(), p)
tokens, err := loaded.llama.Tokenize(c.Request.Context(), p)
if err != nil {
ch <- gin.H{"error": err.Error()}
return
@@ -344,13 +349,13 @@ func GenerateHandler(c *gin.Context) {
}
// Start prediction
predictReq := llm.PredictOpts{
req := llm.CompletionRequest{
Prompt: prompt,
Format: req.Format,
Images: images,
Options: opts,
}
if err := loaded.runner.Predict(c.Request.Context(), predictReq, fn); err != nil {
if err := loaded.llama.Completion(c.Request.Context(), req, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
@@ -471,7 +476,7 @@ func EmbeddingsHandler(c *gin.Context) {
return
}
embedding, err := loaded.runner.Embedding(c.Request.Context(), req.Prompt)
embedding, err := loaded.llama.Embedding(c.Request.Context(), req.Prompt)
if err != nil {
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
@@ -1013,16 +1018,14 @@ func allowedHostsMiddleware(addr net.Addr) gin.HandlerFunc {
}
func (s *Server) GenerateRoutes() http.Handler {
var origins []string
if o := os.Getenv("OLLAMA_ORIGINS"); o != "" {
origins = strings.Split(o, ",")
}
config := cors.DefaultConfig()
config.AllowWildcard = true
config.AllowBrowserExtensions = true
config.AllowOrigins = origins
if allowedOrigins := strings.Trim(os.Getenv("OLLAMA_ORIGINS"), "\"'"); allowedOrigins != "" {
config.AllowOrigins = strings.Split(allowedOrigins, ",")
}
for _, allowOrigin := range defaultAllowOrigins {
config.AllowOrigins = append(config.AllowOrigins,
fmt.Sprintf("http://%s", allowOrigin),
@@ -1125,8 +1128,8 @@ func Serve(ln net.Listener) error {
signal.Notify(signals, syscall.SIGINT, syscall.SIGTERM)
go func() {
<-signals
if loaded.runner != nil {
loaded.runner.Close()
if loaded.llama != nil {
loaded.llama.Close()
}
gpu.Cleanup()
os.Exit(0)
@@ -1198,7 +1201,7 @@ func streamResponse(c *gin.Context, ch chan any) {
// ChatPrompt builds up a prompt from a series of messages for the currently `loaded` model
func chatPrompt(ctx context.Context, template string, messages []api.Message, numCtx int) (string, error) {
encode := func(s string) ([]int, error) {
return loaded.runner.Encode(ctx, s)
return loaded.llama.Tokenize(ctx, s)
}
prompt, err := ChatPrompt(template, messages, numCtx, encode)
@@ -1328,9 +1331,8 @@ func ChatHandler(c *gin.Context) {
go func() {
defer close(ch)
fn := func(r llm.PredictResult) {
fn := func(r llm.CompletionResponse) {
// Update model expiration
loaded.expireAt = time.Now().Add(sessionDuration)
loaded.expireTimer.Reset(sessionDuration)
resp := api.ChatResponse{
@@ -1354,14 +1356,12 @@ func ChatHandler(c *gin.Context) {
ch <- resp
}
// Start prediction
predictReq := llm.PredictOpts{
if err := loaded.llama.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Format: req.Format,
Images: images,
Options: opts,
}
if err := loaded.runner.Predict(c.Request.Context(), predictReq, fn); err != nil {
}, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()

View File

@@ -3,6 +3,7 @@ package server
import (
"bytes"
"context"
"encoding/binary"
"encoding/json"
"fmt"
"io"
@@ -16,7 +17,6 @@ import (
"github.com/stretchr/testify/assert"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/version"
)
@@ -31,13 +31,22 @@ func Test_Routes(t *testing.T) {
}
createTestFile := func(t *testing.T, name string) string {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), name)
assert.Nil(t, err)
defer f.Close()
_, err = f.Write([]byte("GGUF"))
err = binary.Write(f, binary.LittleEndian, []byte("GGUF"))
assert.Nil(t, err)
_, err = f.Write([]byte{0x2, 0})
err = binary.Write(f, binary.LittleEndian, uint32(3))
assert.Nil(t, err)
err = binary.Write(f, binary.LittleEndian, uint64(0))
assert.Nil(t, err)
err = binary.Write(f, binary.LittleEndian, uint64(0))
assert.Nil(t, err)
return f.Name()
@@ -201,7 +210,7 @@ func Test_Routes(t *testing.T) {
},
}
s := Server{}
s := &Server{}
router := s.GenerateRoutes()
httpSrv := httptest.NewServer(router)
@@ -232,27 +241,3 @@ func Test_Routes(t *testing.T) {
}
}
type MockLLM struct {
encoding []int
}
func (llm *MockLLM) Predict(ctx context.Context, pred llm.PredictOpts, fn func(llm.PredictResult)) error {
return nil
}
func (llm *MockLLM) Encode(ctx context.Context, prompt string) ([]int, error) {
return llm.encoding, nil
}
func (llm *MockLLM) Decode(ctx context.Context, tokens []int) (string, error) {
return "", nil
}
func (llm *MockLLM) Embedding(ctx context.Context, input string) ([]float64, error) {
return []float64{}, nil
}
func (llm *MockLLM) Close() {
// do nothing
}